ADL5523_09 [ADI]

400 MHz to 4000 MHz Low Noise Amplifier; 400 MHz至4000 MHz的低噪声放大器
ADL5523_09
型号: ADL5523_09
厂家: ADI    ADI
描述:

400 MHz to 4000 MHz Low Noise Amplifier
400 MHz至4000 MHz的低噪声放大器

放大器
文件: 总24页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
400 MHz to 4000 MHz  
Low Noise Amplifier  
ADL5523  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Operation from 400 MHz to 4000 MHz  
Noise figure of 0.8 dB at 900 MHz  
Requires few external components  
Integrated active bias control circuit  
Integrated dc blocking capacitors  
Adjustable bias for low power applications  
Single-supply operation from 3 V to 5 V  
Gain of 21.5 dB at 900 MHz  
ACTIVE  
VBIAS  
RFIN  
NC  
1
2
3
4
8
7
6
5
VPOS  
RFOUT  
NC  
BIAS  
ADL5523  
NC  
NC  
NC = NO CONNECT  
Figure 1.  
OIP3 of 34.0 dBm at 900 MHz  
P1dB of 21.0 dBm at 900 MHz  
Small footprint LFCSP  
Pin-compatible version with 20.8 dB gain available  
GENERAL DESCRIPTION  
The ADL5523 is a high performance GaAs pHEMT low noise  
amplifier. It provides high gain and low noise figure for single-  
downconversion IF sampling receiver architectures as well as  
direct-downconversion receivers.  
The ADL5523 is easy to tune, requiring only a few external  
components. The device can support operation from 3 V to 5 V,  
and the current draw can be adjusted with the external bias  
resistor for applications requiring very low power consumption.  
The ADL5523 provides a high level of integration by incorporating  
the active bias and the dc blocking capacitors, making it very  
easy to use while not sacrificing design flexibility.  
The ADL5523 comes in a compact, thermally enhanced, 3 mm ×  
3 mm LFCSP and operates over the temperature range of  
−40°C to +85°C.  
A fully populated evaluation board is also available.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2008–2009 Analog Devices, Inc. All rights reserved.  
 
 
ADL5523  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
900 MHz, VPOS = 3 V .............................................................. 11  
1950 MHz, VPOS = 3 V ............................................................ 12  
2600 MHz, VPOS = 3 V ............................................................ 13  
3500 MHz, VPOS = 3 V ............................................................ 14  
DC Characteristics..................................................................... 15  
Basic Connections.......................................................................... 16  
Evaluation Board ............................................................................ 17  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 3  
DC Specifications ......................................................................... 4  
De-Embedded S-Parameters, VPOS = 3 V to 5 V, RFIN =  
Port 1, VPOS = Port 2, RFOUT = Port 3 .................................. 4  
Soldering Information and Recommended PCB  
Land Pattern................................................................................ 17  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration And Function Descriptions............................ 6  
Typical Performance Characteristics ............................................. 7  
900 MHz, VPOS = 5 V................................................................. 7  
1950 MHz, VPOS = 5 V .............................................................. 8  
2600 MHz, VPOS = 5 V .............................................................. 9  
3500 MHz, VPOS = 5 V ............................................................ 10  
Tuning the ADL5523 for Optimal Noise Figure ........................ 18  
Tuning S22................................................................................... 18  
Tuning the LNA Input for Optimal Gain................................ 19  
Tuning the LNA Input for Optimal Noise Figure.................. 19  
S11 of the LNA with S22 Matched........................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
9/09—Rev. 0 to Rev. A  
Updated Maximum Junction Temperature Unit (Table 4) ......... 5  
10/08—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
ADL5523  
SPECIFICATIONS  
AC SPECIFICATIONS  
TA = 25°C, R1 = 1.3 kΩ; parameters include matching circuit, matched for optimal noise, unless otherwise noted.  
Table 1.  
3 V  
Min Typ  
5 V  
Max Min Typ  
Parameter  
Conditions  
Max Unit  
FREQUENCY = 900 MHz  
Gain (S21)  
vs. Frequency  
vs. Temperature  
Noise Figure1  
21.0  
21.5  
0.3ꢀ  
0.51  
0.8  
dB  
dB  
dB  
dB  
50 MHz  
−40°C ≤ TA ≤ +85°C  
0.35  
0.ꢁ0  
0.8  
Output Third-Order Intercept (OIP3)  
Output 1 dB Compression Point (P1dB)  
Input Return Loss (S11)  
Output Return Loss (S22)  
Isolation (S12)  
Δf = 1 MHz, POUT = 0 dBm per tone  
28.0  
1ꢀ.8  
−ꢀ.5  
−10.5  
−24.0  
34.0  
21.0  
−8.0  
−11.0  
−25.5  
dBm  
dBm  
dB  
dB  
dB  
FREQUENCY = 1950 MHz  
Gain (S21)  
vs. Frequency  
vs. Temperature  
Noise Figure1  
1ꢁ.5  
0.0ꢁ  
0.50  
0.9  
15.8 1ꢀ.0  
18.0  
dB  
dB  
dB  
dB  
30 MHz  
−40°C ≤ TA ≤ +85°C  
0.08  
0.4ꢀ  
1.0  
Output Third-Order Intercept (OIP3)  
Output 1 dB Compression Point (P1dB)  
Input Return Loss (S11)  
Output Return Loss (S22)  
Isolation (S12)  
Δf = MHz, POUT = 0 dBm per tone  
28.0  
1ꢀ.ꢀ  
−9.0  
−1ꢀ.0  
−20.5  
34.0  
21.2  
−10.0  
−20.0  
−21.5  
dBm  
dBm  
dB  
dB  
dB  
FREQUENCY = 2ꢁ00 MHz  
Gain (S21)  
12.8  
0.35  
0.45  
0.9  
13.2  
0.3ꢁ  
0.44  
0.9  
dB  
vs. Frequency  
vs. Temperature  
Noise Figure1  
100 MHz  
−40°C ≤ TA ≤ +85°C  
dB  
dB  
dB  
Output Third-Order Intercept (OIP3)  
Output 1 dB Compression Point (P1dB)  
Input Return Loss (S11)  
Output Return Loss (S22)  
Isolation (S12)  
Δf = 1 MHz, POUT = 0 dBm per tone  
30.0  
1ꢀ.0  
−5.0  
−10.0  
−21.5  
35.0  
21.2  
−5.0  
−10.0  
−22.0  
dBm  
dBm  
dB  
dB  
dB  
FREQUENCY = 3500 MHz  
Gain (S21)  
vs. Frequency  
vs. Temperature  
Noise Figure1  
10.ꢁ  
0.ꢀ3  
0.ꢀ8  
1.0  
11.0  
0.ꢀ8  
0.ꢀꢀ  
1.0  
dB  
dB  
dB  
dB  
100 MHz  
−40°C ≤ TA ≤ +85°C  
Output Third-Order Intercept (OIP3)  
Output 1 dB Compression Point (P1dB)  
Input Return Loss (S11)  
Output Return Loss (S22)  
Isolation (S12)  
Δf = 1 MHz, POUT = 0 dBm per tone  
30.0  
1ꢀ.3  
−11.0  
−10.0  
−19.0  
33.5  
20.1  
−11.5  
−10.5  
−19.5  
dBm  
dBm  
dB  
dB  
dB  
1 Noise figure de-embedded to first matching component on input side.  
Rev. A | Page 3 of 24  
 
 
ADL5523  
DC SPECIFICATIONS  
Table 2.  
3 V  
Typ  
5 V  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
mA  
mA  
Supply Current  
vs. Temperature  
30  
4
ꢁ0  
−40°C ≤ TA ≤ +85°C  
DE-EMBEDDED S-PARAMETERS, VPOS = 3 V TO 5 V, RFIN = PORT 1, VPOS = PORT 2, RFOUT = PORT 3  
Table 3.  
Frequency S11  
S12  
(dB/Ang)  
S13  
(dB/Ang)  
S21  
(dB/Ang)  
S22  
(dB/Ang)  
S23  
(dB/Ang)  
S31  
(dB/Ang)  
S32  
(dB/Ang)  
S33  
(dB/Ang)  
(GHz)  
0.125  
0.25  
0.3ꢀ5  
0.5  
(dB/Ang)  
−4.2/−12.9  
−5.8/−18.8  
−ꢀ.ꢁ/−20.4  
−9.5/−18.4  
−3ꢀ.1/−21.9 −40.ꢁ/+45.2 +19.3/+132 −ꢁ.2/+89.1 −10.ꢁ/+8.9  
+15.9/−1ꢁ1  
−10.5/−9.0  
−13.2/−33.9 −11.0/−ꢁ.4  
−8.ꢁ/−30.4  
−40.0/−30.ꢁ −38.3/+40.5 +15.4/+104 −2.3/+ꢁ8.ꢁ −13.2/−33.8 +1ꢁ.ꢁ/+1ꢀ4  
−42.0/−31.1 −3ꢀ.5/+38.4 +11.4/+8ꢀ.9 −1.1/+ꢁ3.5 −1ꢁ.2/−42.8 +1ꢁ.0/+158.2 −1ꢁ.2/−43.2 −11.3/+ꢁ.4  
−43.9/−28.2 −3ꢁ.ꢀ/+40.2 +ꢀ.ꢁ/+ꢀꢀ.4 −0.ꢁ/+ꢁ3.3 −19.0/−45.9 +14.9/+14ꢀ  
−19.0/−4ꢁ.0 −11.ꢀ/+1ꢁ.2  
−21.ꢀ/−4ꢁ.ꢀ −12.1/+25.3  
−24.5/−45.8 −12.5/+34.3  
−2ꢀ.8/−44.5 −12.8/+43.2  
−32.5/−42.4 −13.1/+52.3  
−41.ꢁ/−38.ꢁ −13.4/+ꢁ0.8  
−42.8/+129 −13.ꢁ/+ꢁ9.3  
−33.8/+132 −13.9/+ꢀꢀ.5  
−29.8/+133 −14.0/+85.3  
−2ꢀ.2/+134 −14.2/+92.8  
−25.5/+135 −14.4/+100  
−24.2/+139 −14.5/+10ꢀ  
−23.3/+143 −14.ꢁ/+114  
−22.5/+148 −14.ꢀ/+121  
−21.8/+154 −14.8/+12ꢀ  
−21.1/+1ꢁ1 −14.8/+133  
−20.5/+1ꢁ9 −14.8/+140  
−19.8/+1ꢀ8 −14.8/+145  
−19.1/−1ꢀ2 −14.ꢀ/+151  
−18.5/−1ꢁ2 −14.ꢀ/+158  
−1ꢀ.8/−152 −14.ꢀ/+1ꢁ4  
−1ꢀ.3/−140 −14.5/+1ꢀ2  
−1ꢁ.ꢀ/−130 −14.4/+180  
−1ꢁ.2/−121 −14.0/−1ꢀ2  
−15.3/−115 −13.4/−1ꢁ2  
−14.1/−111 −12.4/−152  
−11.9/−113 −10.8/−141  
0.ꢁ25  
0.ꢀ5  
0.8ꢀ5  
1.0  
1.125  
1.25  
1.3ꢀ5  
1.5  
1.ꢁ25  
1.ꢀ5  
1.8ꢀ5  
2.0  
2.125  
2.25  
2.3ꢀ5  
2.5  
2.ꢁ25  
2.ꢀ5  
2.8ꢀ5  
3.0  
3.125  
3.25  
3.3ꢀ5  
3.5  
3.ꢁ25  
3.ꢀ5  
3.8ꢀ5  
4.0  
−11.4/−14.0 −4ꢁ.5/−2ꢀ.4 −3ꢁ.2/+42.3 +3.84/+ꢀ0.2 −0.3/+ꢁ4.8 −21.ꢀ/−4ꢁ.0 +13.8/+140  
−13.2/−ꢀ.2  
−15.1/+2.3  
−48.8/−24.ꢁ −35.8/+44.5 +0.0/+ꢁ5.3  
−51.1/−19.3 −35.4/+4ꢀ.8 −4.2/+ꢁ2.ꢁ  
−0.2/+ꢁꢁ.5 −24.ꢁ/+45.ꢁ +12.8/+135  
−0.1/+ꢁ8.0 −2ꢀ.8/−42.8 +11.8/+132  
+0.0/+ꢁ8.5 −32.3/−40.3 +10.9/+129  
−1ꢁ.8/+13.9 −5ꢁ.ꢁ/−1ꢀ.ꢁ −35.1/+51.1 −9.ꢀ/+ꢁ1.ꢀ  
−18.2/+2ꢀ.3 −ꢁ4.4/−15.8 −34.ꢁ/+53.9 −19.0/+ꢀ0.9 +0.1/+ꢁꢀ.5 −41.4/−31.5 +10.1/+12ꢀ  
−19.3/+42.3 −ꢁꢁ.5/−1ꢀ3 −34.5/+5ꢁ.ꢀ −22.0/−1ꢁ1 +0.2/+ꢁꢁ.0 −45.0/+118 +9.3/+12ꢁ  
−19.9/+5ꢀ.4 −5ꢁ.2/+1ꢁ0 −34.1/+ꢁ0.1 −13.ꢁ/−14ꢀ +0.3/+ꢁ3.4 −34.3/+130 +8.ꢁ/+125  
−20.0/+ꢀ1.1 −52.2/+153 −33.9/+ꢁ3.1 −10.2/−14ꢀ +0.4/+ꢁ1.1 −30.0/+133 +ꢀ.9/+124  
−20.2/+82.ꢀ −49.0/+1ꢁ5 −33.5/+ꢁꢁ.2 −8.5/−148  
−20.1/+92.5 −4ꢁ.ꢀ/+1ꢁ0 −33.3/+ꢀ0.3 −ꢀ.4/−149  
−19.9/+101 −45.3/+1ꢁꢀ −32.9/+ꢀ2.5 −ꢁ.8/−148  
−19.ꢀ/+10ꢀ −44.ꢁ/+1ꢀ3 −32.ꢁ/+ꢀ5.1 −ꢁ.4/−14ꢀ  
−19.ꢁ/+113 −43.5/+1ꢀꢁ −32.1/+ꢀ8.2 −ꢁ.1/−144  
−19.3/+11ꢁ −42.3/−180 −31.ꢀ/+80.ꢁ −ꢁ.0/−140  
−19.0/+11ꢀ −41.8/−1ꢀ2 −31.5/+83.1 −5.9/−135  
−18.ꢁ/+11ꢀ −41.2/−1ꢁꢁ −31.1/+84.ꢀ −5.ꢀ/−129  
−18.1/+118 −40.0/−15ꢁ −30.8/+8ꢁ.ꢀ −5.ꢁ/−122  
−1ꢀ.5/+11ꢀ −39.3/−14ꢁ −30.4/+89.0 −5.4/−115  
−1ꢁ.8/+118 −38.ꢁ/−13ꢁ −30.3/+90.4 −5.1/−10ꢁ  
−15.9/+11ꢀ −3ꢀ.ꢁ/−12ꢁ −30.0/+91.ꢀ −5.0/−9ꢀ.ꢀ  
−14.9/+118 −3ꢀ.1/−115 −29.8/+92.0 −4.9/−88.5  
−13.9/+120 −3ꢁ.5/−105 −29.4/+92.3 −4.9/−ꢀ9.2  
−13.0/+121 −35.8/−95.4 −29.3/+92.2 −4.ꢀ/−ꢀ1.8  
−12.0/+124 −35.1/−88.ꢀ −29.3/+92.3 −4.4/−ꢁꢁ.4  
−11.3/+12ꢀ −33.ꢀ/−85.0 −29.ꢁ/+91.2 −3.ꢁ/−ꢁ3.ꢁ  
−10.ꢀ/+131 −31.4/−8ꢁ.9 −30.5/+89.4 −1.9/−ꢁꢀ.1  
−10.4/+138 −28.ꢁ/−99.9 −32.9/+95.9 +0.ꢀ/−83.0  
+0.5/+ꢁ1.1 −2ꢀ.5/+134 +ꢀ.3/+125  
+0.ꢁ/+ꢁ2.8 −25.9/+13ꢀ +ꢁ.8/+124  
+0.ꢁ/+ꢁꢀ.4 −24.5/+139 +ꢁ.3/+124  
+0.ꢁ/+ꢀ3.ꢁ −23.5/+142 +5.8/+125  
+0.ꢀ/+82.ꢀ −22.ꢀ/+148 +5.4/+125  
+0.ꢀ/+93.9 −22.0/+154 +5.0/+125  
+0.ꢀ/+10ꢀ −21.3/+1ꢁ1 +4.ꢀ/+125  
+0.ꢀ/+122 −20.ꢁ/+1ꢁ9 +4.3/+125  
+0.ꢀ/+139 −20.0/+1ꢀ8 +4.0/+125  
+0.ꢀ/+158 −19.3/−1ꢀ3 +3.ꢁ/+125  
+0.8/+1ꢀ8 −18.ꢁ/+1ꢁ2 +3.3/+125  
+0.8/−1ꢁ1 −18.0/−152 +2.9/+125  
+0.ꢀ/−138 −1ꢀ.5/−141 +2.ꢁ/+124  
+0.5/−11ꢁ −1ꢁ.8/−129 +2.2/+123  
+0.1/−95.2 −1ꢁ.3/−121 +1.ꢀ/+122  
−0.3/−ꢀꢁ.ꢀ −15.4/−115 +1.2/+120  
−0.8/−ꢁ0.ꢁ −14.2/−111 +0.4/+118  
−1.ꢀ/−4ꢀ.8 −12.1/−114 −0.9/+11ꢁ  
−4.9/−35.8 −8.9/−129  
−ꢁ.3/+42.3 −ꢀ.8/−1ꢁ4  
−3.9/+124  
−1.4/+155  
−8.8/−129  
−ꢀ.ꢀ/−1ꢁ5  
−ꢀ.9/−13ꢀ  
−5.8/−150  
−9.3/+152  
−2ꢀ.3/−13ꢁ −30.9/+132 +1.3/−120  
Rev. A | Page 4 of 24  
 
 
ADL5523  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VPOS  
RF Input Level  
RF Input Level (with 8 Ω Series Resistor on VPOS)  
Internal Power Dissipation  
θJA (Junction to Air)  
5.5 V  
ꢀ dBm  
20 dBm  
500 mW  
50°C/W  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
150°C  
−40°C to +85°C  
−ꢁ5°C to +150°C  
ESD CAUTION  
Rev. A | Page 5 of 24  
 
 
ADL5523  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VBIAS  
RFIN  
NC  
1
2
3
4
8
7
6
5
VPOS  
RFOUT  
NC  
ADL5523  
TOP VIEW  
(Not to Scale)  
NC  
NC  
EXPOSED PAD  
NOTES  
1. NC = NO CONNECT.  
2. CONNECT THE EXPOSED PAD TO A LOW  
IMPEDANCE GROUND PLANE.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
VBIAS  
RFIN  
Description  
1
2
Internal DC Bias. This pin should be connected to VPOS through the R1 resistor.  
RF Input. This is the input to the LNA.  
3, 4, 5, ꢁ  
8
NC  
RFOUT  
VPOS  
No Connection. No internal connection.  
RF Output.  
Supply Voltage. DC bias needs to be bypassed to ground using a low inductance capacitor. This pin is  
also used for output matching. See the Basic Connections section.  
9 (EPAD) Exposed Pad (EPAD)  
GND. Connect the exposed pad to a low impedance ground plane.  
Rev. A | Page ꢁ of 24  
 
ADL5523  
TYPICAL PERFORMANCE CHARACTERISTICS  
900 MHz, VPOS = 5 V  
Matched for optimal noise figure, external matching circuit included.  
25  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
20  
15  
10  
5
0
S11  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
S22  
S12  
600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200  
800 820 840 860 880 900 920 940 960 980 1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 3. Typical S-Parameters, Log Magnitude  
Figure 6. Noise Figure vs. Frequency at 25°C, Multiple Devices  
24  
22  
20  
18  
16  
14  
12  
10  
8
60  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
36  
GAIN  
+85°C  
+25°C  
55  
34  
32  
30  
28  
26  
24  
22  
20  
18  
50  
45  
–40°C  
OIP3  
40  
–40°C  
+25°C  
OIP3  
35  
30  
+85°C  
25  
P1dB  
GAIN  
20  
15  
10  
P1dB  
–40°C  
6
4
+25°C  
2
5
NOISE FIGURE  
+85°C  
0
0
850 860 870 880 890 900 910 920 930 940 950  
850 860 870 880 890 900 910 920 930 940 950  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 7. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
1.6  
1.4  
40  
38  
+25°C  
36  
–40°C  
34  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
32  
30  
+85°C  
+25°C  
–40°C  
+85°C  
28  
26  
24  
22  
20  
800 820 840 860 880 900 920 940 960 980 1000  
–4 –2  
0
2
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (MHz)  
P
PER TONE (dBm)  
OUT  
Figure 5. Noise Figure vs. Temperature  
Figure 8. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page ꢀ of 24  
 
 
ADL5523  
1950 MHZ, VPOS = 5 V  
Matched for optimal noise figure, external matching circuit included.  
20  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
15  
10  
5
0
S11  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
S12  
S22  
1800  
1850  
1900  
1950  
2000  
2050  
2100  
2150  
2200  
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Typical S-Parameters, Log Magnitude  
Figure 12. Noise Figure vs. Frequency at 25°C, Multiple Devices  
18  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
20.5  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
OIP3  
–40°C  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
GAIN  
OIP3  
+25°C  
+85°C  
P1dB  
–40°C  
+25°C  
+85°C  
6
–40°C  
P1dB  
GAIN  
4
+25°C  
2
NOISE FIGURE  
+85°C  
1970  
0
1920  
0
1980  
1930  
1940  
1950  
1960  
1970  
1920  
1930  
1940  
1950  
1960  
1980  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 13. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
1.6  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
–40°C  
+25°C  
1.4  
+85°C  
1.2  
+25°C  
1.0  
+85°C  
0.8  
–40°C  
0.6  
0.4  
0.2  
0
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000  
–8 –6 –4 –2  
0
2
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (MHz)  
P
OUT  
PER TONE (dBm)  
Figure 11. Noise Figure vs. Temperature  
Figure 14. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 8 of 24  
 
ADL5523  
2600 MHz, VPOS = 5 V  
Matched for optimal noise figure, external matching circuit included.  
20  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
15  
10  
5
0
S11  
S22  
–5  
–10  
–15  
–20  
–25  
–30  
S12  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Typical S-Parameters, Log Magnitude  
Figure 18. Noise Figure vs. Frequency at 25°C, Multiple Devices  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
16.5  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
–40°C  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
GAIN  
OIP3  
+25°C  
+85°C  
OIP3  
–40°C  
+25°C  
+85°C  
6
P1dB  
GAIN  
4
P1dB  
–40°C  
2
+25°C  
NOISE FIGURE  
+85°C  
0
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 19. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
1.6  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
–40°C  
+25°C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+85°C  
+85°C  
+25°C  
–40°C  
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
–6 –4 –2  
0
2
4
6
8
10 12 14 16 18 20 22  
FREQUENCY (MHz)  
P
PER TONE (dBm)  
OUT  
Figure 17. Noise Figure vs. Temperature  
Figure 20. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 9 of 24  
 
ADL5523  
3500 MHz, VPOS = 5 V  
Matched for optimal noise figure, external matching circuit included.  
15  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
10  
5
0
S11  
–5  
–10  
S22  
–15  
–20  
–25  
S12  
2800 2900 3000 3100 3200 3300 3400 3500 3600 3700  
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. Typical S-Parameters, Log Magnitude  
Figure 24. Noise Figure vs. Frequency at 25°C, Multiple Devices  
14  
12  
10  
8
45  
19  
41  
39  
37  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
–40°C  
+25°C  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
40  
35  
30  
25  
20  
15  
10  
GAIN  
OIP3  
+85°C  
OIP3  
–40°C  
+25°C  
+85°C  
6
P1dB  
P1dB  
4
GAIN  
–40°C  
8
2
+25°C  
+85°C  
NOISE FIGURE  
7
0
6
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 25. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
42  
–40°C  
40  
38  
1.6  
+85°C  
+25°C  
36  
1.4  
1.2  
34  
32  
+25°C  
+85°C  
1.0  
30  
28  
26  
24  
22  
20  
0.8  
–40°C  
0.6  
0.4  
0.2  
0
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16  
FREQUENCY (MHz)  
P
OUT  
PER TONE (dBm)  
Figure 23. Noise Figure vs. Temperature  
Figure 26. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 10 of 24  
 
ADL5523  
900 MHz, VPOS = 3 V  
Matched for optimal noise figure, external matching circuit included.  
25  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
20  
15  
10  
5
0
–5  
S11  
S22  
–10  
–15  
–20  
–25  
–30  
–35  
S12  
600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200  
800 820 840 860 880 900 920 940 960 980 1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Typical S-Parameters, Log Magnitude  
Figure 30. Noise Figure vs. Frequency at 25°C, Multiple Devices  
22  
20  
18  
16  
14  
12  
10  
8
34  
23.0  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
–40°C  
+25°C  
GAIN  
OIP3  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
–40°C  
+85°C  
+85°C  
OIP3  
+25°C  
P1dB  
P1dB  
–40°C  
+25°C  
GAIN  
6
4
2
+85°C  
NOISE FIGURE  
0
850 860 870 880 890 900 910 920 930 940 950  
850 860 870 880 890 900 910 920 930 940 950  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 31. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
1.6  
1.4  
32  
–40°C  
31  
30  
+25°C  
29  
28  
27  
1.2  
+85°C  
26  
+85°C  
1.0  
25  
24  
23  
22  
21  
20  
19  
18  
+25°C  
0.8  
–40°C  
0.6  
0.4  
0.2  
0
800 820 840 860 880 900 920 940 960 980 1000  
–4 –2  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (MHz)  
P
PER TONE (dBm)  
OUT  
Figure 29. Noise Figure vs. Temperature  
Figure 32. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 11 of 24  
 
ADL5523  
1950 MHz, VPOS = 3 V  
Matched for optimal noise figure, external matching circuit included.  
20  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
15  
10  
5
0
S11  
–5  
–10  
–15  
S12  
–20  
–25  
–30  
S22  
–35  
1800  
1850  
1900  
1950  
2000  
2050  
2100  
2150  
2200  
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Typical S-Parameters, Log Magnitude  
Figure 36. Noise Figure vs. Frequency at 25°C, Multiple Devices  
18  
16  
14  
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
18.5  
30  
28  
26  
24  
22  
20  
18  
16  
14  
GAIN  
OIP3  
–40°C  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
+25°C  
+85°C  
OIP3  
–40°C  
+25°C  
+85°C  
P1dB  
6
GAIN  
–40°C  
+25°C  
P1dB  
4
2
+85°C  
NOISE FIGURE  
0
1920  
1930  
1940  
1950  
1960  
1970  
1980  
1920  
1930  
1940  
1950  
1960  
1970  
1980  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 37. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
1.6  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
–40°C  
+25°C  
1.4  
+85°C  
+85°C  
1.2  
+25°C  
1.0  
0.8  
–40°C  
0.6  
0.4  
0.2  
0
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000  
–8 –6 –4 –2  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
P
OUT  
PER TONE (dBm)  
Figure 35. Noise Figure vs. Temperature  
Figure 38. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 12 of 24  
 
ADL5523  
2600 MHz, VPOS = 3 V  
Matched for optimal noise figure, external matching circuit included.  
20  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
15  
10  
5
0
S11  
–5  
S22  
–10  
–15  
S12  
–20  
–25  
–30  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. Typical S-Parameters, Log Magnitude  
Figure 42. Noise Figure vs. Frequency at 25°C, Multiple Devices  
18  
16  
14  
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
15.5  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
–40°C  
OIP3  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
+25°C  
GAIN  
OIP3  
+85°C  
–40°C  
+25°C  
+85°C  
6
GAIN  
4
P1dB  
P1dB  
+25°C  
–40°C  
+85°C  
2
NOISE FIGURE  
0
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 40. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 43. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
1.6  
33  
–40°C  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
+25°C  
+85°C  
1.4  
+85°C  
1.2  
+25°C  
1.0  
0.8  
–40°C  
0.6  
0.4  
0.2  
0
2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700  
–6 –4 –2  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (MHz)  
P
OUT  
PER TONE (dBm)  
Figure 41. Noise Figure vs. Temperature  
Figure 44. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 13 of 24  
 
ADL5523  
3500 MHz, VPOS = 3 V  
Matched for optimal noise figure, external matching circuit included.  
15  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
S21  
10  
5
0
S11  
–5  
–10  
–15  
S22  
S12  
–20  
–25  
2800 2900 3000 3100 3200 3300 3400 3500 3600 3700  
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 45. Typical S-Parameters, Log Magnitude  
Figure 48. Noise Figure vs. Frequency at 25°C, Multiple Devices  
18  
16  
14  
12  
10  
8
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
16  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
–40°C  
+25°C  
OIP3  
GAIN  
15  
14  
13  
12  
11  
10  
9
+85°C  
OIP3  
–40°C  
+25°C  
+85°C  
6
GAIN  
4
P1dB  
P1dB  
–40°C  
+25°C  
2
8
NOISE FIGURE  
+85°C  
0
7
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 46. Noise Figure, Gain, OIP3, and P1dB vs. Frequency  
Figure 49. Gain, OIP3, and P1dB vs. Temperature  
2.0  
1.8  
33  
–40°C  
32  
31  
+25°C  
1.6  
30  
+85°C  
1.4  
29  
+85°C  
28  
1.2  
27  
26  
25  
24  
23  
22  
21  
20  
+25°C  
1.0  
0.8  
–40°C  
0.6  
0.4  
0.2  
0
3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600  
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16  
FREQUENCY (MHz)  
P
OUT  
PER TONE (dBm)  
Figure 47. Noise Figure vs. Temperature  
Figure 50. OIP3 vs. Output Power (POUT) and Temperature  
Rev. A | Page 14 of 24  
 
ADL5523  
DC CHARACTERISTICS  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VPOS = 5V  
VPOS = 3V  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 51. Supply Current vs. Temperature, 3 V and 5 V  
Rev. A | Page 15 of 24  
 
ADL5523  
BASIC CONNECTIONS  
VPOS  
GND  
The basic connections for operating the ADL5523 are shown in  
Figure 52. Capacitor C5 provides the power supply decoupling.  
Inductor L1 (Coilcraft 0403HQ or 0402HP series) and Capacitor C1  
(Murata High-Q GJM series or equivalent) provide the input  
impedance matching, and the output impedance matching is  
provided by either L2 or C3. Resistor R1 is used to set the supply  
current, and the value of R1 is indirectly proportional to the  
supply current (that is, increasing the value of R1 reduces the  
supply current). The recommended external components for  
selected frequencies are listed in Table 7.  
W1  
R2  
L2  
C5  
100nF  
TR1  
TR2  
C3  
R1  
ADL5523  
1 VBIAS  
VPOS  
RFOUT  
NC  
8
7
6
5
RFIN  
RFOUT  
L1  
C1  
For 5 V applications where the input power exceeds the input  
compression point of approximately 7 dBm, a series resistor  
(R2) of at least 8 Ω, with a high power rating (0.2 W minimum),  
should be inserted on the VPOS line to protect the device from  
the input power overdrive. In this case, reduce Resistor R1 from  
1.3 kΩ to 600 Ω to keep the supply current at around 60 mA.  
With R2 = 8.2 Ω (Susumu RP1608S-8R2-F) and R1 = 600 Ω, the  
gain and noise figure for the ADL5523 are mostly unchanged.  
Table 6 lists OIP3 and P1dB at selected frequencies. For 3 V  
power supply applications, a series resistor is not necessary for  
the expected input overdrive powers up to 20 dBm.  
2 RFIN  
3 NC  
NC  
4 NC  
Z1  
Figure 52. ADL5523 Basic Connections  
Table 6. ADL5523 Performance at VPOS = 5 V, 25°C with  
R2 = 8.2 Ω and R1 = 600 Ω  
Frequency  
(MHz)  
Noise  
Gain P1dB  
OIP3 (dBm)  
Figure (dB)  
(dB)  
21.5  
1ꢀ.0  
13.5  
11.3  
(dBm) (POUT = 0 dBm)  
900  
0.8  
1.0  
0.9  
1.0  
20.3  
20.ꢀ  
20.5  
20.1  
32.5  
34.0  
35.0  
35.0  
1950  
2ꢁ00  
3500  
Rev. A | Page 1ꢁ of 24  
 
 
 
ADL5523  
EVALUATION BOARD  
Figure 53 shows the schematic of the ADL5523 evaluation board.  
The board is powered by a single supply, and dc bias can be  
applied to the board through clip-on leads at VPOS and GND  
or through a 2-pin connector, W1.  
The evaluation board comes optimized at 1950 MHz from the  
factory, but it can be easily modified to work at any frequency  
between 400 MHz and 4 GHz. Table 7 lists the recommended  
components at various frequencies.  
VPOS  
GND  
W1  
R2  
Figure 55. Evaluation Board Layout (Bottom View)  
C5  
100nF  
L2  
SOLDERING INFORMATION AND RECOMMENDED  
PCB LAND PATTERN  
C4  
DNP  
TR1  
TR2  
Figure 56 shows the recommended land pattern for ADL5523.  
To minimize thermal impedance, the exposed pad on the  
package underside is soldered down to a ground plane. If  
multiple ground layers exist, they are stitched together using  
vias (a minimum of five vias is recommended). Pin 3 to Pin 6  
can be left unconnected or can be connected to ground. For  
more information on land pattern design and layout, refer to  
the AN-772 Application Note, A Design and Manufacturing  
Guide for the Lead Frame Chip Scale Package (LFCSP).  
C3  
R1  
ADL5523  
1 VBIAS  
VPOS  
RFOUT  
NC  
8
7
6
5
RFIN  
RFOUT  
L1  
C1  
2 RFIN  
3 NC  
C2  
0  
NC  
4 NC  
2.03mm  
Z1  
8
1
Figure 53. Evaluation Board Schematic  
4
5
1.53mm  
0.71mm  
Figure 56. Recommended Land Pattern  
Figure 54. Evaluation Board Layout (Top View)  
Table 7. Recommended Components and Positions of Matching Components for Basic Connections Tuned for Optimal Noise  
L22  
C11  
C2  
C3  
C4  
C5  
L12  
R13  
R24  
Frequency (Size  
(Size  
(Size  
(Size  
(Size  
(Size  
0403)  
Size  
0403)  
(Size  
(Size  
TR1  
TR2  
(mm)  
C1  
C3  
(MHz)  
0402)  
Open  
2.4 pF  
2.ꢀ pF  
1.ꢁ pF  
1.ꢁ pF  
0402) 0402) 0402) 0402)  
0603) 0603) (mm)  
Position Position  
500  
900  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
Open  
Open  
Open  
Open  
100 nF 9 nH  
100 nF 8.2 nH  
100 nF 3.4 nH  
100 nF 1.0 nH  
100 nF 1.0 nH  
100 nF 1.0 nH  
12 nH  
3.4 nH 1.3 kΩ 0 Ω  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
1.3 kΩ 0 Ω  
0
0
0
0
0
C1  
C1  
N/A  
N/A  
4
2
1300  
1950  
2140  
2ꢁ00  
3500  
1.0 nF Open  
1.0 nF Open  
1.0 nF Open  
1.0 nF Open  
1.0 nF Open  
1.3 kΩ 0 Ω  
1.3 kΩ 0 Ω  
1.3 kΩ 0 Ω  
1.3 kΩ 0 Ω  
1.3 kΩ 0 Ω  
8.0 × 0.ꢁ C1  
2.5 × 0.ꢁ 5.5 × 0.ꢁ C1  
5.0 × 0.ꢁ 3.0 × 0.ꢁ C1  
8.0 × 0.ꢁ  
0.ꢀ5 pF 0 Ω  
0.5 pF 0 Ω  
0
C1  
C1  
C3  
1
100 nF 2.4 pF5 0 Ω  
ꢀ.0 × 0.ꢁ 1 × 0.ꢁ  
1 The Murata GJM High-Q series capacitor is recommended for C1.  
2 The Coilcraft High Q 0403HQ or 0402HP inductors are recommended for L1 and L2.  
3 If R2 = 8 Ω, reduce R1 to ꢁ00 Ω.  
4 If R2 = 8 Ω, use a high power resistor (0.2 W rating minimum).  
5 Note that at 3500 MHz, a capacitor, not an inductor, is used at L1.  
Rev. A | Page 1ꢀ of 24  
 
 
 
 
 
 
ADL5523  
TUNING THE ADL5523 FOR OPTIMAL NOISE FIGURE  
The ADL5523 is a monolithic low noise amplifier (LNA) in a  
3 mm × 3 mm LFCSP. The evaluation board, as shipped from  
the factory, gives a noise figure of 0.9 dB over a bandwidth of  
several hundred megahertz. The specific frequency where optimal  
noise is reached depends on the tuning.  
The slider is seen in the LNA PCB layout in Figure 57 as the  
area near the red arrows to the right of the bias line. With a 0 Ω  
resistor in place of L2, moving a 1 nF capacitor from the top to  
the bottom effectively tunes S22 from 1400 MHz to 3500 MHz.  
Table 8 shows the component values and placement required for  
S22 tuning from 800 MHz to 3200 MHz. For lower frequencies,  
higher values of L2 can be used to tune S22, and for frequencies  
from 3.2 GHz to 4.0 GHz, smaller values of capacitors can be  
used on the slider.  
The bandwidth of the ADL5523 is 400 MHz to 4 GHz, although  
noise figure degrades above 2.5 GHz as the gain begins to roll off.  
This section is based on Analog Devices, Inc., lab measurements.  
Although there are plots in which the Agilent Advanced Design  
System (ADS) environment is used, the data in these plots come  
entirely from Analog Devices lab measurements.  
Table 8. Capacitor and Inductor Tuning and Placement for  
LNA S22 Tuning  
Frequency (MHz)  
L2 (nH)  
C3 (nF)  
Open  
1 nF  
1 nF  
1 nF  
C3 Placement  
TUNING S22  
800  
3.4  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
0 Ω  
N/A  
4
3
2
Tuning of the LNA begins with S22 (output tuning). Tuning of  
the LNA output is done by placing reactive components on the  
bias line, referred to in the schematic in Figure 53 as VPOS.  
1400  
2000  
2400  
2800  
3200  
On the LNA evaluation board, S22 tuning is achieved by either  
the use of an inductor (L2) on the bias line or a shunt capacitor  
(C3) on the bias line to ground. Typically, either L2 is required  
or C3 but not both.  
1 nF  
1 nF  
1
The evaluation board uses a slider on the bias line to make tuning  
for S22 as easy as possible. The slider is an area of ground etch  
adjacent to the bias line that is clear of solder mask. The bias  
line in this area is also free of solder mask. This allows a capacitor  
(C3) to be placed anywhere on the bias line to ground, which  
provides easy and accurate tuning for S22.  
Note that the PCB layout shows two capacitors, C3 and C4.  
Typically, only one of these capacitors is needed for good  
S22 tuning.  
Figure 57. PCB Layout for LNA Evaluation Board (Note Slider on Bias Line  
with Capacitor Placement for S22 Tuning Noted by Arrows)  
Rev. A | Page 18 of 24  
 
 
 
 
 
ADL5523  
TUNING THE LNA INPUT FOR OPTIMAL GAIN  
TUNING THE LNA INPUT FOR OPTIMAL NOISE  
FIGURE  
LNAs are generally tuned for either gain or noise optimization,  
or some trade-off between the two. One figure of merit of an LNA  
is how much trade-off must be made for one of these parameters to  
optimize the other. With the ADL5523, an S11 of 6 dB to 8 dB  
at the input to the matching network can still be achieved  
typically when optimizing for noise.  
The point in the Smith Chart at which matching for optimal  
noise occurs is typically referred to as gamma optimal or ΓOPT  
Typically, it is significantly different from the gain matching  
point; finding ΓOPT is not as obvious as the gain match. ΓOPT is a  
function of the semiconductor structure and characteristics of  
the LNA. The fabrication facility that produces the LNA typically  
has this information. ΓOPT can also be determined by doing  
source pull testing in the lab.  
.
For optimal gain matching, the goal is to use a matching network  
that converts the input impedance of the LNA to the characteristic  
impedance of the system, typically 50 Ω. Correct tuning for gain  
matching results in a conjugate match. That is, the impedance of  
the matching network at the LNA input, looking back toward  
the generator, is always the complex conjugate of the LNA input  
impedance when matched for gain.  
Noise matching for the ADL5523 is actually very easy because  
the area of the Smith Chart where the noise figure is optimal or  
near optimal is not confined to a narrow area around ΓOPT. This  
is very advantageous because it means that component variations  
play a smaller part in the board-to-board variation of noise figure.  
Once S11*, the complex conjugate of S11, is known, a matching  
circuit must be found that transforms the 50 Ω system impedance  
into the conjugate S11 impedance. To do this, the designer starts at  
the origin of the Smith Chart circle and finds components that  
move the 50 Ω match to S11*.  
The matching area for optimal noise for the ADL5523 is shown  
in Figure 60. Note that textbooks usually define noise circles as  
a conjugate match. However, for the purpose of this data sheet,  
the circle is a direct match. To find the correct matching circuit,  
the designer must start with the S11 of the LNA and select  
components that move the S11 to within this circle.  
The related impedances for gain matching are shown in Figure 58.  
A Smith Chart representation of the conjugate match is shown  
in Figure 59.  
An important aspect of the overall ADL5523 ease of tuning is  
that as long as S22 is matched for a particular frequency, the  
noise matching area remains very consistent in its placement for  
that frequency. If S22 is matched, take the measured S11 and  
move it into the red circle shown in Figure 60 for optimal noise  
matching.  
50  
S11  
MATCHING  
NETWORK  
LNA  
50Ω  
S11*  
Figure 58. Matching LNA Input for Gain  
1
0.5  
S11*  
0.2  
5
10  
10  
0.2  
0.5  
1
5
10  
S11  
0.2  
5
0.5  
Figure 59. Smith Chart Representation of Conjugate Match  
1
Figure 60. Area of Optimal Noise Matching for ADL5523  
Rev. A | Page 19 of 24  
 
 
 
 
ADL5523  
S11 OF THE LNA WITH S22 MATCHED  
To determine the correct matching circuit for optimal noise,  
look at the results of S11 for the various frequencies at which  
S22 was tuned earlier in the Tuning S22 section. Once S11 is  
determined for a particular frequency, find the matching  
components that provided that match. Figure 62 and Figure 63  
show S11 for the various frequencies. Again, these measurements  
are all based on S22 being matched at that particular frequency.  
Note that, for the examples shown in Figure 62 and Figure 63, S11  
is either in the lower left quadrant of the Smith Chart or slightly  
into the upper left. To move the impedance in the given noise  
circle, a series L component at the LNA input is required. The L  
values in the examples differ but a correct L value moves the match  
along the constant R circle up into the upper left quadrant of the  
Smith Chart.  
M1  
FREQUENCY 400MHz  
S11 = 0.877/–44.639  
IMPEDANCE = Z0 × (0.443 – j2.365)  
M2  
FREQUENCY 2GHz  
S11 = 0.615/–170.569  
IMPEDANCE = Z0 × (0.240 – j0.078)  
M2  
M1  
FREQUENCY (400MHz TO 4GHz)  
A shunt capacitor can then be added to move the match along a  
constant admittance line, down and to the right, directly into  
the center of the noise circle given in Figure 60.  
Figure 62. S11 of ADL5523 with S22 Matched at 2 GHz  
The solution for the structure of the match for the examples in  
Figure 62 and Figure 63 is a series L to the input of the LNA  
and a shunt capacitor at the generator end of this inductor. The  
recommended components for matching at various frequencies  
are shown in Table 7.  
M1  
FREQUENCY 400MHz  
S11 = 0.864/–40.186  
IMPEDANCE = Z0 × (0.594 – j2.615)  
M2  
FREQUENCY 3.2GHz  
S11 = 0.595/163.164  
M2  
IMPEDANCE = Z0 × (0.259 + j0.138)  
An example of the effect of the series L, shunt C match, based  
on the 800 MHz example, is given in Figure 61. This example  
uses the output from the Agilent ADS Smith Chart tool.  
M1  
FREQUENCY (400MHz TO 4GHz)  
Figure 63. S11 of ADL5523 with S22 Matched at 3.2 GHz  
Figure 61. Example of Series L, Shunt C Matching Network for ΓOPT  
Rev. A | Page 20 of 24  
 
 
 
 
ADL5523  
OUTLINE DIMENSIONS  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
5
0.50  
BSC  
0.60 MAX  
8
2.95  
2.75 SQ  
2.55  
1.60  
1.45  
1.30  
EXPOSED  
PAD  
TOP  
VIEW  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
1.89  
1.74  
1.59  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
Figure 64. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5523ACPZ-Rꢀ1  
ADL5523-EVALZ1  
Temperature Range  
Package Description  
Package Option  
Branding  
Q1J  
−40°C to +85°C  
8-Lead LFCSP_VD, ꢀ”Tape and Reel  
Evaluation Board  
CP-8-2  
1 Z = RoHS Compliant Part.  
Rev. A | Page 21 of 24  
 
ADL5523  
NOTES  
Rev. A | Page 22 of 24  
ADL5523  
NOTES  
Rev. A | Page 23 of 24  
ADL5523  
NOTES  
©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06829-0-9/09(A)  
Rev. A | Page 24 of 24  

相关型号:

ADL5530

DC to 1000 MHz IF Gain Block
ADI

ADL5530-EVAL

DC to 1000 MHz IF Gain Block
ADI

ADL5530-EVALZ

DC to 1000 MHz IF Gain Block
ADI

ADL5530ACPZ-R2

DC to 1000 MHz IF Gain Block; Package: LFCSP (2x3x.85mm); No of Pins: 8; Temperature Range: Industrial
ADI

ADL5530ACPZ-R7

DC to 1000 MHz IF Gain Block
ADI

ADL5530ACPZ-WP

DC to 1000 MHz IF Gain Block
ADI

ADL5530_17

DC to 1000 MHz IF Gain Block
ADI

ADL5531

20 MHz to 500 MHz IF Gain Block
ADI

ADL5531-EVALZ

20 MHz to 500 MHz IF Gain Block
ADI

ADL5531-EVALZ1

20 MHz to 500 MHz IF Gain Block
ADI

ADL5531ACPZ-R7

20MHz - 500MHz RF/MICROWAVE NARROW BAND MEDIUM POWER AMPLIFIER, 3 X 3 MM, LEAD FREE, LFCSP, 8 PIN
ROCHESTER

ADL5531ACPZ-R7

20 MHz TO 500 MHz IF Gain Block
ADI