ADM1485ARM-REEL7 [ADI]

5 V, High Speed (30 Mbps), Low Power, Half Duplex EIA RS-485 Transceiver;
ADM1485ARM-REEL7
型号: ADM1485ARM-REEL7
厂家: ADI    ADI
描述:

5 V, High Speed (30 Mbps), Low Power, Half Duplex EIA RS-485 Transceiver

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总11页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 V Low Power  
a
EIA RS-485 Transceiver  
ADM1485  
FEATURES  
Meets EIA RS-485 Standard  
30 Mbps Data Rate  
FUNCTIONAL BLOCK DIAGRAM  
8-Lead  
Single 5 V Supply  
–7 V to +12 V Bus Common-Mode Range  
High Speed, Low Power BiCMOS  
Thermal Shutdown Protection  
Short-Circuit Protection  
ADM1485  
V
RO  
R
CC  
Driver Propagation Delay: 10 ns  
Receiver Propagation Delay: 15 ns  
High-Z Outputs with Power Off  
Superior Upgrade for LTC1485  
B
RE  
DE  
DI  
A
APPLICATIONS  
Low Power RS-485 Systems  
DTE-DCE Interface  
D
GND  
Packet Switching  
Local Area Networks  
Data Concentration  
Data Multiplexers  
Integrated Services Digital Network (ISDN)  
GENERAL DESCRIPTION  
This minimizes the loading effect when the transceiver is not being  
used. The high impedance driver output is maintained over the  
entire common-mode voltage range from –7 V to +12 V.  
The ADM1485 is a differential line transceiver suitable for high  
speed bidirectional data communication on multipoint bus trans-  
mission lines. It is designed for balanced data transmission and  
complies with both RS-485 and RS-422 EIA Standards. The part  
contains a differential line driver and a differential line receiver.  
Both the driver and the receiver may be enabled independently.  
When disabled, the outputs are three-stated.  
The receiver contains a fail-safe feature that results in a logic  
high output state if the inputs are unconnected (floating).  
The ADM1485 is fabricated on BiCMOS, an advanced mixed  
technology process combining low power CMOS with fast  
switching bipolar technology. All inputs and outputs contain  
protection against ESD; all driver outputs feature high source  
and sink current capability. An epitaxial layer is used to guard  
against latch-up.  
The ADM1485 operates from a single 5 V power supply. Excessive  
power dissipation caused by bus contention or by output shorting  
is prevented by a thermal shutdown circuit. This feature forces  
the driver output into a high impedance state if, during fault condi-  
tions, a significant temperature increase is detected in the internal  
driver circuitry.  
The ADM1485 features extremely fast switching speeds. Minimal  
driver propagation delays permit transmission at typical data rates  
of 30 Mbps while low skew minimizes EMI interference.  
The part is fully specified over the commercial and industrial  
temperature range and is available in PDIP, SOIC, and small  
MSOP packages.  
Up to 32 transceivers may be connected simultaneously on a bus,  
but only one driver should be enabled at any time. It is important,  
therefore, that the remaining disabled drivers do not load the bus.  
To ensure this, the ADM1485 driver features high output  
impedance when disabled and also when powered down.  
'
REV.  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
www.analog.com  
781/461-3113  
2012  
Fax:  
©
Analog Devices, Inc. All rights reserved.  
ADM1485–SPECIFICATIONS  
(VCC = 5 V ؎ 5%. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
Min Typ Max  
Unit Test Conditions/Comments  
DRIVER  
Differential Output Voltage, VOD  
5.0  
5.0  
5.0  
5.0  
0.2  
3
0.2  
250  
250  
0.8  
V
V
V
V
V
V
V
R = , Test Circuit 1  
VCC = 5 V, R = 50 Ω (RS-422), Test Circuit 1  
R = 27 Ω (RS-485), Test Circuit 1  
VTST = –7 V to +12 V, Test Circuit 2  
R = 27 Ω or 50 Ω, Test Circuit 1  
R = 27 Ω or 50 Ω, Test Circuit 1  
R = 27 Ω or 50 Ω  
2.0  
1.5  
1.5  
VOD3  
Δ|VOD| for Complementary Output States  
Common-Mode Output Voltage VOC  
Δ|VOD| for Complementary Output States  
Output Short-Circuit Current (VOUT = High)  
Output Short-Circuit Current (VOUT = Low)  
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Input Current (DE, DI)  
35  
35  
mA –7 V VO +12 V  
mA –7 V VO +12 V  
V
V
μA  
2.0  
1.0  
RECEIVER  
Differential Input Threshold Voltage, VTH  
Input Voltage Hysteresis, ΔVTH  
Input Resistance  
–0.2  
12  
+0.2  
V
–7 V VCM +12 V  
70  
mV VCM = 0 V  
kΩ  
mA  
mA  
V
V
μA  
V
–7 V VCM +12 V  
Input Current (A, B)  
1
–0.8  
0.8  
V
V
IN = +12 V  
IN = –7 V  
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Enable Input Current (RE)  
CMOS Output Voltage Low, VOL  
CMOS Output Voltage High, VOH  
Short-Circuit Output Current  
2.0  
1
0.4  
IOUT = +4.0 mA  
IOUT = –4.0 mA  
4.0  
7
V
mA  
85  
VOUT = GND or VCC  
Three-State Output Leakage Current  
1.0  
μA  
0.4 V VOUT 2.4 V  
POWER SUPPLY CURRENT  
ICC (Outputs Enabled)  
ICC (Outputs Disabled)  
1.0  
0.6  
2.2  
1
mA Digital Inputs = GND or VCC  
mA Digital Inputs = GND or VCC  
Specifications subject to change without notice.  
(V = 5 V ؎ 5%. All specifications TMIN to TMAX, unless otherwise noted.)  
TIMING SPECIFICATIONS  
CC  
Parameter  
Min Typ Max  
Unit Test Conditions/Comments  
DRIVER  
Propagation Delay Input to Output tPLH, tPHL  
Driver O/P to O/P tSKEW  
Driver Rise/Fall Time tR, tF  
Driver Enable to Output Valid  
Driver Disable Timing  
2
10  
1
8
10  
10  
0
15  
5
15  
25  
25  
2
ns  
ns  
ns  
ns  
ns  
ns  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, Test Circuit 3  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, Test Circuit 3  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, Test Circuit 3  
RL = 110 Ω, CL = 50 pF, Test Circuit 4  
RL = 110 Ω, CL = 50 pF, Test Circuit 4  
Matched Enable Switching  
|tAZH –tBZL|, |tBZH –tAZL  
RL = 110 Ω, CL = 50 pF, Test Circuit 4*  
|
Matched Disable Switching  
0
2
ns  
RL = 110 Ω, CL = 50 pF, Test Circuit 4*  
|tAHZ –tBLZ|, |tBHZ –tALZ  
RECEIVER  
|
Propagation Delay Input to Output tPLH, tPHL  
8
15  
30  
5
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, Test Circuit 5  
CL = 15 pF, Test Circuit 5  
CL = 15 pF, RL = 1 kΩ, Test Circuit 6  
CL = 15 pF, RL = 1 kΩ, Test Circuit 6  
Skew |tPLH –tPHL  
|
Receiver Enable tEN1  
Receiver Disable tEN2  
Tx Pulse Width Distortion  
Rx Pulse Width Distortion  
5
5
1
1
*Guaranteed by characterization.  
Specifications subject to change without notice.  
'
–2–  
REV.  
ADM1485  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
PIN FUNCTION DESCRIPTIONS  
Pin Mnemonic Function  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Inputs  
No.  
Driver Input (DI) . . . . . . . . . . . . . . . .0.3 V to VCC + 0.3 V  
Control Inputs (DE, RE) . . . . . . . . . .0.3 V to VCC + 0.3 V  
Receiver Inputs (A, B) . . . . . . . . . . . . . . . . . . –9 V to +14 V  
Outputs  
Driver Outputs (A, B) . . . . . . . . . . . . . . . . . . –9 V to +14 V  
Receiver Output . . . . . . . . . . . . . . . . .0.5 V to VCC + 0.5 V  
Power Dissipation 8-Lead MSOP . . . . . . . . . . . . . . . 900 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . 206°C/W  
Power Dissipation 8-Lead PDIP . . . . . . . . . . . . . . . . 500 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . 130°C/W  
Power Dissipation 8-Lead SOIC . . . . . . . . . . . . . . . . 450 mW  
θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . 170°C/W  
Operating Temperature Range  
Commercial (J Version) . . . . . . . . . . . . . . . . . . 0°C to 70°C  
Industrial (A Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . 300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
1
RO  
RE  
DE  
DI  
Receiver Output. When enabled if A > B  
by 200 mV, then RO = High. If A < B by  
200 mV, then RO = Low.  
Receiver Output Enable. A low level  
enables the receiver output, RO. A high  
level places it in a high impedance state.  
Driver Output Enable. A high level enables  
the driver differential outputs, A and B. A low  
level places it in a high impedance state.  
Driver Input. When the driver is enabled,  
a logic low on DI forces A low and B high  
while a logic high on DI forces A high and  
B low.  
Ground Connection, 0 V.  
Noninverting Receiver Input A/Driver  
Output A.  
Inverting Receiver Input B/Driver Output B  
Power Supply, 5 V 5%.  
2
3
4
5
6
GND  
A
7
8
B
VCC  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods of time may affect device reliability.  
PIN CONFIGURATION  
1
2
3
4
8
7
6
5
V
RO  
RE  
DE  
DI  
CC  
ADM1485  
B
Table I. Transmitting  
TOP VIEW  
A
(Not to Scale)  
GND  
Inputs  
DE  
Outputs  
B
DI  
A
1
1
0
1
0
X
0
1
Z
1
0
Z
Table II. Receiving  
Inputs  
A-B  
Outputs  
RO  
RE  
0
0
0
1
+0.2 V  
–0.2 V  
Inputs Open  
X
1
0
1
Z
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADM1485 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
'
–3–  
REV.  
ADM1485  
Test Circuits  
V
CC  
A
B
R
R
R
L
S1  
S2  
0V OR 3V  
DE IN  
V
OD  
DE  
C
V
L
OUT  
V
OC  
Test Circuit 4. Driver Enable/Disable  
Test Circuit 1. Driver Voltage Measurement  
375  
A
V
OUT  
V
V
OD3  
60⍀  
375⍀  
TST  
RE  
B
C
L
Test Circuit 5. Receiver Propagation Delay  
Test Circuit 2. Driver Voltage Measurement  
V
+1.5V  
CC  
A
S1  
C
L1  
R
L
S2  
R
–1.5V  
LDIFF  
RE  
C
V
L
OUT  
C
L2  
B
RE IN  
Test Circuit 3. Driver Propagation Delay  
Test Circuit 6. Receiver Enable/Disable  
Switching Characteristics  
3V  
1.5V  
tPLH  
1.5V  
0V  
B
tPHL  
A, B  
0V  
0V  
1/2VO  
V
O
tPLH  
tPHL  
A
tSKEW = ͦtPLH tPHLͦ  
V
OH  
V
O
90% POINT  
90% POINT  
RO  
1.5V  
1.5V  
0V  
tSKEW = ͦtPLH tPHLͦ  
10% POINT  
10% POINT  
–V  
O
V
OL  
tR  
tF  
Figure 3. Receiver Propagation Delay  
Figure 1. Driver Propagation Delay, Rise/Fall Timing  
3V  
3V  
1.5V  
tLZ  
1.5V  
tZL  
DE  
1.5V  
tZL  
1.5V  
RE  
0V  
0V  
tLZ  
2.3V  
2.3V  
A, B  
A, B  
1.5V  
1.5V  
V
V
+ 0.5V  
OL  
R
R
V
+ 0.5V  
– 0.5V  
OL  
O/P LOW  
O/P HIGH  
V
V
OL  
V
OL  
tZH  
tHZ  
tZH  
tHZ  
OH  
– 0.5V  
OH  
V
OH  
V
OH  
0V  
0V  
Figure 2. Driver Enable/Disable Timing  
Figure 4. Receiver Enable/Disable Timing  
'
REV.  
–4–  
Typical Performance Characteristics–ADM1485  
0.40  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I = 8mA  
0.35  
0.30  
0.25  
0.20  
0.15  
0
–50  
–25  
0
25  
50  
75  
100  
125  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
TEMPERATURE – ؇C  
OUTPUT VOLTAGE – V  
TPC 1. Output Current vs. Receiver Output Low Voltage  
TPC 4. Receiver Output Low Voltage vs. Temperature  
0
–2  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
3.50  
3.75  
4.00  
4.25  
4.50  
4.75  
5.00  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
OUTPUT VOLTAGE – V  
OUTPUT VOLTAGE – V  
TPC 2. Output Current vs. Receiver Output High Voltage  
TPC 5. Output Current vs. Driver Differential  
Output Voltage  
4.55  
2.15  
I = 8mA  
4.50  
2.10  
2.05  
2.00  
1.95  
1.90  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 3. Receiver Output High Voltage vs. Temperature  
TPC 6. Driver Differential Output  
Voltage vs. Temperature, RL = 26.8 Ω  
'
–5–  
REV.  
ADM1485  
100  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
| t  
– t  
|
PLH  
PHL  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–50  
–25  
0
25  
50  
75  
100  
125  
OUTPUT VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 7. Output Current vs. Driver Output Low Voltage  
TPC 10. Rx Skew vs. Temperature  
6
5
4
3
2
1
0
–10  
–20  
–30  
–40  
–50  
–60  
| t  
PHLA  
– t |  
PHLB  
–70  
–80  
–90  
–100  
–110  
–120  
| t  
PLHA  
– t |  
PLHB  
0
–50  
–25  
0
25  
50  
75  
100  
125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT VOLTAGE – V  
TEMPERATURE – ؇C  
TPC 11. Tx Skew vs. Temperature  
TPC 8. Output Current vs. Driver Output High Voltage  
1.4  
1.1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
DRIVER ENABLED  
0.9  
0.8  
| t  
– t  
|
PLH  
PHL  
0.7  
DRIVER DISABLED  
0.6  
0.5  
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 12. Tx Pulse Width Distortion  
TPC 9. Supply Current vs. Temperature  
'
–6–  
REV.  
ADM1485  
4
A
DI  
A
B
B
1, 2  
3
1, 2  
RO  
TPC 13. Unloaded Driver Differential Outputs  
TPC 16. Driver/Receiver Propagation Delays High to Low  
A
A
B
B
1, 2  
1, 2  
TPC 14. Loaded Driver Differential Outputs  
TPC 17. Driver Output at 30 Mbps  
DI  
4
A
B
1, 2  
RO  
3
TPC 15. Driver/Receiver Propagation Delays Low to High  
'
–7–  
REV.  
ADM1485  
APPLICATION INFORMATION  
Differential Data Transmission  
As with any transmission line, it is important that reflections are  
minimized. This can be achieved by terminating the extreme ends  
of the line using resistors equal to the characteristic impedance  
of the line. Stub lengths of the main line should also be kept as  
short as possible. A properly terminated transmission line appears  
purely resistive to the driver.  
Differential data transmission is used to reliably transmit data at  
high rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts and  
noise signals that appear as common-mode voltages on the line.  
There are two main standards approved by the Electronics  
Industries Association (EIA) that specify the electrical charac-  
teristics of transceivers used in differential data transmission.  
RT  
RT  
D
The RS-422 standard specifies data rates up to 10 MBaud and  
line lengths up to 4000 ft. A single driver can drive a transmission  
line with up to 10 receivers.  
D
R
In order to cater to true multipoint communications, the RS-485  
standard was defined. This standard meets or exceeds all the  
requirements of the RS-422 but also allows for up to 32 drivers  
and 32 receivers to be connected to a single bus. An extended com-  
mon-mode range of –7 V to +12 V is defined. The most  
significant difference between the RS-422 and the RS-485 is the  
fact that the drivers may be disabled, thereby allowing more than  
one (32 in fact) to be connected to a single line. Only one driver  
should be enabled at a time, but the RS-485 standard contains  
additional specifications to guarantee device safety in the event of  
line contention.  
R
R
R
D
D
Figure 5. Typical RS-485 Network  
Thermal Shutdown  
The ADM1485 contains thermal shutdown circuitry that protects  
the part from excessive power dissipation during fault conditions.  
Shorting the driver outputs to a low impedance source can result  
in high driver currents. The thermal sensing circuitry detects the  
increase in die temperature and disables the driver outputs. The  
thermal sensing circuitry is designed to disable the driver outputs  
when a die temperature of 150°C is reached. As the device cools,  
the drivers are re-enabled at 140°C.  
Table III. Comparison of RS-422 and RS-485 Interface Standards  
Specification  
RS-422  
RS-485  
Transmission Type  
Differential  
4000 ft.  
2 V  
100 Ω  
4 kΩ min  
200 mV  
Differential  
4000 ft.  
1.5 V  
54 Ω  
12 kΩ min  
200 mV  
Maximum Cable Length  
Minimum Driver Output Voltage  
Driver Load Impedance  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
Propagation Delay  
The ADM1485 features very low propagation delay, ensuring  
maximum baud rate operation. The driver is well balanced,  
ensuring distortion free transmission.  
–7 V to +7 V –7 V to +12 V  
No. of Drivers/Receivers per Line 1/10  
32/32  
Another important specification is a measure of the skew between  
the complementary outputs. Excessive skew impairs the noise  
immunity of the system and increases the amount of electro-  
magnetic interference (EMI).  
Cable and Data Rate  
The transmission line of choice for RS-485 communications is a  
twisted pair. Twisted pair cable tends to cancel common-mode  
noise and also causes cancellation of the magnetic fields generated  
by the current flowing through each wire, thereby reducing the  
effective inductance of the pair.  
Receiver Open-Circuit Fail-Safe  
The receiver input includes a fail-safe feature that guarantees a  
logic high on the receiver when the inputs are open circuit or  
floating.  
The ADM1485 is designed for bidirectional data communications  
on multipoint transmission lines. A typical application showing  
a multipoint transmission network is illustrated in Figure 5.  
An RS-485 transmission line can have as many as 32 transceivers  
on the bus. Only one driver can transmit at a particular time,  
but multiple receivers may be enabled simultaneously.  
'
REV.  
–8–  
ADM1485  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 6. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 7. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
REV. F  
9–  
ADM1485  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 8. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
ADM1485JNZ  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
Brand  
N-8  
R-8  
R-8  
ADM1485JRZ  
ADM1485JR-REEL  
ADM1485JRZ-REEL  
ADM1485ANZ  
ADM1485ARMZ  
ADM1485ARMZ-REEL  
ADM1485ARMZ-REEL7  
ADM1485ARZ  
ADM1485ARZ-REEL  
ADM1485ARZ-REEL7  
ADM1485JCHIPS  
R-8  
N-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
Die  
M42  
M42  
M42  
1 Z = RoHS Compliant Part.  
–10–  
REV. F  
ADM1485  
REVISION HISTORY  
8/12—Rev. E to Rev. F  
Changed Data Rates of Up to 5 Mbps to Typical Data Rates  
of 30 Mbps..........................................................................................1  
Updated Outline Dimensions .........................................................9  
Changes to Ordering Guide ..........................................................10  
9/03—Data Sheet changed from REV. D to REV. E.  
Change to SPECIFICATIONS.........................................................2  
Changes to ORDERING GUIDE ...................................................3  
Updated OUTLINE DIMENSIONS ..............................................9  
7/03—Data Sheet changed from REV. C to REV. D.  
Changes to SPECIFICATIONS ......................................................2  
Changes to ABSOLUTE MAXIMUM RATINGS.........................3  
Updated ORDERING GUIDE.........................................................3  
1/03—Data Sheet changed from REV. B to REV. C.  
Change to SPECIFICATIONS.........................................................2  
Change to ORDERING GUIDE......................................................3  
12/02—Data Sheet changed from REV. A to REV. B.  
Deleted Q-8 Package.......................................................... Universal  
Edits to FEATURES ..........................................................................1  
Edits to GENERAL DESCRIPTION ..............................................1  
Edits, additions to SPECIFICATIONS...........................................2  
Edits, additions to ABSOLUTE MAXIMUM RATINGS.............3  
Additions to ORDERING GUIDE..................................................3  
TPCs updated and reformatted.......................................................5  
Addition of 8-Lead MSOP Package ................................................9  
Update to OUTLINE DIMENSIONS.............................................9  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00063-0-8/12(F)  
REV. F  
–11–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY