ADM1185ARMZ-1 [ADI]

Quad Voltage Monitor and Sequencer; 四电压监视和音序器
ADM1185ARMZ-1
型号: ADM1185ARMZ-1
厂家: ADI    ADI
描述:

Quad Voltage Monitor and Sequencer
四电压监视和音序器

电源电路 电源管理电路 光电二极管
文件: 总16页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Voltage Monitor and Sequencer  
ADM1185  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
Powered from 2.7 V to 5.5 V on the VCC pin  
Monitors 4 supplies via 0.8% accurate comparators  
Logical core with internal timeouts provides power supply  
sequencing and fault protection  
4 inputs can be programmed to monitor different voltage  
levels with resistor dividers  
3 open-drain enable outputs  
POWER AND  
REF = 0.6V  
REFERENCE  
GENERATOR  
ADM1185  
REF = 0.6V  
REF = 0.6V  
REF = 0.6V  
REF = 0.6V  
OUT1  
VIN1  
VIN2  
VIN3  
VIN4  
OUT2  
Open-drain power-good output (PWRGD)  
10-lead MSOP  
STATE  
MACHINE  
CORE  
OUT3  
APPLICATIONS  
Monitor and alarm functions  
Power supply sequencing  
Telecommunication and data communication equipment  
PC/servers  
PWRGD  
GND  
Figure 1.  
GENERAL DESCRIPTION  
The ADM1185 is an integrated, four-channel, voltage  
monitoring and sequencing device. A 2.7 V to 5.5 V power  
supply is required on the VCC pin to power the device.  
Internal time delays can be used for sequencing the startup of  
subsequent power supplies enabled by the outputs. Supplies  
falling out of range are also detected and, as a result, appropriate  
outputs are disabled.  
Four precision comparators monitor four voltage rails.  
All comparators have a 0.6 V reference with a worst-case  
accuracy of 0.8%. Resistor networks that are external to the  
VIN1, VIN2, VIN3, and VIN4 pins set the trip points for  
the monitored supply rails.  
The ADM1185 has four open-drain outputs. In a typical  
configuration, OUT1 to OUT3 are used to enable power  
supplies, while PWRGD is a common power-good output  
indicating the status of all monitored supplies.  
A digital core interprets the status of the comparator outputs.  
The ADM1185 is available in a 10-lead mini small outline  
package (MSOP).  
APPLICATIONS DIAGRAM  
3.3V IN  
2.5V OUT  
1.8V OUT  
1.2V OUT  
VCC  
IN  
ADM1185  
REGULATOR1  
2.5V OUT  
VIN1  
OUT1  
OUT2  
OUT3  
EN  
OUT  
GND  
VIN2  
VIN3  
IN  
REGULATOR2  
1.8V OUT  
1.2V OUT  
EN  
OUT  
GND  
VIN4  
GND  
PWRGD  
IN  
REGULATOR3  
EN  
OUT  
GND  
POWER  
GOOD  
Figure 2.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADM1185  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................5  
Typical Performance Characteristics ..............................................6  
Theory of Operation .........................................................................9  
Power-On Sequencing and Monitoring .....................................9  
Voltage Monitoring after Power-On........................................ 10  
Cascading Multiple Devices...................................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Applications Diagram ...................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
3/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADM1185  
SPECIFICATIONS  
VCC = 2.7 V to 5.5 V, TA = −40°C to +85°C.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit Conditions  
VCC Pin  
Operating Voltage Range, VCC  
Supply Current, IVCC  
VIN1 to VIN4 (VINx) Pins  
Input Current, IVINLEAK  
Input Rising Threshold, VTHR  
OUT1 to OUT3 (OUTx), PWRGD Pins  
Output Low Voltage, VOUTL  
2.7  
3.3  
24  
5.5  
80  
V
μA  
−20  
+20  
nA  
V
VVINx = 0.7 V  
0.5952 0.6000 0.6048  
0.4  
0.4  
V
V
VCC = 2.7 V, ISINK = 2 mA  
VCC = 1 V, ISINK =100 μA  
Leakage Current, IALERT  
VCC that Guarantees Valid Outputs  
−1  
1
+1  
μA  
V
All outputs are guaranteed to be either low or giving  
a valid output level from VCC = 1 V  
TIMING DELAYS  
Delays only applicable to certain operations states;  
refer to state diagram (Figure 19) for more details  
VIN1 to OUT1 Rising Delay  
VIN4 to PWRGD Rising Delay  
100  
100  
190  
190  
280  
280  
ms  
ms  
VCC = 3.3 V, see Figure 7  
VCC = 3.3 V, see Figure 7  
VIN2 to OUT2, VIN3 to OUT3  
Low-to-High Propagation Delay  
High-to-Low Propagation Delay, All Inputs  
30  
30  
μs  
μs  
VCC = 3.3 V, see Figure 9  
VCC = 3.3 V, see Figure 10  
Rev. 0 | Page 3 of 16  
 
ADM1185  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Table 3. Thermal Resistance  
Package Type  
Table 2.  
Parameter  
θJA  
Unit  
Rating  
10-Lead MSOP  
137.5  
°C/W  
VCC Pin  
VINx Pins  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
−65°C to +125°C  
−40°C to +85°C  
300°C  
OUTx, PWRGD Pins  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature Soldering (10 sec)  
Junction Temperature  
ESD CAUTION  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 16  
 
ADM1185  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
VIN1  
VIN2  
VIN3  
VIN4  
1
2
3
4
5
10 VCC  
9
8
7
6
OUT1  
ADM1185  
TOP VIEW  
(Not to Scale)  
OUT2  
OUT3  
PWRGD  
Figure 3.  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
GND  
VIN1  
Chip Ground Pin.  
Noninverting Input of Comparator 1. The voltage on this pin is compared with a 0.6 V reference. Can be used to  
monitor a voltage rail via a resistor divider. The output of this comparator is monitored by the state machine core.  
This input can also be driven by a logic signal to initiate a power-up sequence.  
3
4
5
6
VIN2  
Noninverting Input of Comparator 2. The voltage on this pin is compared with a 0.6 V reference. Can be used to  
monitor a voltage rail via a resistor divider. The output of this comparator is monitored by the state machine core.  
Noninverting Input of Comparator 3. The voltage on this pin is compared with a 0.6 V reference. Can be used to  
monitor a voltage rail via a resistor divider. The output of this comparator is monitored by the state machine core.  
Noninverting Input of Comparator 4. The voltage on this pin is compared with a 0.6 V reference. Can be used to  
monitor a voltage rail via a resistor divider. The output of this comparator is monitored by the state machine core.  
Active-High, Open-Drain Output. This output is pulled low once VCC = 1 V. When the voltage on each VINx input  
exceeds 0.6 V, the state machine moves from STATE4 to STATE5, and PWRGD is asserted. Once in State 5 (the  
PWRGD state), this output is driven low if the voltage on VIN1, VIN2, VIN3, or VIN4 falls below 0.6 V.  
VIN3  
VIN4  
PWRGD  
7
8
9
OUT3  
OUT2  
OUT1  
Active-High, Open-Drain Output. This output is pulled low once VCC = 1 V. When the voltage on VIN3 exceeds 0.6 V,  
the state machine moves from STATE3 to STATE4, and OUT3 is asserted. Once the power-up sequence is complete  
and STATE5 (the PWRGD state) is reached, this output is driven low if the voltage on VIN1 falls below 0.6 V.  
Active-High, Open-Drain Output. This output is pulled low once VCC = 1 V. When the voltage on VIN2 exceeds 0.6 V,  
the state machine moves from STATE2 to STATE3, and OUT2 is asserted. Once the power-up sequence is complete  
and STATE5 (the PWRGD state) is reached, this output is driven low if the voltage on VIN1 falls below 0.6 V.  
Active-High, Open-Drain Output. This output is pulled low once VCC = 1 V. When the voltage on VIN1 exceeds 0.6 V,  
the state machine moves from STATE1 to STATE2, and OUT1 is asserted. A time delay of 190 ms (typical) is included  
before the assertion of this pin. Once the power-up sequence is complete and STATE5 (the PWRGD state) is  
reached, this output is driven low if the voltage on VIN1 falls below 0.6 V.  
10  
VCC  
Positive Supply Input Pin. The operating supply voltage range is 2.7 V to 5.5 V.  
Rev. 0 | Page 5 of 16  
 
ADM1185  
TYPICAL PERFORMANCE CHARACTERISTICS  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
280  
260  
240  
220  
200  
180  
160  
140  
120  
100mV OVERDRIVE  
VIN4 TO PWRGD DELAY  
VIN1 TO OUT1 DELAY  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VOLTAGE (V)  
Figure 4. Supply Current vs. Supply Voltage  
Figure 7. VIN1/VIN4 to OUT1/PWRGD Rising Delay vs. Supply Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
VCC = 3.3V, 100mV OVERDRIVE  
45  
40  
35  
VCC = 5V  
VIN3 TO OUT3 DELAY  
VCC = 3.3V  
30  
25  
VIN2 TO OUT2 DELAY  
20  
VCC = 2.7V  
15  
10  
5
0
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 5. Supply Current vs. Temperature  
Figure 8. VIN2/VIN3 to OUT2/OUT3 Rising Delay vs. Temperature  
280  
260  
240  
220  
200  
180  
160  
140  
120  
50  
100mV OVERDRIVE  
VCC = 3.3V, 100mV OVERDRIVE  
45  
40  
35  
30  
25  
20  
15  
10  
5
VIN3 TO OUT3 DELAY  
VIN2 TO OUT2 DELAY  
VIN4 TO PWRGD DELAY  
VIN1 TO OUT1 DELAY  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VOLTAGE (V)  
Figure 6. VIN1/VIN4 to OUT1/PWRGD Rising Delay vs. Temperature  
Figure 9. VIN2/VIN3 to OUT2/OUT3 Rising Delay vs. Supply Voltage  
Rev. 0 | Page 6 of 16  
 
 
 
ADM1185  
60  
50  
40  
30  
20  
10  
0
180  
160  
140  
120  
100  
80  
100mV OVERDRIVE  
60  
40  
20  
0
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
VOLTAGE (V)  
OVERDRIVE (mV)  
Figure 10. VIN1 to OUT1 Falling Delay vs. Supply Voltage (100 mV Overdrive)  
Figure 13. Trip Threshold Maximum Transient Duration vs. Input Overdrive  
50  
200  
VCC = 3.3V, 100mV OVERDRIVE  
APPLICABLE ONLY TO  
CHANNEL 2 AND CHANNEL 3  
180  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
60  
40  
20  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
OVERDRIVE (mV)  
Figure 11. VINx to Output Falling Delay vs. Temperature  
Figure 14. Propagation Delay vs. Input Overdrive  
0.610  
400  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
350  
300  
250  
200  
150  
100  
50  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
0
2
4
6
8
10 12 14 16 18 20 22 24  
OUTPUT SINK CURRENT (mA)  
Figure 12. VINx Trip Threshold vs. Temperature  
Figure 15. Output Low Voltage vs. Output Sink Current  
Rev. 0 | Page 7 of 16  
 
ADM1185  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1mA SINK  
100µA SINK  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
Figure 16. Output Low Voltage vs. Supply Voltage  
Rev. 0 | Page 8 of 16  
ADM1185  
THEORY OF OPERATION  
OUT1 is an open-drain active high output. In this application,  
OUT1 is connected to the enable pin of a regulator. Before the  
voltage on VIN1 has reached 0.6 V, this output is switched to  
ground, disabling Regulator 1. Note that all outputs are driven  
to ground as long as there is 1 V on the VCC pin of the ADM1185.  
When the main system voltage reaches 2.9 V, VIN1 detects 0.6 V.  
This causes OUT1 to assert after a 190 ms (typical) delay. When  
this occurs, the open-drain output switches high, and the external  
pull-up resistor pulls the voltage on the Regulator 1 enable pin  
above its turn-on threshold, turning on the output of Regulator 1.  
The operation of the ADM1185 is explained in this section in  
the context of the device in a voltage monitoring and sequencing  
application (see Figure 18). In this application, the ADM1185  
monitors four separate voltage rails, turns on three regulators in  
a predefined sequence, and generates a power-good signal to  
turn on a controller when all power supplies are up and stable.  
POWER-ON SEQUENCING AND MONITORING  
The main supply, in this case 3.3 V, powers up the device via the  
VCC pin as the voltage rises. A supply voltage of 2.7 V to 5.5 V  
is needed to power the device.  
The assertion of OUT1 turns on Regulator 1. The 2.5 V output  
of this regulator begins to rise. This is detected by input VIN2  
(with a similar resistor divider scheme as shown in Figure 18).  
When VIN2 detects the 2.5 V rail rising above its UV point, it  
asserts output OUT2, which turns on Regulator 2. A capacitor  
can be placed on the VIN2 pin to slow the rise of the voltage on  
this pin. This effectively sets a time delay between the 2.5 V rail  
powering up and the next enabled regulator.  
The VIN1 pin monitors the main 3.3 V supply. An external  
resistor divider scales this voltage down for monitoring at the  
VIN1 pin. The resistor ratio is chosen so that the VIN1 voltage  
is 0.6 V when the main voltage rises to the preferred level at start-  
up (a voltage below the nominal 3.3 V level). R1 is 4.6 kΩ and  
R2 is 1.2 kΩ, so a voltage level of 2.9 V corresponds to 0.6 V on  
the noninverting input of the first comparator (see Figure 17).  
V
The same scheme is implemented with the other input and  
output pins. Every rail that is turned on via an output pin,  
OUTx, is monitored via an input pin VIN(x+1).  
3.3V  
2.9V  
The final comparator inside the VIN4 pin detects the final supply  
turning on, which is 1.2 V in this case. The output pins, OUT1  
to OUT3 are logically ANDed together to generate a system  
power-good signal (PWRGD). There is an internal 190 ms delay  
(typical) associated with the assertion of the PWRGD output.  
0V  
t
4.6k  
ADM1185  
2.9V SUPPLY  
GIVES 0.6V  
AT VIN1 PIN  
VIN1  
TO LOGIC  
CORE  
1.2kΩ  
0.6V  
Table 5 is a truth table that steps through the power-on sequence of  
the outputs. Any associated internal time delays are also shown.  
Figure 17. Setting the Undervoltage Threshold with an  
External Resistor Divider  
3.3V IN  
2.5V OUT  
1.8V OUT  
1.2V OUT  
VCC  
IN  
ADM1185  
REGULATOR1  
2.5V OUT  
VIN1  
OUT1  
OUT2  
OUT3  
EN  
OUT  
GND  
VIN2  
VIN3  
IN  
REGULATOR2  
1.8V OUT  
1.2V OUT  
EN  
OUT  
GND  
VIN4  
GND  
PWRGD  
IN  
REGULATOR3  
EN  
OUT  
GND  
POWER  
GOOD  
Figure 18. Voltage Monitoring and Sequencing Application Diagram  
Table 5. Truth Table  
State State Name  
OUT1 OUT2 OUT3 OUT4 Next Event  
Next State  
1
2
3
4
5
Reset  
OUT1 On  
OUT1, OUT2 On  
OUT1, OUT2, OUT3 On  
Power Good  
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
VIN1 high for 190 ms  
OUT1 On  
VIN1 and VIN2 high for 30 μs  
VIN1 and VIN3 high for 30 μs  
All high for 190 ms  
OUT1, OUT2 On  
OUT1, OUT2, OUT3 On  
Power Good  
VIN2 , VIN3, or VIN4 low for 30 μs  
OUT1, OUT2, OUT3 On  
Rev. 0 | Page 9 of 16  
 
 
 
 
ADM1185  
VOLTAGE MONITORING AFTER POWER-ON  
STATE1 START  
VIN1 = OK  
Once PWRGD is asserted, the logical core latches into a different  
mode of operation. During the initial power-up phase, each  
output directly depends on an input (for example, VIN3 asserting  
causes OUT3 to assert). When power-up is complete, this  
function is redundant.  
(DELAY = 190ms TYP)  
STATE2 OUT1  
ON  
Once in the PWRGD state, the following behavior can be observed:  
VIN2 = OK  
VIN1 = FAULT  
If the main 3.3 V supply monitored via VIN1 faults in the  
power-good state, the PWRGD output is deasserted to  
warn the downstream controller. All outputs (OUT1 to  
OUT3) are immediately turned off, disabling all locally  
generated supplies.  
STATE3 OUT1, OUT2  
ON  
VIN3 = OK  
VIN1 = FAULT  
If a supply monitored by VIN2 to VIN4 fails, the PWRGD  
output is deasserted to warn the controller, but the other  
outputs are not deasserted.  
STATE4 OUT1, OUT2, OUT3  
ON  
VIN4 = OK  
VIN1 = FAULT  
(DELAY = 100ms MIN)  
Figure 20 and Figure 21 are waveforms that highlight the  
behavior of the ADM1185 under various fault situations during  
normal operation (that is, in the mode of operation after  
PWRGD is asserted).  
STATE5 PWRGD  
VIN1 = FAULT  
VIN2. VIN3. VIN4 = FAULT  
Figure 19. Flow Diagram Highlighting the Different Modes of Operation  
of the Logical Core  
Rev. 0 | Page 10 of 16  
 
 
ADM1185  
V
V
(RISING)  
T
T
V
(RISING)  
T
VIN1  
(FALLING) = 0.6V  
VIN1  
tPROP  
tPROP  
OUT1  
OUT1  
OUT2  
tPROP  
190ms  
190ms  
OUT2  
OUT3  
OUT3  
PWRGD  
PWRGD  
190ms  
190ms  
NOTES  
NOTES  
1. THE RISING THRESHOLD ON THE VIN1 TO VIN4 PINS IS SLIGHTLY  
HIGHER THAN 0.6V AS THERE IS HYSTERESIS ON THIS PIN.  
1. THE RISING THRESHOLD ON THE VIN1 TO VIN4 PINS IS SLIGHTLY  
HIGHER THAN 0.6V AS THERE IS HYSTERESIS ON THIS PIN.  
Figure 20. Power-Up Waveforms  
Figure 21. Waveforms Showing Reaction to a Temporary Low Glitch  
on the Main Supply  
OUT1  
1
OUT2  
2
OUT3  
3
PWRGD  
4
CH1 1.00V CH2 1.00V  
CH3 1.00V CH4 1.00V  
M50.0ms  
CH1  
380mV  
Figure 22. Plot of OUT1, OUT2, OUT3, and PWRGD Outputs at Startup  
in an Application Similar to that Shown in Figure 18  
Rev. 0 | Page 11 of 16  
 
 
ADM1185  
CASCADING MULTIPLE DEVICES  
Multiple ADM1185 devices can be cascaded in situations where a large number of supplies must be monitored and/or sequenced. There  
are numerous configurations for interconnecting devices. The most suitable configuration depends on the application. Figure 23 and  
Figure 24 show two methods for cascading multiple ADM1185 devices.  
3.3V  
3.3V  
VCC  
REGULATOR1  
EN1  
ADM1185-A  
3.3V  
V1  
VIN1  
VIN2  
VIN3  
OUT1  
V1  
V2  
V3  
REGULATOR2  
SUPPLIES  
SCALED  
DOWN WITH  
RESISTOR  
DIVIDERS  
OUT2  
EN2  
REGULATOR3  
EN3  
V2  
OUT3  
V3  
VIN4  
GND  
PWRGD  
3.3V  
VCC  
REGULATOR4  
EN4  
ADM1185-B  
VIN1  
VIN2  
VIN3  
OUT1  
V4  
V5  
V6  
REGULATOR5  
V4  
V5  
V6  
SUPPLIES  
SCALED  
DOWN WITH  
RESISTOR  
DIVIDERS  
OUT2  
EN5  
REGULATOR6  
EN6  
OUT3  
VIN4  
GND  
PWRGD  
POWER  
GOOD  
Figure 23. Cascading Multiple ADM1185 Devices, Option 1  
3.3V  
3.3V  
VCC  
REGULATOR1  
ADM1185-A  
3.3V  
V1  
VIN1  
VIN2  
VIN3  
OUT1  
EN1  
V1  
V2  
V3  
SUPPLIES  
SCALED  
DOWN WITH  
RESISTOR  
DIVIDERS  
REGULATOR2  
EN2  
OUT2  
REGULATOR3  
V2  
OUT3  
EN3  
3.3V  
VIN4  
GND  
PWRGD  
3.3V  
VCC  
REGULATOR4  
EN4  
ADM1185-B  
VIN1  
VIN2  
VIN3  
OUT1  
V4  
V5  
V6  
V3  
V4  
V5  
V6  
REGULATOR5  
SUPPLIES  
SCALED  
DOWN WITH  
RESISTOR  
DIVIDERS  
OUT2  
EN5  
REGULATOR6  
EN6  
OUT3  
VIN4  
GND  
PWRGD  
POWER  
GOOD  
Figure 24. Cascading Multiple ADM1185 Devices, Option 2  
Rev. 0 | Page 12 of 16  
 
 
 
ADM1185  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 25. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADM1185ARMZ-11  
ADM1185ARMZ-1REEL71  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RM-10  
RM-10  
Branding  
M9W  
M9W  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
1 Z = RoHS compliant part.  
Rev. 0 | Page 13 of 16  
 
ADM1185  
NOTES  
Rev. 0 | Page 14 of 16  
ADM1185  
NOTES  
Rev. 0 | Page 15 of 16  
ADM1185  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06196-0-3/07(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADM1185ARMZ-1REEL7

Quad Voltage Monitor and Sequencer
ADI

ADM1185_07

Quad Voltage Monitor and Sequencer
ADI

ADM1186

Quad Voltage Up and Down Sequencer and Monitor with Programmable Timing
ADI

ADM1186-1ARQZ

Quad Voltage Up and Down Sequencer and Monitor with Programmable Timing
ADI

ADM1186-1ARQZ-REEL

Quad Voltage Up and Down Sequencer and Monitor with Programmable Timing
ADI

ADM1186-2ARQZ

Quad Voltage Up and Down Sequencer and Monitor with Programmable Timing
ADI

ADM1186-2ARQZ-REEL

Quad Voltage Up and Down Sequencer and Monitor with Programmable Timing
ADI

ADM1191

Digital Power Monitor with Convert Pin and ALERTB O
ADI

ADM1191-2ARMZ-R7

Digital Power Monitor with Convert Pin and ALERTB Output
ADI

ADM1191-2ARMZ-R71

Digital Power Monitor with Convert Pin and ALERTB O
ADI

ADM1191_08

Digital Power Monitor with Convert Pin and ALERTB Output
ADI

ADM1192

Digital Power Monitor with Clear Pin and ALERT Output
ADI