ADL6012ACPZN-R7 [ADI]

2 GHz to 67 GHz, 500 MHz Bandwidth Envelope Detector;
ADL6012ACPZN-R7
型号: ADL6012ACPZN-R7
厂家: ADI    ADI
描述:

2 GHz to 67 GHz, 500 MHz Bandwidth Envelope Detector

文件: 总24页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 GHz to 67 GHz,  
500 MHz Bandwidth Envelope Detector  
Data Sheet  
ADL6012  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ENBL  
1
Over 500 MHz wide envelope bandwidth  
Fast response times  
0.6 ns output rise time  
1.3 ns fall time from 10 dBm to no RF input  
0.5 ns output propagation delay (rising edge)  
1.3 ns propagation delay at 10 dBm (falling edge)  
Broadband 50 Ω input impedance  
ADL6012  
10 DCPL  
2
3
4
RFCM  
RFIN  
VENV+  
VENV–  
VOCM  
9
8
7
ENVELOPE  
DETECTOR  
RFCM  
Flat frequency response with minimal slope variation  
1 dB error up to 43.5 GHz  
5
6
VPOS  
OCOM  
Input range of −25 dBm to +15 dBm up to 43.5 GHz  
Quasi differential 100 Ω output interface suitable to drive  
100 Ω differential load  
Figure 1.  
Adjustable output common-mode voltage  
Flexible supply voltage: 3.15 V to 5.25 V  
3 mm × 2 mm, 10-lead LFCSP  
APPLICATIONS  
Envelope tracking  
Microwave point to point links  
Microwave instrumentation  
Military radios  
Pulse radar receivers  
Wideband power amplifier linearization  
GENERAL DESCRIPTION  
The ADL6012 is a versatile, broadband envelope detector that  
operates from 2 GHz to 67 GHz. The combination of a wide,  
500 MHz envelope bandwidth and a fast, 0.6 ns rise time makes  
the device suitable for a wide range of applications, including  
wideband envelope tracking, transmitter local oscillator (LO)  
leakage corrections, and high resolution pulse (radar) detection.  
The quasi differential output interface formed by the VENV+  
and VENV− pins has a matched, 100 Ω differential output  
impedance designed to drive a 100 Ω differential load and up to  
2 pF of capacitance to ground on each output. The output  
interface provides the detected and amplified positive and  
negative envelopes, which are level shifted using an externally  
applied voltage to the VOCM interface. This configuration  
simplifies interfacing to a high speed analog-to-digital  
converter (ADC).  
The response of the ADL6012 is stable over a wide frequency  
range and features excellent temperature stability. Enabled by  
propriety technology, the device independently detects the  
positive and the negative envelopes of the RF input. Even order  
distortion at the RF input due to nonlinear source loading is also  
reduced when compared to classic diode detector architectures.  
The ADL6012 is specified for operation from −55°C to +125°C,  
and is available in a 10-lead, 3 mm × 2 mm LFCSP.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADL6012  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Basic Connections...................................................................... 19  
RF Input....................................................................................... 19  
Envelope Output Interface........................................................ 20  
Common-Mode Voltage Interface .......................................... 20  
Enable Interface.......................................................................... 21  
Decoupling Interface ................................................................. 21  
PCB Layout Recommendations............................................... 21  
System Calibration and Measurement Error ......................... 21  
Applications Information ............................................................. 23  
Evaluation Board........................................................................ 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Absolute Maximum Ratings ........................................................... 6  
Thermal Resistance...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions ............................ 7  
Typical Performance Characteristics............................................. 8  
Measurement Setups...................................................................... 17  
Theory of Operation ...................................................................... 19  
REVISION HISTORY  
5/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADL6012  
SPECIFICATIONS  
VPOS = 5.0 V, ENBL = 5.0 V, VOCM = 2.5 V, case temperature (TC) = 25°C, continuous wave (CW) input, 50 Ω source impedance,  
input power (PIN) = 10 dBm, RF frequency (fRF) = 18 GHz, unless otherwise noted. Envelope outputs are with a differential, open load,  
unless otherwise noted. See Figure 68 for the schematic.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RF INPUT INTERFACE  
Operating Frequency Range  
Operating Input Power Range  
Input Return Loss  
RFIN (Pin 3)  
2
−25  
67  
+15  
GHz  
dBm  
dB  
Reference characteristic impedance  
(ZO) = 50 Ω  
10  
DETECTOR RESPONSE  
OUTPUT DRIFT vs. TEMPERATURE1  
−55°C < TC < +125°C  
2 GHz  
RFIN to differential VENV output  
0.5  
0.5  
0.5  
0.5  
0.5  
0.6  
1
1
1
1
1.2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
5.8 GHz  
10 GHz  
18 GHz  
28 GHz  
38 GHz  
40 GHz  
43.5 GHz  
52 GHz  
60 GHz  
67 GHz  
−40°C < TC < +105°C  
2 GHz  
5.8 GHz  
10 GHz  
18 GHz  
28 GHz  
38 GHz  
40 GHz  
43.5 GHz  
52 GHz  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.9  
0.9  
0.8  
0.8  
1.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
60 GHz  
67 GHz  
DETECTOR GAIN2  
2 GHz  
5.8 GHz  
10 GHz  
18 GHz  
28 GHz  
38 GHz  
40 GHz  
43.5 GHz  
52 GHz  
1.967  
1.82  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
V/VPEAK  
1.776  
1.677  
1.868  
1.554  
1.718  
1.799  
1.095  
0.505  
0.294  
60 GHz  
67 GHz  
Rev. 0 | Page 3 of 24  
 
ADL6012  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT INTERCEPT2  
2 GHz  
5.8 GHz  
10 GHz  
18 GHz  
28 GHz  
38 GHz  
40 GHz  
43.5 GHz  
−0.266  
−0.167  
−0.166  
−0.154  
−0.161  
−0.165  
−0.155  
−0.217  
−0.177  
−0.145  
−0.070  
V
V
V
V
V
V
V
V
V
V
V
52 GHz  
60 GHz  
67 GHz  
DIFFERENTIAL ENVELOPE OUTPUT VOLTAGE  
2 GHz  
5.8 GHz  
10 GHz  
18 GHz  
28 GHz  
38 GHz  
40 GHz  
43.5 GHz  
RFIN = 10 dBm  
1.681  
1.681  
1.604  
1.519  
1.706  
1.383  
1.577  
1.577  
0.896  
0.298  
0.205  
V
V
V
V
V
V
V
V
V
V
V
52 GHz  
60 GHz  
67 GHz  
ENVELOPE OUTPUT INTERFACE  
Output Impedance  
Envelope Bandwidth (−3 dB)  
Relative Gain3  
100 MHz to 500 MHz  
100 MHz to 700 MHz  
Output Rise Time4  
Output Fall Time5  
10 dBm to No RF Input  
0 dBm to No RF Input  
−5 dBm to No RF Input  
Output Propagation Delay6  
Rising Edge  
VENV+ (Pin 8), VENV− (Pin 9)  
Differential,10 MHz  
100 Ω differential load  
100//0.3  
500  
Ω//pF  
MHz  
−4.3  
−8.2  
−3.1  
−6.2  
0.6  
dB  
dB  
ns  
10% to 90%,100 Ω load  
90% to 10%,100 Ω load  
1.3  
0.5  
0.4  
ns  
ns  
ns  
10 dBm  
10 dBm  
5 dBm  
−5 dBm  
0.5  
1.3  
1
ns  
ns  
ns  
ns  
Falling Edge  
0.5  
Common-Mode Voltage Range  
Common-Mode Voltage7  
Minimum Output Common-Mode Voltage VOCM (Pin 7) = 0.9 V  
Maximum Output Common-Mode  
Voltage  
Operating input range, VOCM pin  
VPOS = 5 V, VOCM is open  
0.9  
2.49  
VPOS/2  
2.53  
V
V
V
V
2.51  
0.96  
2.65  
VOCM = 2.625 V  
Short-Circuit Output Current  
Differential Output Noise Density  
Output Offset  
Differential load = 0 Ω, RFIN = 10 dBm  
200 MHz, RFIN = 3 GHz  
No signal at RFIN, differential output  
(VENV+) − (VENV−)  
9.7  
−145  
2
mA  
dBm/Hz  
mV  
0
4.5  
Rev. 0 | Page 4 of 24  
Data Sheet  
ADL6012  
Parameter  
Test Conditions/Comments  
Min  
0.9  
Typ  
10  
Max  
Unit  
VOCM INTERFACE  
VOCM Input Impedance  
VOCM Input Voltage Range  
Current In to Pin  
VOCM  
kΩ  
V
µA  
2.625  
3.8  
1.8  
ENBL INPUT  
ENBL (Pin 1)  
Logic High Voltage, VIH  
Logic Low Voltage, VIL  
Input Current  
1.5  
V
V
µA  
µs  
ns  
0.5  
50  
ENBL = 1.5 V  
RFIN = 10 dBm  
5
200  
90  
Turn On Time8  
Turn Off Time9  
POWER SUPPLY  
VPOS (Pin 5)  
Operating Supply Voltage  
Active Supply Current  
Shutdown Supply Current  
3.15  
25.6  
5.0  
28.6  
2
5.25  
31.7  
26  
V
mA  
µA  
No signal at RFIN  
ENBL = 0 V  
1 Output drift over temperature is relative to 25°C, calculated by Equation 4 in the Applications Information section.  
2 Detector gain is the slope of the best fit straight line obtained by linear regression on the input peak voltage range from 0.2 V to 1.6 V vs. the differential envelope  
output voltage. Output intercept is the calculated differential envelope output voltage when the input is 0 V, based on the best fit line from linear regression.  
3 Envelope bandwidth relative gain is the delta, in dB, of the VENV differential output measured relative to 100 MHz.  
4 Output rise time is the time required to change the voltage at the output pin from 10% to 90% of the final value. The input power is stepped from a no RF input to 10 dBm.  
5 Output fall time is the time required to change the voltage at the output pin from 90% to 10% of the initial value. The input power is stepped from a specified power  
level to a no RF input.  
6 Propagation delay is the delay from a 50% change in RFIN to a 50% change in the output voltage.  
7 Refer to Figure 50 and the Applications Information section to set the output common-mode voltage.  
8 ENBL turn on time is from a 50% change in the voltage on the ENBL pin to 90% of the settled envelope output.  
9 ENBL turn off time is from a 50% change in the voltage on the ENBL pin to a shut off condition in the supply current.  
Rev. 0 | Page 5 of 24  
ADL6012  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Supply Voltage (VPOS to OCOM, RFCM) 5.5 V  
RFIN Input Signal Power1  
Average  
Peak  
20 dBm  
23 dBm  
−0.3 V to VPOS + 0.3 V  
θ
JA is the junction to ambient thermal impedance, and θJC is the  
junction to case (exposed pad) thermal impedance.  
DC Voltage at RFIN, VOCM, ENBL  
Case Operating Temperature Range  
ADL6012ACPZN  
Table 3. Thermal Resistance  
Package Type1  
2
θJA  
θJC  
Unit  
−40°C to +105°C  
−55°C to +125°C  
150°C  
−65°C to +150°C  
300°C  
ADL6012SCPZN  
CP-10-12  
74.69  
11.64  
°C/W  
Junction Temperature (TJ)  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
1 Thermal impedance simulated value is based on no airflow with the exposed  
pad soldered to a 4-layer JEDEC board.  
2 θJC is the thermal impedance from junction to the exposed pad on the  
underside of the package.  
1 Guaranteed by design. Not production tested.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Rev. 0 | Page 6 of 24  
 
 
 
Data Sheet  
ADL6012  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ENBL  
RFCM  
RFIN  
1
2
3
4
5
10 DCPL  
9
8
7
6
VENV+  
VENV–  
VOCM  
OCOM  
ADL6012  
TOP VIEW  
(Not to Scale)  
RFCM  
VPOS  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD (EPAD) ON THE UNDERSIDE OF THE DEVICE  
IS ALSO INTERNALLY CONNECTED TO GROUND AND REQUIRES GOOD THERMAL  
AND ELECTRICAL CONNECTION TO THE GROUND OF THE PRINTED CIRCUIT BOARD (PCB).  
CONNECT ALL GROUND PINS TO A LOW IMPEDANCE GROUND PLANE  
TOGETHER WITH THE EPAD.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
ENBL  
Device Enable. Connect this pin to VPOS to enter an enabled state. Connect this pin to ground to enter a disabled  
state. This pin can also be driven from a 3 V logic output.  
2, 4  
RFCM  
RF Input Ground Pins. The RFCM pins are connected to the exposed pad (EPAD) at the bottom of the package.  
Connect the RFCM pins to the system ground using a low impedance ground plane together with the EPAD.  
3
5
RFIN  
VPOS  
Signal Input. The RFIN pin is ac-coupled and has a nominal 100 Ω RF input impedance.  
Supply Voltage. The operational range of this pin is from 3.15 V to 5.25 V. Decouple the power supply using suggested  
capacitor values of 100 pF and 0.1 µF and place these capacitors as close as possible to the VPOS pin.  
6
7
OCOM  
VOCM  
Output Common. Connect this pin to a low impedance ground plane together with the EPAD.  
Output Common-Mode Control Input. This pin is internally biased to VPOS/2, nominal. An acceptable range on  
this pin is 0.9 V to VPOS/2.  
8, 9  
10  
VENV−,  
VENV+  
Envelope Detector Pseudo Differential Outputs. VENV− and VENV+ are the negative and positive outputs, respectively,  
for the envelope detector output. A 50 Ω output impedance per pin forms a 100 Ω differential output impedance.  
These pins feature a 100 Ω differential load and a 2 pF to ground per pin drive capability.  
Bypass Pin for an Internal Bias Node. Connect this pin through a 0.1 µF capacitor to ground for best common-  
mode noise rejection.  
Exposed Pad. The exposed pad (EPAD) on the underside of the device is also internally connected to ground and  
requires good thermal and electrical connection to the ground of the printed circuit board (PCB). Connect all  
ground pins to a low impedance ground plane together with the EPAD.  
DCPL  
EPAD  
Rev. 0 | Page 7 of 24  
 
ADL6012  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
10  
1
+125°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
1
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 3. Differential VENV Output Voltage vs. Input Power (PIN) for Various  
Temperatures at 2 GHz  
Figure 6. Differential VENV Output Voltage vs. PIN for Various Temperatures  
at 18 GHz  
10  
10  
+125°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
1
0.1  
–55°C  
1
0.1  
0.01  
0.001  
0.01  
0.001  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 7. Differential VENV Output Voltage vs. PIN for Various Temperatures  
at 28 GHz  
Figure 4. Differential VENV Output Voltage vs. PIN for Various Temperatures  
at 5.8 GHz  
10  
10  
+125°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
–55°C  
1
0.1  
1
0.1  
0.01  
0.001  
0.01  
0.001  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
15  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 8. Differential VENV Output Voltage vs. PIN for Various Temperatures  
at 38 GHz  
Figure 5. Differential VENV Output Voltage vs. PIN for Various Temperatures  
at 10 GHz  
Rev. 0 | Page 8 of 24  
 
Data Sheet  
ADL6012  
10  
1
+125°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
–20  
–15  
–10  
–5  
0
5
10  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 9. Differential VENV Output Voltage vs. PIN for Various Temperatures  
at 40 GHz  
Figure 12. Differential VENV Output Voltage vs. PIN for Various  
Temperatures at 60 GHz  
10  
1
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
1
0.1  
–55°C  
0.1  
0.01  
0.01  
0.001  
0.001  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
15  
–20  
–15  
–10  
–5  
0
5
10  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 10. Differential VENV Output Voltage vs. PIN for Various  
Temperatures at 43.5 GHz  
Figure 13. Differential VENV Output Voltage vs. PIN for Various  
Temperatures at 67 GHz  
10  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
2
1
0.1  
1
0
–1  
–2  
–3  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
0.01  
0.001  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
10  
15  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
P
(dBm)  
V
PEAK  
IN  
Figure 11. Differential VENV Output Voltage vs. PIN for Various  
Temperatures at 52 GHz  
Figure 14. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 2 GHz  
Rev. 0 | Page 9 of 24  
ADL6012  
Data Sheet  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
2
1
0
2
1
0
–1  
–2  
–3  
–1  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
+25°C  
–2  
–40°C  
–55°C  
–3  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
V
V
PEAK  
PEAK  
Figure 15. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 5.8 GHz  
Figure 18. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 28 GHz  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
2
2
1
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
V
V
PEAK  
PEAK  
Figure 16. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 10 GHz  
Figure 19. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 38 GHz  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
2
2
1
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
1.4  
V
V
PEAK  
PEAK  
Figure 17. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 18 GHz  
Figure 20. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 40 GHz  
Rev. 0 | Page 10 of 24  
Data Sheet  
ADL6012  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3
2
2
1
1
0
0
–1  
–2  
–3  
–1  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
–2  
–3  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
V
V
PEAK  
PEAK  
Figure 21. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 43.5 GHz  
Figure 24. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 67 GHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
3
2
1
0
2
1
0
–1  
–2  
–3  
–1  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
–2  
–3  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
V
P
IN  
(dBm)  
PEAK  
Figure 22. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 52 GHz  
Figure 25. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 2 GHz  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
3
2
1
2
1
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
0
0
+125°C  
+105°C  
+85°C  
–1  
–2  
–3  
–1  
–2  
–3  
–40°C  
–55°C  
–35 –30 –25  
–15 –10 –5  
0
5
10 15  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
1.4  
–40  
–20  
20  
V
P
(dBm)  
PEAK  
IN  
Figure 23. Differential VENV Output Voltage and Error vs. VPEAK for Various  
Temperatures at 60 GHz  
Figure 26. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 5.8 GHz  
Rev. 0 | Page 11 of 24  
 
ADL6012  
Data Sheet  
3
3
2
2
1
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
IN  
(dBm)  
IN  
Figure 27. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 10 GHz  
Figure 30. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 38 GHz  
3
2
1
3
+125°C  
+105°C  
+85°C  
2
–40°C  
–55°C  
1
0
0
–1  
–2  
–3  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
–1  
–2  
–3  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 28. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 18 GHz  
Figure 31. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 40 GHz  
3
3
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
2
1
2
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20  
P
(dBm)  
P
IN  
(dBm)  
IN  
Figure 29. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 28 GHz  
Figure 32. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 43.5 GHz  
Rev. 0 | Page 12 of 24  
Data Sheet  
ADL6012  
3
10  
1
VPOS = 5.0V  
VPOS = 3.3V  
2
1
0
0.1  
–1  
0.01  
0.001  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
–2  
–3  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
–35  
–25  
–15  
–5  
5
15  
P
(dBm)  
P
(dBm)  
IN  
IN  
Figure 33. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 52 GHz  
Figure 36. Differential VENV Output Voltage vs. PIN for Various Supply  
Voltages  
3
2
1
0
35  
+125°C  
+105°C  
+85°C  
30  
+25°C  
–40°C  
–55°C  
25  
20  
15  
10  
5
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
–1  
–2  
–3  
0
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
0
1
2
3
4
5
6
P
(dBm)  
VPOS (V)  
IN  
Figure 37. Supply Current vs. VPOS for Various Temperatures  
Figure 34. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 60 GHz  
37  
3
2
1
0
+125°C  
36  
35  
34  
33  
32  
31  
30  
29  
+85°C  
+25°C  
–40°C  
–55°C  
+125°C  
+105°C  
+85°C  
–40°C  
–55°C  
–1  
–2  
–3  
–40  
–30  
–20  
–10  
0
10  
20  
–30 –25 –20 –15 –10  
–5  
0
5
10  
15  
20  
P (dBm)  
IN  
P
(dBm)  
IN  
Figure 38. Supply Current vs. PIN for Various Temperatures at18 GHz  
Figure 35. Normalized Temperature Drift Error to 25°C vs. PIN for Various  
Temperatures at 67 GHz  
Rev. 0 | Page 13 of 24  
 
ADL6012  
Data Sheet  
20  
15  
10  
5
0
–2  
+15dBm  
+10dBm  
+5dBm  
+5dBm  
0dBm  
–15dBm  
DISABLED  
+0dBm  
–5dBm  
–4  
–10dBm  
–15dBm  
–20dBm  
–25dBm  
–30dBm  
–6  
–8  
0
–10  
–12  
–14  
–16  
–18  
–5  
–10  
–15  
–20  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
1
11  
21  
31  
41  
51  
61  
71  
VPOS (V)  
INPUT FREQUENCY (GHz)  
Figure 39. Envelope Output Error vs. VPOS at Different RF Input Power Levels  
Figure 42. Input Return Loss (S11) vs. Input Frequency with Input Connector  
and PCB Trace Embedded  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
+15dBm  
+10dBm  
+5dBm  
+0dBm  
–5dBm  
0
+20dBm  
+15dBm  
+10dBm  
+0dBm  
–10dBm  
ENBL  
1
0.1  
0.01  
0.001  
–10dBm  
2.5  
–15dBm  
3.0 3.5  
–20dBm  
–25dBm  
4.5  
–30dBm  
5.0 5.5  
–2  
0
2
4
6
8
2.0  
4.0  
TIME (ms)  
VPOS (V)  
Figure 40. Differential VENV Output vs. VPOS at Different RF Input Power Levels  
Figure 43. ENBL Pulse Response at Different RF Input Power Levels  
0
2.0  
0
1.5  
1.0  
0.5  
0
–20  
–40  
–60  
–80  
+15dBm  
+10dBm  
+5dBm  
0dBm  
–5dBm  
–10dBm  
RF INPUT  
–0.5  
0
10  
20  
30  
40  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
FREQUENCY (GHz)  
TIME (ns)  
Figure 41. RF Feedthrough Insertion Loss (S21) from RFIN to VENV  
Figure 44. RF Input Pulse Response, Carrier = 4 GHz  
Rev. 0 | Page 14 of 24  
Data Sheet  
ADL6012  
5
T
CH2 SCALE: 50.0mV  
CH2 POSITION: –2.48div  
VENV+  
RF INPUT  
VENV–  
0
1
3
2
–5  
–10  
–15  
AM DEPTH  
50% (0dBm)  
–20  
–25  
10% (0dBm)  
90% (0dBm)  
10% (–6dBm)  
CH1 50.0mV CH2 50.0mV  
CH3 50.0mV  
M20.0ns/div  
A CH2  
2.0mV  
1M  
10M  
100M  
VENV± FREQUENCY (Hz)  
1G  
10G  
T
20.0GS/s IT 25.0ps/pt  
Figure 48. AM Response on VENV Outputs, Carrier = 4 GHz, Envelope = 20 MHz  
Figure 45. Envelope Bandwidth of VENV vs. VENV Frequency and  
Amplitude Modulation (AM) Depth  
T
CH2 SCALE: 100.0mV  
CH2 POSITION: –3.08DIV  
+15dBm  
+10dBm  
+5dBm  
0dBm  
–5dBm  
–10dBm  
–15dBm  
–20dBm  
–25dBm  
–30dBm  
3
VENV+  
RF INPUT  
VENV–  
1
2
–2  
–4  
–6  
CH1 100mV CH2 100mV  
CH3 100mV  
M2.5ns/DIV  
A CH2  
2.0mV  
–12  
–7  
–2  
3
8
T
20.0GS/s IT 2.5ps/pt  
OUTPUT CURRENT (mA)  
Figure 46. Differential VENV Output Voltage vs. Output Current for Different  
RF Input Power Levels  
Figure 49. Pulse Response on VENV Outputs, Carrier = 5.8 GHz  
10  
3.0  
+15dBm  
+10dBm  
+5dBm  
0dBm  
–5dBm  
–10dBm  
–15dBm  
–20dBm  
–25dBm  
–30dBm  
VENV+  
VENV–  
(VENV+) + (VENV–)/2  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
0.1  
0.01  
0.001  
1
10  
70  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT FREQUENCY (GHz)  
VOCM (V)  
Figure 47. Differential VENV Output Voltage vs. Input Frequency at  
Different RF Input Power Levels  
Figure 50. VENV Output vs. VOCM, No RF Input  
Rev. 0 | Page 15 of 24  
 
 
 
ADL6012  
Data Sheet  
2.5  
2.0  
1.5  
1.0  
0.5  
–135  
–140  
–145  
–150  
–155  
–160  
PIN = +15dBm  
PIN = 0dBm  
PIN = –15dBm  
NO PIN  
V
= 5V  
POS  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
200  
400  
600  
800  
1000  
INPUT FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 53. Output Spectral Noise Density vs. Frequency, RFIN = 3 GHz  
Figure 51. Detector Gain vs. Input Frequency  
10  
120  
100  
80  
2GHz  
40GHz  
43.5GHz  
52GHz  
60GHz  
67GHz  
5.8GHz  
10GHz  
18GHz  
28GHz  
38GHz  
1
0.1  
60  
40  
0.01  
20  
0
0.001  
0.001  
0.1  
1
10  
100  
1000  
–40  
–20  
0
20  
FREQUENCY(MHz)  
INPUT POWER (dBm)  
Figure 52. Power Supply Rejection Ratio (PSRR) vs. Frequency, 200 mV p-p at  
the VPOS Pin (See Figure 58 for the PSRR Measurement Setup)  
Figure 54. Differential Envelope Output vs. Input Power at Various  
Frequencies at 25°C  
Rev. 0 | Page 16 of 24  
Data Sheet  
ADL6012  
MEASUREMENT SETUPS  
E3631A  
RESISTIVE  
PAD  
KEYSIGHT  
MSOS254A  
BIAS T  
VPOS = 5V  
MIXER  
ZFBT-6GW-FT+  
ZMX-8GLH  
VENV+  
VENV–  
SIGNAL  
GENERATOR  
SME06  
DIFFERENTIAL  
PROBE  
RF + DC  
RF IN  
AMPLIFIER  
ZVA-183W-S+  
SPLITTER  
PD-0040  
RF  
IF  
RF  
ADL6012  
CH1  
CH2  
CH3  
1131A  
DC  
LO  
DC  
POWER  
SUPPLY  
MXG  
AGILENT  
SIGNAL  
GENERATOR  
Figure 55. Amplitude Modulation Envelope Bandwidth Measurement Setup  
E3631A  
RESISTIVE  
PAD  
KEYSIGHT  
VPOS = 5V  
VENV+  
MSOS254A  
MIXER  
MARKI  
POWER  
ZMX-8GLH  
DIFFERENTIAL  
PROBE  
PULSE  
AMPLIFIER  
ZVA-183W-S+  
RF IN  
GENERATOR  
IF  
RF  
CH1  
ADL6012  
SPLITTER  
1131A  
HP8133A  
VENV–  
PD-0040  
LO  
TRIGGER  
OUTPUT  
CH2  
CH3  
MXG N5183B  
AGILENT  
SIGNAL  
GENERATOR  
Figure 56. Test Setup for Pulse Response  
E3631A  
VPOS = 5V  
VENV+  
RFIN  
HP  
34401  
AGILENT  
E8257D  
ADL6012  
VENV–  
Figure 57. Setup to Measure Differential Envelope Output Voltage vs. Input Power  
Rev. 0 | Page 17 of 24  
 
ADL6012  
Data Sheet  
5V  
POWER  
SUPPLY  
EVALUATION BOARD  
VPOS  
HP 6625A  
BIAS TEE  
PS 5575A  
VENV+  
PORT 1  
PORT 2  
PORTS  
ADL6012  
RFIN  
VENV–  
50Ω  
COMBINER  
MINI-CIRCUITS  
ZFSCJ-2-2 0.01MHz TO 20MHz  
SBTCJ-1W+ 1MHz TO 750MHz  
ZFSCJ-2-4 50MHz TO 1GHz  
NETWORK ANALYZER  
HP 8753D  
NOTES  
1. REMOVE ALL DECOUPLING CAPACITORS FROM POWER SUPPLY NODE ON THE EVALUATION BOARD.  
2. MEASURE AND ACCOUNT FOR SIGNAL ATTENUATION ON POWER SUPPLY NODE.  
Figure 58. Setup for PSRR Measurement  
Rev. 0 | Page 18 of 24  
 
Data Sheet  
ADL6012  
THEORY OF OPERATION  
The ADL6012 uses Schottky diodes in a two path detector  
topology. One path responds during the positive half cycles of  
the input, and the other responds during the negative half  
cycles of the input, achieving full wave signal detection. This  
arrangement presents a constant input impedance throughout  
the full RF cycle, preventing the reflection of even order harmonic  
distortion components back toward the source. This reflection  
is a well known phenomenon of widely used, traditional, single-  
Schottky diode detectors. Detector response time at lower RF  
frequencies is also improved with symmetrical detection.  
+5V  
0.1µF  
ADL6012  
1
2
10  
9
ENBL  
DCPL  
VENV+  
VENV–  
VOCM  
OCOM  
C1  
0.1µF  
RFCM  
RFIN  
VENV+  
VENV–  
RFIN  
3
4
8
7
RFCM  
VPOS  
+5V  
5
6
0.1µF  
EPAD  
C2  
1µF  
C3  
100pF  
Figure 59. Basic Connections  
The diodes are arranged on the chip to minimize the effect of  
chip stresses and temperature variations. The diodes are biased  
by small, keep alive currents chosen in a trade-off between the  
inherently low sensitivity of a diode detector and the need to  
preserve envelope bandwidth. Therefore, the corner frequency  
of the front-end, low-pass filtering is a weak function of the  
input level. At low input levels, the −3 dB corner frequency is at  
approximately 2 GHz.  
RF INPUT  
The RFIN single-ended input is internally terminated and  
internally ac-coupled. No external matching is required up to  
67 GHz. The simplified input stage is shown in Figure 60. The  
input trace can be directly routed with CPWG with ground on  
both sides of the signal trace shown in Figure 65 and Figure 66.  
Broadband response is achieved with small vias on both sides of  
the signal trace and microwave dielectric material. The trace  
width, gap, and dielectric thickness for the CPWG is designed  
to the characteristic impedance of 50 Ω to ensure the  
DC voltages at the RFIN pin (Pin 3) are blocked by an on-chip  
capacitor. The two RFCM ground pins, Pin 2 and Pin 4, on  
either side of RFIN form part of an RF coplanar waveguide  
(CPWG) launch into the detector. The RFCM pins must be  
connected to the signal ground. Give careful attention to the  
design of the PCB in this area.  
broadband matching is achieved for the best frequency flatness.  
The RFCM pins are the ground return to the RF input. It is  
critical that these pins are connected to the low impedance  
ground plane, and serve as ground for the CPWG.  
The output stage impedance is 100 Ω differential with propagation  
delay under 1 ns, and an envelope bandwidth over 500 MHz.  
The differential outputs, VENV+ and VENV− (Pin 8 and Pin 9,  
respectively) provide the high speed envelope information for  
both the positive and negative cycles of the RF input signal.  
RFCM  
200Ω  
200Ω  
RFIN  
ENVELOPE  
+
RFCM  
BASIC CONNECTIONS  
The basic connections are shown in Figure 59. A dc supply of  
nominally 3.3 V to 5 V is required. The bypass capacitors (C2  
and C3) provide supply decoupling for the device. Place these  
capacitors as close as possible to VPOS (Pin 5). The exposed  
pad is internally connected to the IC ground and must be soldered  
down to a low impedance ground on the PCB. OCOM (Pin 6)  
is the output common. Connect OCOM to a low impedance  
ground plane together with the exposed pad. DCPL (Pin 10) is  
connected to an internal bias node. Place a 0.1 µF capacitor to  
ground for the best common-mode noise rejection.  
Figure 60. Input Stage  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
ADL6012  
Data Sheet  
The ADL6012 envelope outputs can also be ac-coupled for pulsed  
detection applications, as shown in Figure 63. AC coupling allows  
different common-mode voltages to be interfaced to the ADC.  
For example, the VENV+ and VENV− outputs can be used to  
detect pulses in radar applications. See Figure 49 for the typical  
envelope pulse response.  
ENVELOPE OUTPUT INTERFACE  
The differential envelope outputs, VENV+ and VENV−, provide  
the envelope information of the input signal. The ADL6012 is  
designed to drive 100 Ω differential or a 50 Ω load on each  
VENV output when ac-coupled. It is important that the  
VENV outputs are not dc-coupled to 50 Ω load referenced to  
ground, which results in excessive dc current flow to the load  
that may exceed the output drive capability, depending on the  
output common-mode voltage level. The ADL6012 is suitable  
for AM and pulse modulation detection. See Figure 48 and  
Figure 49 for the typical AM and pulse output response,  
respectively. The device features an extremely fast response  
time of approximately 1 ns or less.  
+5V  
1µF  
100pF  
5
C1  
VPOS  
1µF  
U3  
VENV+  
9
IN+  
IN–  
3
PULSED  
RFIN  
R1  
100Ω  
ADC  
VENV–  
8
For applications that require fast response to RF input levels or  
pulsed RF detection, connect the envelope outputs to trans-  
mission lines with a differential characteristic impedance of 100 Ω,  
terminated with a 100 Ω differential load, so that the outputs are  
impedance matched with no reflections from the load. Figure 61  
shows the simplified ADL6012 output stage interfaced to a  
100 Ω load with impedance controlled transmission lines.  
C2  
1µF  
OCOM  
6
EPAD  
Figure 63. Simplified Pulsed Measurement Application  
COMMON-MODE VOLTAGE INTERFACE  
VOCM (Pin 7) is the input that controls the common-mode  
voltage output to the VENV pins. VOCM sets the output  
common-mode voltage and is internally biased to VPOS/2.  
An external voltage source can be used for setting a different  
output common-mode voltage to accommodate the next stage  
input common-mode voltage range, as shown in Figure 64. The  
reference voltage from the ADC is used as the voltage source to  
accurately drive the VOCM pin. The range for VOCM is 0.9 V  
to VPOS/2. In addition, this pin is used to level shift the  
VENV outputs so that both the positive and negative  
envelope information is accurately represented.  
The output impedance of the ADL6012 drives a differential 100 Ω  
load. The differential VENV output dc voltage is divided down  
by the ratio of the load and output impedance. For example,  
with a differential 100 Ω output load, the differential output  
voltage is halved from the open load voltage. See Figure 62 for the  
differential envelope output voltage vs. the input power with  
various output loads.  
ADL6012  
50Ω  
9
VENV+  
Z(DIFFERENTIAL) = 100Ω  
100Ω  
RECEIVER  
0.1µF  
ADL6012  
VENV–  
8
1
2
10  
9
ENBL  
RFCM  
RFIN  
DCPL  
VENV+  
VENV–  
VOCM  
OCOM  
U3  
50Ω  
IN+  
ADC  
IN–  
R1  
100Ω  
3
4
8
7
VREF  
RFCM  
VPOS  
Figure 61. Simplified ADL6012 Output Interface  
5
6
0.1µF  
4
3
2
1
0
EPAD  
OPEN  
400Ω  
200Ω  
100Ω  
Figure 64. External Voltage Source Setting VOCM  
Differential envelope outputs provide the lowest distortion and  
lower noise. The advantages of differential outputs include lower  
offset error, faster output response, higher common-mode noise  
rejection, and less feedthrough. Place a 0.1 µF bypass capacitor  
from VOCM to GND to minimize common-mode noise.  
–15  
–5  
5
15  
INPUT POWER (dBm)  
Figure 62. Differential Envelope Output vs. Input Power for Different Output Loads  
Rev. 0 | Page 20 of 24  
 
 
 
 
 
 
Data Sheet  
ADL6012  
ENABLE INTERFACE  
SYSTEM CALIBRATION AND MEASUREMENT  
ERROR  
ENBL (Pin 1) provides the ability to enable or disable the  
device to conserve power. Connect ENBL to VPOS or above  
1.5 V to enable the device. Connect ENBL to ground or below  
0.5 V to disable the device. Do not exceed VPOS by 0.3 V or  
below ground by more than 0.3 V. Leaving the ENBL pin open  
turns off the device.  
To achieve the highest detection accuracy, perform calibration  
at the board level because output voltages vary from device to  
device. Each device can be calibrated with two or more points  
in the linear region of the transfer function by applying CW  
input at different levels. The slope and intercept can be  
calculated as described in this section. Linear regression over  
the calibration range is recommended for best accuracy.  
Faster turn on time can be achieved using a smaller capacitor  
value on the VOCM pin. The capacitor must be large enough to  
minimize the common-mode noise.  
Board level calibration is a simple method to improve the  
accuracy of the envelope detection. With a minimum of two  
point or more calibration, the entire detection range of the  
device can be calibrated to the highest accuracy possible.  
DECOUPLING INTERFACE  
DCPL (Pin 10) is connected to the internal bias node. DCPL  
provides the stable output common-mode voltage. Connect a  
0.1 µF capacitor from the DCPL pin to ground for the best  
common-mode noise performance.  
The measured ADL6012 transfer function at 18 GHz is shown  
in Figure 67 and the envelope output and linearity conformance  
error vs. the input peak voltage at various temperatures from  
−40°C to +125°C. Error over temperature is relative to the  
room 25°C curve.  
PCB LAYOUT RECOMMENDATIONS  
Parasitic elements of the PCB, such as coupling and radiation,  
limit accuracy at very high frequencies. Ensure low loss power  
transmission from the connector to the internal circuit of the  
ADL6012. Microstrip and CPWG are popular forms of trans-  
mission lines because of their ease of fabrication and low cost  
(see Figure 65 and Figure 66). In the ADL6012 evaluation  
board (ADL6012-EVALZ), a grounded CPWG (GCPWG)  
minimizes radiation effects and provides the maximum band-  
width by using two rows of grounding vias on both sides of the  
signal trace.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
2
1
0
–1  
–2  
–3  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
15mils  
5mils  
5mils  
8mils  
RO4003  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
(V)  
1.4  
1.6  
1.8  
2.0  
V
PEAK  
VIA  
VIA  
Figure 67. Differential VENV Output Voltage and Error vs. Input Peak  
Voltage at 18 GHz  
Figure 65. CPWG Interface Design to RFIN for RO4003 Material (Not to Scale)  
Figure 66 shows the CPWG structure of the PCB layout.  
Microwave material RO4003 with 8 mil thickness is used in the  
ADL6012-EVALZ between the RF signal and ground layer.  
VIA  
RFCM  
RFIN  
RFCM  
VIA  
Figure 66. Suggested RF Input Layout  
Rev. 0 | Page 21 of 24  
 
 
 
 
 
 
 
ADL6012  
Data Sheet  
The following equations are used to calculate the slope and  
intercept of each device, which is used in calibration to improve  
the detection accuracy:  
The ADL6012 offers extremely stable temperature performance  
across frequencies. See Figure 25 to Figure 35 for the temperature  
drift error from −55°C to +125°C. The typical temperature drift is  
less than 1 dB of error over the entire detection range of the device  
from 2 GHz to 67 GHz. This makes the device well suited  
for applications operating over a wide temperature range.  
Temperature drift error relative to 25°C is calculated as follows:  
Slope = (VOUT2 VOUT1)/(VPEAK2 VPEAK1  
Intercept = VOUT1 − (Slope × VPEAK1  
)
(1)  
(2)  
)
The error conformance is calculated as follows:  
Error = 20 × log((VOUT Intercept)/(Slope × VPEAK))  
where:  
(3)  
Temperature Drift Error (dB) = (VOUT (TEMPERATURE) −  
V
OUT (AT 25°C))/(dVOUT/dPIN)  
(4)  
V
V
V
OUT2 is the output voltage with VPEAK2 input.  
OUT1 is the output voltage with VPEAK1 input.  
OUT is the differential envelope output voltage at different  
where:  
VOUT is the differential envelope output.  
dVOUT/dPIN is the derivative of the transfer function of the  
input levels.  
PEAK1 and VPEAK2 are input peak voltages at two different input  
levels.  
PEAK is the peak voltage input.  
differential VENV output at 25°C vs. the input power.  
V
V
Rev. 0 | Page 22 of 24  
Data Sheet  
ADL6012  
APPLICATIONS INFORMATION  
labelled VENV+ and VENV−. The dc envelope output voltage  
and the output common-mode voltage can be measured at the  
test points labeled VENV+_TP and VENV-TP. The output  
common-mode voltage can be set externally by the VOCM turret.  
See the ADL6012-EVALZ user guide for additional information  
on the eval board.  
EVALUATION BOARD  
The ADL6012-EVALZ is a fully populated, 4-layer, Rogers 4003A  
and FR4-based evaluation board. For normal operation, the  
board requires a 3.3 V to 5 V power supply. Connect the power  
supply to the VPOS and GND test loops. Apply the RF input to  
RFIN at the 1.85 mm connector. The differential envelope  
output signal is ac-coupled and is available on the connectors  
1892-03A-6  
Figure 68. Evaluation Board Schematic (Rev. C)  
Table 5. Evaluation Board Components  
Component  
Function/Comments  
Default Value  
C1  
C2  
Bypass capacitor for the ENBL pin  
Supply bypass capacitor. Place this capacitor as close to the VPOS pin as possible. Use microwave  
grade, PPI, 0402BB104KW500 material.  
Supply bypass capacitor. Place this capacitor as close to the VPOS pin as possible. Use microwave  
grade material.  
Bypass capacitors for the output common-mode voltage. Place these capacitors as close to the IC  
as possible.  
0.1 µF  
0.1 µF  
100 pF  
0.1 µF  
C3  
C5, C8  
C6, C7  
R2  
R3  
R4  
R5  
R6, R7  
R9, R10  
R11, R12  
RFIN connector  
Envelope output ac coupling capacitors.  
ENBL termination resistor.  
ENBL pull-up resistor.  
Output load resistor.  
Optional VOCM resistor.  
VOCM resistor divider network.  
Series resistors for measuring the dc envelope outputs.  
Series VENV resistors.  
1 µF  
Open  
20 kΩ  
Open  
Open  
Open  
1 kΩ  
0 Ω  
1892-03A-6  
1.85 mm, edge mount. Southwest,1892-03A-6.  
Rev. 0 | Page 23 of 24  
 
 
 
ADL6012  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
2.54  
2.44  
2.34  
3.10  
3.00  
2.90  
0.50 BSC  
10  
6
PIN 1  
INDICATOR  
AREA  
2.10  
2.00  
1.90  
1.00  
0.90  
0.80  
EXPOSED  
PAD  
0.35  
0.30  
0.25  
5
1
PIN 1  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WCED-3  
Figure 69. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 2 mm Body and 0.75 mm Package Height  
(CP-10-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Ordering  
Quantity  
Marking  
Code  
Model1  
Temperature Range Package Description  
−40°C to +105°C 10-Lead Lead Frame Chip Scale Package [LFCSP] CP-10-12  
10-Lead Lead Frame Chip Scale Package [LFCSP] CP-10-12  
Package Option  
ADL6012ACPZN  
ADL6012ACPZN-R2 −40°C to +105°C  
ADL6012ACPZN-R7 −40°C to +105°C  
1
C9Y  
C9Y  
C9Y  
CAL  
CAL  
100  
1000  
1
100  
1
10-Lead Lead Frame Chip Scale Package [LFCSP] CP-10-12  
10-Lead Lead Frame Chip Scale Package [LFCSP] CP-10-12  
10-Lead Lead Frame Chip Scale Package [LFCSP] CP-10-12  
Evaluation Board  
ADL6012SCPZN  
−55°C to +125°C  
ADL6012SCPZN-R2 −55°C to +125°C  
ADL6012-EVALZ  
1 Z = RoHS Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16086-5/20(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

ADL6012SCPZN

2 GHz to 67 GHz, 500 MHz Bandwidth Envelope Detector
ADI

ADL6012SCPZN-R2

2 GHz to 67 GHz, 500 MHz Bandwidth Envelope Detector
ADI

ADL6012_V01

2 GHz to 67 GHz, 500 MHz Bandwidth Envelope Detector
ADI

ADL6316

Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6316-EVALZ

500 MHz to 1000 MHz Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6316ACCZ

500 MHz to 1000 MHz Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6316ACCZ-R7

500 MHz to 1000 MHz Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6317

500 MHz to 1000 MHz Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6317-EVALZ

Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6317ACCZ

Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL6317ACCZ-R7

Transmit VGA for Use with RF DACs and Transceivers
ADI

ADL7003

Wideband Low Noise Amplifier
ADI