ADL9006ACGZN [ADI]

2 GHz to 28 GHz, GaAs, pHEMT, MMIC Low Noise Amplifier;
ADL9006ACGZN
型号: ADL9006ACGZN
厂家: ADI    ADI
描述:

2 GHz to 28 GHz, GaAs, pHEMT, MMIC Low Noise Amplifier

文件: 总14页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 GHz to 28 GHz, GaAs,  
pHEMT, MMIC Low Noise Amplifier  
Data Sheet  
ADL9006  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
P1dB: 20 dBm typical at 2 GHz to 6 GHz  
P
SAT: 20.5 dBm typical at 2 GHz to 6 GHz  
Gain: 15.5 dB typical at 6 GHz to 28 GHz  
Noise figure: 2.5 dB typical at 2 GHz to 20 GHz  
OIP3: 26 dBm typical at 2 GHz to 6 GHz  
Supply voltage: 5 V at 53 mA  
GND  
1
2
3
4
5
6
7
8
24 GND  
23 NIC  
22 GND  
V
GG  
2
GND  
RFIN  
RFOUT  
21  
20  
19  
GND  
NIC  
NIC  
GND  
NIC  
50 Ω matched input and output  
ADL9006  
18 NIC  
GND  
17  
GND  
APPLICATIONS  
Test instrumentation  
Military and space  
PACKAGE  
BASE  
Local oscillator driver amp  
Figure 1.  
GENERAL DESCRIPTION  
The ADL9006 is a gallium arsenide (GaAs), pseudomorphic  
high electron mobility transistor (pHEMT), monolithic microwave  
integrated circuit (MMIC), low noise amplifier that operates  
between 2 GHz and 28 GHz. The amplifier provides 15.5 dB of  
gain, 2.5 dB noise figure, 26 dBm output third-order intercept  
(OIP3), and 20 dBm of output power for 1 dB compression  
(P1dB) while requiring 53 mA from a 5 V supply. The ADL9006  
is self biased with only a single positive supply needed to  
achieve a supply current (IDD) of 53 mA.  
The ADL9006 amplifier input and output are internally  
matched to 50 Ω.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADL9006  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Electrostatic Discharge (ESD) Ratings.......................................5  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 12  
Applications Information.............................................................. 13  
Biasing Procedures..................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
2 GHz to 6 GHz ............................................................................ 3  
6 GHz to 20 GHz .......................................................................... 3  
20 GHz to 28 GHz........................................................................ 3  
DC Specifications ......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
8/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 14  
 
Data Sheet  
ADL9006  
SPECIFICATIONS  
2 GHz TO 6 GHz  
TA = 25°C, VDD = 5 V, IDD = 53 mA, VGG2 = open, and a 50 Ω matched input and output, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
2
6
GHz  
dB  
13  
15  
Gain Variation Over Temperature  
RETURN LOSS  
0.007  
dB/°C  
Input  
Output  
11  
12  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
P1dB  
PSAT  
OIP3  
20  
20.5  
26  
dBm  
dBm  
dBm  
18  
Measurement taken at output power (POUT) per  
tone = 0 dBm  
NOISE FIGURE  
NF  
2.5  
4
dB  
6 GHz TO 20 GHz  
TA = 25°C, VDD = 5 V, IDD = 53 mA, VGG2 = open, and a 50 Ω matched input and output, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
6
20  
GHz  
dB  
13  
15.5  
Gain Variation Over Temperature  
RETURN LOSS  
0.012  
dB/°C  
Input  
Output  
12  
17  
dB  
dB  
OUTPUT  
Output Power for 1 dB Compression  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
P1dB  
PSAT  
OIP3  
NF  
18  
18.5  
23  
dBm  
dBm  
dBm  
dB  
16  
Measurement taken at POUT per tone = 0 dBm  
2.5  
4.0  
20 GHz TO 28 GHz  
TA = 25°C, VDD = 5 V, IDD = 53 mA, VGG2 = open, and a 50 Ω matched input and output, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min Typ  
Max Unit  
FREQUENCY RANGE  
GAIN  
20  
13  
28  
GHz  
dB  
15.5  
Gain Variation Over Temperature  
RETURN LOSS  
0.018  
dB/°C  
Input  
Output  
15  
15  
dB  
dB  
OUTPUT  
Saturated Output Power  
Output Third-Order Intercept  
NOISE FIGURE  
PSAT  
OIP3  
NF  
15  
17.5  
19.5  
4
dBm  
dBm  
dB  
Measurement taken at POUT per tone = 0 dBm  
6
Rev. 0 | Page 3 of 14  
 
 
 
 
ADL9006  
Data Sheet  
DC SPECIFICATIONS  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Nominal voltage = 5 V  
Min  
Typ  
Max  
Unit  
SUPPLY CURRENT  
Total Supply Current  
SUPPLY VOLTAGE  
GATE BIAS VOLTAGE  
IDD  
53  
5
mA  
V
VDD  
VGG2  
4
7
Normal condition is VGG2 = open  
−2.0  
+2.6  
V
Rev. 0 | Page 4 of 14  
 
Data Sheet  
ADL9006  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
Parameter  
Rating  
The following ESD information is provided for handling of ESD  
sensitive devices in an ESD protected area only.  
VDD  
VGG2  
8 V  
−2.6 V to +3.6 V  
20 dBm  
1.96 W  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
RF Input Power (RFIN)  
Continuous Power Dissipation (PDISS),  
TA = 85°C (Derate 21.7 mW/°C Above 85°C)  
Maximum Peak Reflow Temperature,  
Moisture Sensitivity Level 3 (MSL3)  
ESD Ratings for ADL9006  
Table 7. ADL9006, 32-Lead LFCSP_CAV  
260°C  
ESD Model  
Withstand Threshold (V)  
Class  
HBM  
500  
1B  
Channel Temperature to Maintain 1,000,000 175°C  
Hour Meant Time to Failure (MTTF)  
ESD CAUTION  
Nominal Channel Temperature (T = 85°C,  
VDD = 5 V)  
98°C  
Storage Temperature Range  
Operating Temperature Range  
−65°C to +150°C  
−40°C to +85°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJC is the junction to case thermal resistance.  
Table 6. Thermal Resistance  
Package  
CG-32-21  
θJC  
Unit  
46  
°C/W  
1 Thermal resistance (θJC) was determined by simulation under the following  
conditions: the heat transfer is due solely to thermal conduction from the  
channel, through the ground paddle, to the PCB, and the ground paddle is  
held constant at the operating temperature of 85°C.  
Rev. 0 | Page 5 of 14  
 
 
 
 
ADL9006  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
4
5
6
7
8
24 GND  
23 NIC  
22 GND  
V
2
GG  
GND  
RFIN  
ADL9006  
TOP VIEW  
(Not to Scale)  
RFOUT  
21  
20  
19  
GND  
NIC  
NIC  
GND  
NIC  
18 NIC  
GND  
17  
GND  
NOTES  
1. NIC = NO INTERNAL CONNECTION. SOLDER THE  
NIC PINS TO A LOW IMPEDANCE GROUND PLANE.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 5, 8, 9, 16, 17, GND  
Ground. Solder the GND pins to a low impedance ground plane.  
20, 22, 24, 25,  
32  
2
VGG2  
Gain Control. VGG2 is dc-coupled and accomplishes gain control by reducing the internal voltage and  
becoming more negative. Attach bypass capacitors to VGG2, as shown in Figure 38. Under normal  
operating conditions, VGG2 is left open.  
4
RFIN  
RF Input. RFIN is ac-coupled and matched to 50 Ω.  
6, 7, 10 to 15, 18, NIC  
19, 23, 26 to 30  
No Internal Connection. Solder the NIC pins to a low impedance ground plane.  
21  
31  
RFOUT  
VDD  
RF Output. RFOUT is ac-coupled and matched to 50 Ω.  
Power Supply Voltage for the Amplifier.  
EPAD  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
INTERFACE SCHEMATICS  
RFOUT  
RFIN  
Figure 3. RFIN Interface Schematic  
Figure 6. RFOUT Interface Schematic  
GND  
V
2
GG  
Figure 7. GND Interface Schematic  
Figure 4. VGG2 Interface Schematic  
V
DD  
Figure 5. VDD Interface Schematic  
Rev. 0 | Page 6 of 14  
 
 
Data Sheet  
ADL9006  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
15  
+85°C  
+25°C  
–40°C  
GAIN  
10  
5
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
0
–5  
–10  
–15  
–20  
0
5
10  
15  
20  
25  
30  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Gain and Return Loss vs. Frequency  
Figure 11. Gain vs. Frequency at Various Temperatures  
0
–5  
0
–5  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
–10  
–15  
–20  
–10  
–15  
–20  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 12. Output Return Loss vs. Frequency at Various Temperatures  
Figure 9. Input Return Loss vs. Frequency at Various Temperatures  
10  
10  
9
9
4V  
5V  
+85°C  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
+25°C  
–40°C  
6V  
7V  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 10. Noise Figure vs. Frequency at Various Temperatures  
Figure 13. Noise Figure vs. Frequency at Various Supply Voltages  
Rev. 0 | Page 7 of 14  
 
ADL9006  
Data Sheet  
20  
15  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
4V  
5V  
6V  
7V  
10  
5
+2.6V  
+2.4V  
+2.0V  
+1.6V  
+1.2V  
+0.8V  
+0.4V  
0V  
–0.4V  
–0.8V  
–1.2V  
–1.6V  
–2.0V  
0
–5  
–10  
–15  
–20  
–25  
–30  
2
4
6
8
10 12 14 16 18 20 22 24 26  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
Figure 17. Gain vs. Frequency at Various VGG2 Voltages  
Figure 14. Gain vs. Frequency at Various Supply Voltages  
0
–5  
0
+2.6V  
+2.4V  
+2.0V  
+1.6V  
+1.2V  
+0.8V  
+0.4V  
0V  
–0.8V  
–1.2V  
4V  
5V  
6V  
7V  
–0.4V  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 15. Input Return Loss vs. Frequency at Various Supply Voltages  
Figure 18. Input Return Loss vs. Frequency at Various VGG2 Voltages  
0
0
+2.6V  
+2.4V  
+2.0V  
+1.6V  
+1.2V  
+0.8V  
+0.4V  
0V  
–0.4V  
–0.8V  
–1.2V  
4V  
5V  
6V  
7V  
–5  
–10  
–15  
–20  
–5  
–10  
–15  
–20  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 16. Output Return Loss vs. Frequency at Various Supply Voltages  
Figure 19. Output Return Loss vs. Frequency at Various VGG2 Voltages  
Rev. 0 | Page 8 of 14  
 
Data Sheet  
ADL9006  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
20  
16  
12  
8
+6dBm  
+4dBm  
+2dBm  
0dBm  
–2dBm  
–4dBm  
–6dBm  
–8dBm  
–10dBm  
–12dBm  
–14dBm  
–16dBm  
5V, +85°C  
5V, +25°C  
5V, –40°C  
4
6
0
4
2
0
–4  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
0
5
10  
15  
20  
25  
30  
FREQUENCY (dBm)  
Figure 20. PSAT vs. Frequency at Various Temperatures  
Figure 23. POUT vs. Frequency at Various Input Power Levels  
20  
15  
10  
5
150  
25  
20  
15  
10  
5
140  
120  
100  
80  
125  
100  
75  
50  
25  
0
60  
P
GAIN  
PAE  
P
GAIN  
PAE  
0
OUT  
OUT  
0
40  
I
I
DD  
DD  
–5  
–5  
–10  
20  
0
10  
–10  
–20  
–20  
–15  
–10  
–5  
0
5
–15  
–10  
–5  
0
5
10  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 21. POUT, Gain, PAE, and IDD vs. Input Power, 2 GHz,  
VDD = 5 V  
Figure 24. POUT, Gain, PAE, and IDD vs. Input Power, 20 GHz, VDD = 5 V  
25  
20  
15  
10  
5
140  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
P
GAIN  
PAE  
P
GAIN  
PAE  
0
OUT  
OUT  
0
I
I
DD  
DD  
–5  
–10  
–5  
–10  
–20  
–15  
–10  
–5  
0
5
10  
–20  
–15  
–10  
–5  
0
5
INPUT POWER (dBm)  
INPUT POWER (dBm)  
Figure 22. POUT, Gain, PAE, and IDD vs. Input Power, 10 GHz, VDD = 5 V  
Figure 25. POUT, Gain, PAE, and IDD vs. Input Power, 26 GHz, VDD = 5 V  
Rev. 0 | Page 9 of 14  
ADL9006  
Data Sheet  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
4V  
5V  
6V  
7V  
+85°C  
+25°C  
–40°C  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 26. Output IP3 vs. Frequency at Various Temperatures, POUT per Tone =  
0 dBm  
Figure 29. Output IP3 vs. Frequency at Various Supply Voltages  
70  
70  
4V, 26GHz  
4V, 20GHz  
4V, 10GHz  
4V, 6GHz  
4V, 2GHz  
6V, 26GHz  
6V, 20GHz  
6V, 10GHz  
6V, 6GHz  
6V, 2GHz  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
–4  
–2  
0
2
4
6
8
–4  
–2  
0
2
4
6
8
P
PER TONE (dBm)  
P
PER TONE (dBm)  
OUT  
OUT  
Figure 30. Output IMD3 vs. POUT per Tone for Various Frequencies, VDD = 6 V  
Figure 27. Output Third-Order Intermodulation Distortion Relative to Carrier  
(IMD3) vs. POUT per Tone for Various Frequencies, VDD = 4 V  
70  
70  
5V, 26GHz  
5V, 20GHz  
5V, 10GHz  
5V, 6GHz  
5V, 2GHz  
7V, 26GHz  
7V, 20GHz  
7V, 10GHz  
7V, 6GHz  
7V, 2GHz  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
–4  
–2  
0
2
4
6
8
–4  
–2  
0
2
4
6
8
P
PER TONE (dBm)  
P
PER TONE (dBm)  
OUT  
OUT  
Figure 28. Output IMD3 vs. POUT per Tone for Various Frequencies, VDD = 5 V  
Figure 31. Output IMD3 vs. POUT per Tone for Various Frequencies, VDD = 7 V  
Rev. 0 | Page 10 of 14  
Data Sheet  
ADL9006  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
+2.6V  
+2.4V  
+2.2V  
+2.0V  
+1.8V  
+1.6V  
+1.4V  
+1.2V  
+1.0V  
+0.8V  
+0.6V  
+0.4V  
+0.2V  
0V  
–0.4V  
–0.6V  
–0.8V  
–1.0V  
–1.2V  
+2.6V  
+2.4V  
+2.2V  
+2.0V  
+1.8V  
+1.6V  
+1.4V  
+1.2V  
+1.0V  
+0.8V  
+0.6V  
+0.4V  
+0.2V  
0V  
–0.2V  
–0.4V  
–0.6V  
–0.8V  
–1.0V  
–0.2V  
6
6
4
4
2
2
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
FREQUENCY (GHz)  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
Figure 32. PSAT vs. Frequency at Various VGG2 Voltages  
Figure 35. OIP3 vs. Frequency at Various VGG2 Voltages  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
+87°C  
+25°C  
–40°C  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
FREQUENCY (GHz)  
V
2 (V)  
GG  
Figure 33. Isolation vs. Frequency over Various Temperatures  
Figure 36. IDD vs. VGG2 Voltages, VDD = 5 V  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
4.0  
4.5  
5.0  
5.5  
(V)  
6.0  
6.5  
7.0  
V
DD  
Figure 34. IDD vs. VDD  
Rev. 0 | Page 11 of 14  
ADL9006  
Data Sheet  
THEORY OF OPERATION  
The ADL9006 is a GaAs, pHEMT, MMIC low noise amplifier.  
The basic architecture of the ADL9006 is that of a single-supply,  
biased, cascode distributed amplifier with an integrated RF choke  
for the drain. A simplified schematic of this architecture is  
shown in Figure 37.  
Though the gate bias voltages of the upper field effect transistors  
(FETs) are set internally by a resistive voltage divider tapped off  
of VDD, the VGG2 pin is provided to allow the user an optional  
means of changing the gate bias of the upper FETs. Adjustment  
of the VGG2 pin voltage across the range of −2.0 V to +2.6 V  
changes the gate bias of the upper FETs, thus affecting gain  
changes, depending on the frequency (see Figure 17).  
V
DD  
TRANSMISSION LINE  
RFOUT  
V
2
GG  
TRANSMISSION LINE  
RFIN  
Figure 37. Architecture and Simplified Schematic  
Rev. 0 | Page 12 of 14  
 
 
Data Sheet  
ADL9006  
APPLICATIONS INFORMATION  
Unless otherwise noted, all measurements and data shown were  
taken using the typical application circuit (see Figure 38), biased  
per the conditions in the Specifications section. The bias con-  
ditions shown in the Specifications section are the operating  
points recommended to optimize the overall performance of  
the device. Operation using other bias conditions may provide  
performance that differs from what is shown in this data sheet.  
To obtain the optimal performance while not damaging the  
device, follow the recommended biasing sequences outlined in  
this section.  
BIASING PROCEDURES  
Capacitive bypassing is required for VDD, as shown in the typical  
application circuit in Figure 38. Gain control is possible through  
the application of a dc voltage to the VGG2 pin. If gain control is  
used, VGG2 must be bypassed by a 100 pF capacitor, a 0.01 μF  
capacitor, and a 4.7 μF capacitor. If gain control is not used, VGG2  
can be either left open or capacitively bypassed, as shown in  
Figure 38.  
The recommended bias sequence during power-up is as follows:  
1. Set VDD to 5 V (this setting results in an IDD near its  
specified typical value).  
V
DD  
4.7µF  
0.01µF  
100pF  
2. If the gain control function is used, apply a voltage within  
the range of −2.0 V to +2.6 V to VGG2 until the desired gain is  
achieved.  
2
4
V
2
31  
GG  
4.7µF  
0.01µF  
100pF  
21  
RFOUT  
3. Apply the RF input signal.  
RFIN  
The recommended bias sequence during power-down is as follows:  
Figure 38. Typical Application Circuit  
1. Turn off the RF input signal.  
2. Remove the VGG2 voltage or set it to 0 V.  
3. Set VDD to 0 V.  
Rev. 0 | Page 13 of 14  
 
 
 
ADL9006  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR AREA OPTIONS  
25  
24  
32  
(SEE DETAIL A)  
1
0.50  
BSC  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
17  
16  
8
9
0.45  
0.40  
0.35  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
3.50 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.35  
1.25  
1.15  
0.60 REF  
0.40  
0.050 MAX  
0.035 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
SEATING  
PLANE  
0.08  
0.203 REF  
Figure 39. 32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
5 mm × 5 mm Body and 1.25 mm Package Height  
(CG-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
MSL  
Package  
Option  
Model1  
Rating2  
Package Description3  
ADL9006ACGZN  
ADL9006ACGZN-R7  
ADL9006-EVALZ  
−40°C to +85°C  
−40°C to +85°C  
MSL3  
MSL3  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV] CG-32-2  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV] CG-32-2  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 See the Absolute Maximum Ratings section for additional information.  
3 The lead finish of the ADL9006ACGZN and the ADL9006ACGZN-R7 is nickel palladium gold (NiPdAu).  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17307-8/20(0)  
Rev. 0 | Page 14 of 14  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY