ADL9005ACPZN [ADI]

Wideband, Low Noise Amplifier, Single Positive Supply, 0.01 GHz to 26.5 GHz;
ADL9005ACPZN
型号: ADL9005ACPZN
厂家: ADI    ADI
描述:

Wideband, Low Noise Amplifier, Single Positive Supply, 0.01 GHz to 26.5 GHz

文件: 总24页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband, Low Noise Amplifier, Single  
Positive Supply, 0.01 GHz to 26.5 GHz  
ADL9005  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ADL9005  
Single positive supply  
Low noise figure: 2.5 dB typical from 0.01 GHz to 14 GHz  
High gain: 17.5 dB typical from 0.01 GHz to 14 GHz  
OP1dB: 13.5 dBm typical from 0.01 GHz to 20 GHz  
High OIP3: 26 dBm typical from 0.01 GHz to 14 GHz  
RoHS-compliant, 4 mm × 4 mm, 24-lead LFCSP  
18  
17  
1
2
3
R
NC  
BIAS  
NC  
GND  
APPLICATIONS  
16 RF  
/V  
GND  
OUT DD  
Test instrumentation  
Military  
Communications  
15 GND  
14  
RF  
IN  
4
5
6
GND  
NC  
NC  
13 NC  
Figure 1.  
GENERAL DESCRIPTION  
The ADL9005 is a gallium arsenide (GaAs), monolithic  
balanced, inphase/quadrature (I/Q) or image rejection mixers.  
The ADL9005 also features inputs and outputs (I/Os) that are  
internally matched to 50 Ω, making it ideal for surface-mounted  
technology (SMT)-based, high capacity microwave radio  
applications.  
microwave integrated circuit (MMIC), pseudomorphic high  
electron mobility transistor (pHEMT), wideband, LNA that  
operates from 0.01 to 26.5 GHz. The ADL9005 provides a typical  
gain of 17.5 dB from 0.01 GHz to 14 GHz with a positive gain  
slope from 14 GHz to 20 GHz, a 13.5 dBm typical output power  
at 1 dB compression (OP1dB) from 0.01 GHz to 20 GHz, a 2.5 dB  
typical noise figure from 0.01 GHz to 14 GHz, and a typical output  
third-order intercept (OIP3) of 26 dBm from 0.01 GHz to 14 GHz,  
requiring only 80 mA from a 5 V supply voltage. The saturated  
output power (PSAT) of up to 16 dBm enables the LNA to function  
as a local oscillator (LO) driver for many of Analog Devices, Inc.,  
The ADL9005 is housed in a RoHS-compliant, 4 mm × 4 mm,  
LFCSP.  
Multifunction pin names may be referenced by their relevant  
function only.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2021 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADL9005  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Pin Configuration and Function Descriptions .............................6  
Interface Schematics .....................................................................7  
Typical Performance Characteristics .............................................8  
Biasing Through the ACG4/VDD2 Pin...................................... 18  
Theory of Operation ...................................................................... 19  
Applications Information ............................................................. 20  
Basic Connections...................................................................... 20  
Biasing the ADL9005 by Using the LTM8020 ....................... 21  
Providing Drain Bias ................................................................. 22  
Providing Drain Bias Through the ACG4/VDD2 Pin ............. 23  
Power-Up and Power-Down Sequencing............................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
0.01 GHz to 14 GHz..................................................................... 3  
14 GHz to 20 GHz........................................................................ 3  
20 GHz to 26.5 GHz..................................................................... 4  
DC Specifications ......................................................................... 4  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
Electrostatic Discharge (ESD) Ratings...................................... 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
2/2021—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADL9005  
SPECIFICATIONS  
0.01 GHz TO 14 GHz  
Drain voltage (VDD) = 5 V, bias voltage (VBIAS) = 5 V, total current (IDQ) = 80 mA, RBIAS = 300 Ω, and TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
FREQUENCY RANGE  
Min Typ  
0.01  
Max Unit  
Test Conditions/Comments  
14  
GHz  
dB  
GAIN  
15.5 17.5  
Gain Variation Over Temperature  
0.0077  
dB/°C  
RETURN LOSS  
Input  
15  
14  
dB  
dB  
Output  
OUTPUT  
OP1dB  
PSAT  
11.5 13.5  
dBm  
dBm  
dBm  
dB  
16  
26  
2.5  
OIP3  
Measurement taken at output power (POUT) per tone = 0 dBm  
NOISE FIGURE  
14 GHz TO 20 GHz  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω, and TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
FREQUENCY RANGE  
Min Typ  
14  
Max Unit  
Test Conditions/Comments  
20  
GHz  
dB  
GAIN  
16.5 18.5  
Gain Variation Over Temperature  
0.0127  
dB/°C  
RETURN LOSS  
Input  
15  
14  
dB  
dB  
Output  
OUTPUT  
OP1dB  
PSAT  
11  
13.5  
15  
25  
3
dBm  
dBm  
dBm  
dB  
OIP3  
Measurement taken at POUT per tone = 0 dBm  
NOISE FIGURE  
Rev. 0 | Page 3 of 24  
 
 
 
ADL9005  
Data Sheet  
20 GHz TO 26.5 GHz  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω, and TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
FREQUENCY RANGE  
Min  
20  
Typ  
Max  
26.5  
Unit  
GHz  
dB  
Test Conditions/Comments  
GAIN  
17  
19  
Gain Variation Over Temperature  
0.0214  
dB/°C  
RETURN LOSS  
Input  
15  
14  
dB  
dB  
Output  
OUTPUT  
OP1dB  
PSAT  
8.5  
11.5  
14  
22  
4
dBm  
dBm  
dBm  
dB  
OIP3  
Measurement taken at POUT per tone = 0 dBm  
NOISE FIGURE  
DC SPECIFICATIONS  
Table 4.  
Parameter  
VDD  
Min  
3
Typ  
5
Max  
6
Unit  
V
CURRENT  
IDQ  
80  
mA  
mA  
mA  
Amplifier (IDQ_AMP  
RBIAS (IDQ_BIAS  
)
73.6  
6.4  
)
Rev. 0 | Page 4 of 24  
 
 
Data Sheet  
ADL9005  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
VDD  
RFIN Power  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 12.5 mW/°C Above 85°C)  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Rating  
7 V  
22 dBm  
1.125 W  
θJC is the junction to case thermal resistance.  
Table 6. Thermal Resistance  
Package  
Temperature  
Peak Reflow, Moisture Sensitivity Level (MSL)1 260°C  
θJC  
Unit  
CP-24-15  
80  
°C/W  
Junction to Maintain 1,000,000 Hour  
Meant Time to Failure (MTTF)  
175°C  
Nominal Junction (TA = 85°C, VDD = 5 V,  
IDQ = 80 mA)  
Storage Range  
117°C  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD sensitive devices in an ESD protected area only.  
−65°C to +150°C  
−40°C to +85°C  
Operating Range  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
1 See the Ordering Guide for more information.  
ESD Ratings for ADL9005  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 7. ADL9005, 24-Lead LFCSP  
ESD Model  
Withstand Threshold (V)  
Class  
1A  
HBM  
250  
ESD CAUTION  
Rev. 0 | Page 5 of 24  
 
 
 
 
ADL9005  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
18  
17  
1
2
3
R
NC  
BIAS  
NC  
GND  
ADL9005  
16 RF  
/V  
OUT DD  
GND  
TOP VIEW  
15 GND  
14  
RF  
IN  
4
5
6
(Not to Scale)  
GND  
NC  
NC  
13 NC  
NOTES  
1. NC = NO INTERNAL CONNECTION. NOTE THE DATA  
SHOWN HEREIN WAS MEASURED WITH THESE PINS  
EXTERNALLY CONNECTED TO THE RF AND DC GROUND.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED  
TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
RBIAS  
Current Mirror Bias Resistor Pin. Use the RBIAS pin to set the IDQ by connecting an external bias  
resistor as defined in Table 9. Refer to Figure 74 for the bias resistor connection. See Figure 3 for  
the interface schematic.  
2, 6 to 10, 13, 14, 18 to 22 NC  
No Internal Connection. Note the data shown herein was measured with these pins externally  
connected to the RF and dc ground.  
3, 5, 15, 17  
GND  
Ground. The GND pins must be connected to RF and dc ground. See Figure 4 for the interface  
schematic.  
4
RFIN  
RF Input. The RFIN pin is dc-coupled and matched to 50 Ω. See Figure 5 for the interface  
schematic.  
11  
12  
16  
23  
24  
ACG1  
AC Grounding 1. A capacitor is required on the ACG1 pin to provide low frequency decoupling.  
Refer to Figure 74 for the capacitor value. See Figure 5 for the interface schematic.  
AC Grounding 2. A capacitor is required on the ACG2 pin to provide low frequency decoupling.  
Refer to Figure 74 for the capacitor value. See Figure 5 for the interface schematic.  
RF Output (RFOUT)/Drain Voltage for Amplifier (VDD). The RFOUT/VDD pin is dc-coupled and matched  
to 50 Ω. See Figure 6 for the interface schematic.  
AC Grounding 3. A capacitor is required on the ACG3 pin to provide low frequency decoupling.  
Refer to Figure 74 for the capacitor value. See Figure 6 for the interface schematic.  
ACG2  
RFOUT/VDD  
ACG3  
ACG4/VDD2  
AC Grounding 4 (ACG4). A capacitor is required on the ACG4 pin to provide low frequency  
decoupling. Refer to Figure 74 for the capacitor value. See Figure 6 for the interface schematic.  
Optional Drain Voltage for the Amplifier that Requires a Higher Voltage (VDD2). Do not use the  
VDD2 pin simultaneously with RFOUT/VDD. See Figure 6 for the interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
Rev. 0 | Page 6 of 24  
 
Data Sheet  
ADL9005  
INTERFACE SCHEMATICS  
R
BIAS  
RF  
IN  
ACG2  
ACG1  
Figure 5. RFIN, ACG1, and ACG2 Interface Schematic  
Figure 3. RBIAS Interface Schematic  
RF  
/V  
OUT DD  
ACG4/V  
ACG3  
DD2  
GND  
Figure 4. GND Interface Schematic  
Figure 6. RFOUT/VDD, ACG3, and ACG4/VDD2 Interface Schematic  
Rev. 0 | Page 7 of 24  
 
 
 
 
 
ADL9005  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
20  
25  
20  
15  
15  
10  
S11  
10  
S21  
5
S11  
S21  
S22  
S22  
5
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 7. Gain and Return Loss vs. Frequency, 0.01 GHz to 28 GHz, VDD = 5 V,  
Figure 10. Gain and Return Loss vs. Frequency, 10 MHz to 200 MHz, VDD = 5 V,  
BIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
V
BIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω (S22 Is the Output Return Loss, S11 Is the  
Input Return Loss, and S21 Is the Gain)  
V
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
6
6
–40°C  
+25°C  
+85°C  
4
2
0
4
–40°C  
+25°C  
+85°C  
2
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 8. Gain vs. Frequency for Various Temperatures, 10 MHz to 200 MHz,  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 11. Gain vs. Frequency for Various Temperatures, 0.2 GHz to 28 GHz,  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
22  
20  
18  
16  
14  
12  
22  
20  
18  
16  
14  
12  
1.5kΩ, I  
= 40mA  
DQ  
1kΩ, I  
= 50mA  
DQ  
3V  
4V  
5V  
6V  
10  
8
10  
8
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
6
6
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 9. Gain vs. Frequency for Various VDD, IDQ = 80 mA, 0.01 GHz to 28 GHz  
Figure 12. Gain vs. Frequency for Various Bias Resistor Values and IDQ  
,
10 MHz to 28 GHz, VDD = 5 V  
Rev. 0 | Page 8 of 24  
 
Data Sheet  
ADL9005  
0
–5  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
Figure 16. Input Return Loss vs. Frequency for Various Temperatures,  
0.2 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 13. Input Return Loss vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
0
0
3V  
4V  
5V  
1.5kΩ, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
1kΩ, I  
DQ  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
DQ  
DQ  
DQ  
DQ  
6V  
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 17. Input Return Loss vs. Frequency for Various Bias Resistor Values  
and IDQ, 0.01 GHz to 28 GHz, VDD = 5 V  
Figure 14. Input Return Loss vs Frequency for Various VDD  
IDQ = 80 mA, 0.01 GHz to 28 GHz  
,
0
0
–5  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
Figure 18. Output Return Loss vs. Frequency for Various Temperatures,  
0.2 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 15. Output Return Loss vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Rev. 0 | Page 9 of 24  
ADL9005  
Data Sheet  
0
0
–5  
1.5kΩ, I  
= 40mA  
DQ  
3V  
4V  
5V  
6V  
1kΩ, I  
= 50mA  
DQ  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 19. Output Return Loss vs. Frequency at Various VDD  
DQ = 80mA, 0.01 GHz to 28 GHz  
,
Figure 22. Output Return Loss vs. Frequency for Various Bias Resistor Values  
and IDQ, 0.01 GHz to 28 GHz, VDD = 5 V  
I
0
0
–40°C  
+25°C  
+85°C  
–40°C  
–5  
–5  
+25°C  
+85°C  
–10  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–15  
–20  
–25  
–30  
–35  
–40  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
Figure 20. Reverse Isolation (S12) vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 23. Reverse Isolation vs. Frequency for Various Temperatures,  
0.2 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
0
0
3V  
–5  
1.5kΩ, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
4V  
5V  
1kΩ, I  
DQ  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
DQ  
DQ  
DQ  
DQ  
–10  
6V  
–15  
–20  
–25  
–30  
–35  
–40  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 21. Reverse Isolation vs. Frequency for Various VDD  
DQ = 80 mA, 0.01 GHz to 28 GHz  
,
Figure 24. Reverse Isolation vs. Frequency for Various Bias Resistor Values  
and IDQ, 0.01 GHz to 28 GHz, VDD = 5 V  
I
Rev. 0 | Page 10 of 24  
Data Sheet  
ADL9005  
12  
10  
8
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
6
6
4
4
2
2
0
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. Noise Figure vs. Frequency for Various Temperatures,  
10 MHz to 200 MHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 28. Noise Figure vs. Frequency for Various Temperatures,  
0.2 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V IDQ = 80 mA, RBIAS = 300 Ω  
12  
12  
3V  
4V  
5V  
6V  
3V  
4V  
5V  
10  
10  
6V  
8
8
6
4
2
0
6
4
2
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 26. Noise Figure vs. Frequency for Various VDD, IDQ = 80 mA,  
10 MHz to 200 MHz  
Figure 29. Noise Figure vs. Frequency for Various VDD, IDQ = 80 mA,  
0.2 GHz to 28 GHz  
12  
12  
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 27. Noise Figure vs. Frequency for Various Bias Resistor Values and IDQ  
10 MHz to 200 MHz, VDD = 5 V, VBIAS = 5 V  
,
Figure 30. Noise Figure vs. Frequency for Various Bias Resistor Values and IDQ  
0.2 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V  
,
Rev. 0 | Page 11 of 24  
ADL9005  
Data Sheet  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
4
4
2
2
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 31. OP1dB vs. Frequency for Various Temperatures, 0.01 GHz to 1 GHz,  
Figure 34. OP1dB vs. Frequency for Various Temperatures, 1 GHz to 28 GHz,  
V
DD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
V
DD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
3V  
4V  
5V  
6V  
3V  
4V  
5V  
6V  
4
4
2
2
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 32. OP1dB vs. Frequency for Various Supply Voltages, IDQ = 80 mA,  
0.01 GHz to 1 GHz  
Figure 35. OP1dB vs. Frequency for Various Supply Voltages, IDQ = 80 mA,  
1 GHz to 28 GHz  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
6
4
2
0
6
4
2
0
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 33. OP1dB vs. Frequency for Various Bias Resistor Values and IDQ  
0.01 GHz to 1 GHz, VDD = 5 V, VBIAS = 5 V  
,
Figure 36. OP1dB vs. Frequency for Various Bias Resistor Values and IDQ  
1 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V  
,
Rev. 0 | Page 12 of 24  
Data Sheet  
ADL9005  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
6
6
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
4
4
2
2
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 37. PSAT vs. Frequency for Various Temperatures, 0.01 GHz to 1 GHz,  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 40. PSAT vs. Frequency for Various Temperatures, 1 GHz to 28 GHz,  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
3V  
4V  
3V  
4V  
6
6
5V  
6V  
5V  
6V  
4
2
0
4
2
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 38. PSAT vs. Frequency for Various VDD, IDQ = 80 mA, 0.01 GHz to 1 GHz  
Figure 41. PSAT vs. Frequency for Various VDD, IDQ = 80 mA, 1 GHz to 28 GHz  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
6
4
2
0
6
4
2
0
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 39. PSAT vs. Frequency for Various Bias Resistor Values and IDQ  
0.01 GHz to 1 GHz, VDD = 5 V, VBIAS = 5 V  
,
Figure 42. PSAT vs. Frequency for Various Bias Resistor Values and IDQ  
1 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V  
,
Rev. 0 | Page 13 of 24  
ADL9005  
Data Sheet  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 43. Power Added Efficiency (PAE) vs. Frequency for Various Temperatures,  
0.01 GHz to 1 GHz, VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 46. PAE vs. Frequency for Various Temperatures, 1 GHz to 28 GHz,  
DD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
V
25  
20  
15  
10  
5
105  
95  
85  
75  
65  
55  
25  
20  
15  
10  
5
105  
95  
85  
75  
65  
55  
P
GAIN  
PAE  
OUT  
P
GAIN  
PAE  
OUT  
I
DD  
I
DD  
0
–20  
0
–20  
–17  
–14  
–11  
–8  
–5  
–2  
1
4
7
–16  
–12  
–8  
–4  
0
4
8
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 44. POUT, PAE, Gain, and Drain Current (IDD) vs. Input Power,  
Power Compression at 1 GHz, VDD = 5 V, VBIAS = 5 V, RBIAS = 300 Ω  
Figure 47. POUT, PAE, Gain, and IDD vs. Input Power,  
Power Compression at 10 GHz, VDD = 5 V, VBIAS = 5 V, RBIAS = 300 Ω  
25  
105  
95  
85  
75  
65  
55  
25  
20  
15  
10  
5
105  
P
GAIN  
PAE  
P
GAIN  
PAE  
OUT  
OUT  
95  
20  
15  
10  
5
I
I
DD  
DD  
85  
75  
65  
55  
0
–20  
0
–16  
–12  
–8  
–4  
0
4
8
–20 –18 –16 –14 –12 –10 –8 –6 –4 –2  
0
2
4
6
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 45. POUT, PAE, Gain, and IDD vs. Input Power,  
Power Compression at 8 GHz, VDD = 5 V, VBIAS = 5 V, RBIAS = 300 Ω  
Figure 48. POUT, PAE, Gain, and IDD vs. Input Power,  
Power Compression at 14 GHz, VDD = 5 V, VBIAS = 5 V, RBIAS = 300 Ω  
Rev. 0 | Page 14 of 24  
Data Sheet  
ADL9005  
25  
20  
15  
10  
5
105  
95  
85  
75  
65  
55  
25  
20  
15  
10  
5
105  
P
GAIN  
PAE  
P
GAIN  
PAE  
OUT  
OUT  
95  
85  
75  
65  
55  
I
I
DD  
DD  
0
–20  
0
–20  
–16  
–12  
–8  
–4  
0
4
–16  
–12  
–8  
–4  
0
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 49. POUT, PAE, Gain, and IDD vs. Input Power,  
Figure 52. POUT, PAE, Gain, and IDD vs. Input Power,  
Power Compression at 20 GHz, VDD = 5 V, VBIAS = 5 V, RBIAS = 300 Ω  
Power Compression at 26 GHz, VDD = 5 V, VBIAS = 5 V, RBIAS = 300 Ω  
45  
40  
35  
30  
25  
20  
45  
40  
35  
30  
25  
20  
15  
15  
–40°C  
+85°C  
+25°C  
+85°C  
+25°C  
–40°C  
10  
10  
5
0
5
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 50. OIP3 vs. Frequency for Various Temperatures, 0.01 GHz to 1 GHz,  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
Figure 53. OIP3 vs. Frequency for Various Temperatures, 1 GHz to 28 GHz,  
VDD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
45  
40  
35  
30  
25  
20  
45  
40  
35  
30  
25  
20  
15  
15  
3V  
3V  
4V  
5V  
4V  
5V  
10  
10  
6V  
6V  
5
5
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 51. OIP3 vs. Frequency for Various VDD, IDQ = 80 mA, 0.01 GHz to 1 GHz  
Figure 54. OIP3 vs. Frequency for Various VDD, IDQ = 80 mA, 1 GHz to 28 GHz  
Rev. 0 | Page 15 of 24  
ADL9005  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 55. OIP3 vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 58. OIP3 vs. Frequency for Various Bias Resistor Values and IDQ  
,
0.01 GHz to 1 GHz, VDD = 5 V, VBIAS = 5 V  
1 GHz to 28 GHz, VDD = 5 V, VBIAS = 5 V  
70  
60  
50  
40  
70  
60  
50  
40  
30  
30  
–40°C  
+25°C  
+85°C  
+25°C  
20  
20  
+85°C  
–40°C  
10  
10  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 56. OIP2 vs. Frequency for Various Temperatures, 0.01 GHz to 1 GHz,  
Figure 59. OIP2 vs. Frequency for Various Temperatures, 1 GHz to 24.5 GHz,  
V
DD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
V
DD = 5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
3V  
4V  
5V  
6V  
3V  
4V  
5V  
6V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 57. OIP2 vs. Frequency for Various VDD, IDQ = 80 mA, 0.01 GHz to 1 GHz  
Figure 60. OIP2 vs. Frequency for Various VDD, IDQ = 80 mA, 1 GHz to 24.5 GHz  
Rev. 0 | Page 16 of 24  
Data Sheet  
ADL9005  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
1.5kΩ, I  
1.0kΩ, I  
650Ω, I  
450Ω, I  
300Ω, I  
180Ω, I  
= 40mA  
= 50mA  
= 60mA  
= 70mA  
= 80mA  
= 90mA  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 61. OIP2 vs. Frequency for Various Bias Resistor Values and IDQ  
,
Figure 64. OIP2 vs. Frequency for Various Bias Resistor Values and IDQ  
,
0.01 GHz to 1 GHz, VDD = 5 V, VBIAS = 5 V  
1 GHz to 24.5 GHz, VDD = 5 V, VBIAS = 5 V  
0.40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1GHz  
8GHz  
10GHz  
14GHz  
20GHz  
0.36  
26GHz  
0.32  
0.28  
0.24  
0.20  
–20  
–16  
–12  
–8  
–4  
0
4
8
0
1
2
3
4
5
6
7
INPUT POWER (dBm)  
V
(V)  
DD  
Figure 62. PDISS vs. Input Power at Various Frequencies, TA = 85°C, VDD = 5 V,  
VBIAS = 5 V, IDQ = 80 mA  
Figure 65. IDQ vs. VDD, VBIAS = 5 V, RBIAS = 300 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
0
1
2
3
4
5
6
7
0
0.3  
0.6  
0.9  
1.2  
1.5  
V
(V)  
BIAS  
BIAS RESISTOR VALUE (kΩ)  
Figure 63. IDQ vs. VBIAS, VDD = 5 V, RBIAS = 300 Ω  
Figure 66. IDQ vs. Bias Resistor Value, VBIAS = 5 V, VDD = 5 V  
Rev. 0 | Page 17 of 24  
ADL9005  
Data Sheet  
BIASING THROUGH THE ACG4/VDD2 PIN  
VDD2 = 8.5 V, VBIAS = 5 V, IDQ = 80 mA, RBIAS = 300 Ω, and frequency range = 0.01 GHz to 28 GHz.  
25  
12  
10  
8
20  
–40°C  
+25°C  
+85°C  
15  
10  
S21  
S11  
S22  
S12  
5
0
–5  
6
–10  
–15  
–20  
–25  
–30  
–35  
–40  
4
2
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 67. Gain, Return Loss, and Reverse Isolation vs. Frequency  
Figure 70. Noise Figure vs. Frequency for Various Temperatures  
18  
16  
14  
12  
10  
20  
18  
16  
14  
12  
10  
8
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
8
6
4
2
0
6
4
2
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 68. OP1dB vs. Frequency for Various Temperatures  
Figure 71. PSAT vs. Frequency for Various Temperatures  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
Figure 69. OIP3 vs. Frequency for Various Temperatures  
Figure 72. OIP2 vs. Frequency for Various Temperatures  
Rev. 0 | Page 18 of 24  
 
 
 
Data Sheet  
ADL9005  
THEORY OF OPERATION  
ACG4/V  
ACG3  
DD2  
The ADL9005 is a GaAs, MMIC, pHEMT, wideband LNA. A  
simplified block diagram is shown in Figure 73. The RFIN and  
RFOUT pins are dc-coupled and matched to 50 Ω.  
R
BIAS  
The ADL9005 operates from a single positive supply. IDQ is set  
by connecting a resistor between the RBIAS pin and the external  
supply voltage. The drain bias voltage is normally provided via  
an external bias tee. However, the drain bias voltage can also be  
resistively biased by connecting the ACG4/VDD2 pin to an external  
supply.  
RF  
RF  
/V  
OUT DD  
ADL9005  
IN  
ACG2  
ACG1  
Figure 73. Simplified Block Diagram  
Rev. 0 | Page 19 of 24  
 
 
ADL9005  
Data Sheet  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
Table 9. Recommended Bias Resistor Values  
The basic connections for operating the ADL9005 are shown  
in Figure 74. Connect the recommended capacitor values to the  
ac ground pins (ACG1, ACG2, ACG3, and ACG4) as shown  
in Figure 74. The bias current is set by connecting a resistor  
between RBIAS and VDD. When using 5 V VDD, a resistor value  
of 300 Ω is recommended to achieve an IDQ of 80 mA. Table 9  
shows the resulting IDQ for the various RBIAS values where the  
resistor is tied to 5 V. Decouple the RBIAS pin with a 100 pF  
capacitor as shown in Figure 74.  
RBIAS (Ω)  
180  
300  
450  
650  
1000  
1500  
IDQ (mA)  
90  
80  
70  
60  
50  
40  
IDQ_AMP (mA)  
82.3  
73.6  
64.8  
55.8  
46.8  
37.4  
IDQ_BIAS (mA)  
7.7  
6.4  
5.2  
4.2  
3.2  
2.6  
Refer to ADL9005-EVALZ user guide (UG-1859) for the  
recommended part numbers of the manufacturers for all  
the external components required to operate the ADL9005.  
V
DD  
(5V)  
C9  
0.01µF  
C6  
4.7µF  
R1  
300Ω  
R
1
2
3
18  
BIAS  
17  
16  
15  
14  
13  
C4  
RF  
OUTPUT  
RF  
V
/
OUT  
DD  
100pF  
RF INPUT  
RF  
IN  
4
5
DRAIN  
BIASING  
NETWORK  
C
IN  
0.1µF  
ADL9005  
6
C7  
4.7µF  
C10  
100pF  
C11  
0.01µF  
Figure 74. Typical Application Circuit  
Rev. 0 | Page 20 of 24  
 
 
 
 
Data Sheet  
ADL9005  
The ADL9005 can be powered by using a well regulated power  
source. The LTM8020 is a complete 200 mA, dc to dc, step-down  
power supply that provides a single 5 V supply to VDD through a  
bias tee on RBIAS. The recommended input voltage (VIN) for the  
LTM8020 is from 6.5 V to 36 V to achieve a 5 V output voltage  
(VOUT).  
BIASING THE ADL9005 BY USING THE LTM8020  
The LTM8020, µModule® regulator is suitable for the ADL9005  
due to its compact size and wide input voltage range of 4 V to  
36 V while maintaining high efficiency and output noise below  
the maximum allowable ripple of the ADL9005 due to its high  
power supply modulation ratio.  
Figure 75 shows the application circuit for ADL9005 using the  
LTM8020 regulator.  
V
OUT  
5V  
200mA  
V
IN  
V
V
OUT  
IN  
6.5V TO 36V  
C9  
0.01µF  
C6  
4.7µF  
2.2µF  
LTM8020  
SHDN  
BIAS  
10µF  
GND ADJ  
165kΩ  
1%  
R1  
300Ω  
R
BIAS  
1
2
3
4
5
18  
17  
C4  
RF  
OUTPUT  
RF  
V
/
OUT  
DD  
100pF  
16  
15  
14  
13  
RF INPUT  
RF  
IN  
DRAIN  
BIASING  
NETWORK  
C
IN  
0.1µF  
ADL9005  
6
C7  
4.7µF  
C10  
100pF  
C11  
0.01µF  
Figure 75. Application Circuit for the ADL9005 Using the LTM8020 Regulator  
Rev. 0 | Page 21 of 24  
 
 
ADL9005  
Data Sheet  
20  
15  
PROVIDING DRAIN BIAS  
S21  
S11  
S22  
The ADL9005 was characterized using a connectorized wideband  
bias tee (Marki Microwave BT2-0040). In practice, the drain bias  
must be provided by a board mountable component. Drain biasing  
for a wideband amplifier, such as the ADL9005, is traditionally  
provided by connecting a wideband conical inductor between  
RFOUT/VDD and the 5 V power supply, as shown in Figure 74.  
Conical inductors are fragile and physically large. Figure 76  
shows an alternative biasing circuit that uses 0402 sized, surface-  
mount components. The gain, input return loss, and output  
return loss over frequency are shown in Figure 77.  
10  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
0
5
10  
15  
20  
25  
30  
5V  
FREQUENCY (GHz)  
C2  
R4  
Figure 77. Gain and Return Loss vs. Frequency Using the Surface-Mount Bias Tee  
270Ω  
1pF  
The circuit consists of ferrite beads (FB1 and FB2), an ac coupling  
capacitor (COUT), an inductor (L3), de-Q resistors (R3 and R4),  
and bypass capacitors (C1 and C2).  
L3  
0.11µH  
C1  
R3  
340Ω  
1pF  
The R3, R4, C1, and C2 decoupling components are used to  
reduce the RF coupling and to filter out power supply noise.  
R3 and R4 are de-Q resistors that can reduce frequency glitches  
caused by interactions between the PCB and the decoupling  
capacitors.  
FB1  
470Ω  
GND  
FB2  
470Ω  
C
OUT  
RF  
/V  
OUT DD  
RF  
OUT  
FB2 is critical to achieving high frequency operation. Optimal  
performance is achieved when FB2 touches down on the RF  
trace directly. FB1 is also a critical component that must be  
placed as close as possible to FB2 because a longer trace adds  
increased inductance and capacitance. FB1 mitigates resonances  
caused by the interaction between FB2 and the PCB.  
100nF  
Figure 76. Surface-Mounted Bias Tee Schematic  
The L3 inductor is only needed if operation at below 100 MHz  
is required. Otherwise, omit L3.  
Table 10 lists the part numbers of the manufacturers and values  
used in the surface-mounted bias tee circuit shown in Figure 76.  
Further details on design of surface-mount bias tee circuits can  
be found in Application Note AN-2061.  
Table 10. Part Numbers of the Manufacturers and Values Used in the Surface-Mounted Bias Tee Circuit Shown in Figure 76  
Component  
FB1, FB2  
L3  
COUT  
R3  
Value  
470 Ω  
0.11 µH  
100 nF  
340 Ω  
1 pF  
Manufacturer  
Murata  
Coilcraft  
American Technical Ceramics  
Panasonic  
Part Number  
BLM15GG471SN1D  
0805LS-111X_E_  
ATC 560L  
ERA-2AEB3400X  
GJM1555C1H1R0CB01D  
ERJ-2GEJ271X  
C1, C2  
R4  
Murata  
Panasonic  
270 Ω  
Rev. 0 | Page 22 of 24  
 
 
 
 
Data Sheet  
ADL9005  
PROVIDING DRAIN BIAS THROUGH THE  
ACG4/VDD2 PIN  
POWER-UP AND POWER-DOWN SEQUENCING  
Apply the RF input signal after the main supply voltage and  
the voltage driving RBIAS (R1 in Figure 74 and Figure 78) and  
remove the RF input signal before the main supply voltage and  
the voltage on RBIAS are turned off. The voltage on RBIAS can either  
be applied simultaneously with VDD or after VDD is applied.  
An alternative way to bias the ADL9005 is through the ACG4/VDD2  
pin (Pin 24), which is shown in Figure 78. Because of the voltage  
drop across the internal bias resistor, a higher VDD is required.  
If a 300 Ω bias resistor (R1) is used and connected to the 5 V  
power supply, which results in a total current of 80 mA, a VDD  
of 8.5 V is recommended. R1 can also be connected to the VDD  
of 8.5 V. In this case, to set IDQ to 80 mA, use an R1 value of  
850 Ω on RBIAS. The performance of this circuit is summarized  
in Figure 67 to Figure 72.  
V
DD  
(8.5V)  
C9  
0.01µF  
C6  
4.7µF  
5V  
R1  
300Ω  
R
BIAS  
1
2
3
4
5
18  
17  
16  
15  
14  
13  
C4  
RF  
OUTPUT  
100pF  
RF  
/V  
OUT DD  
RF INPUT  
RF  
IN  
C
OUT  
0.1µF  
C
IN  
0.1µF  
ADL9005  
6
C7  
4.7µF  
C10  
100pF  
C11  
0.01µF  
Figure 78. Providing Resistive Drain Bias Through the ACG4/VDD2 Pin  
Rev. 0 | Page 23 of 24  
 
 
 
ADL9005  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
TIONS  
INDICATOR AR E A OP  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8  
Figure 79. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm and 0.75 Package Height  
(CP-24-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
ADL9005ACPZN  
ADL9005ACPZN-R7  
ADL9005-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
MSL Rating3 Package Description4  
Package Option  
CP-24-15  
CP-24-15  
MSL3  
MSL3  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 When ordering the evaluation board only, reference the model number, ADL9005-EVALZ.  
3 See the Absolute Maximum Ratings section for additional information.  
4 The lead finish of the ADL9005ACPZN and ADL9005ACPZN-R7 is nickel palladium gold (NiPdAu).  
©2021 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D25033-2/21(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY