ADM1486ARZ1 [ADI]

5 V, 0.8 mA PROFIBUS RS-485 Transceiver; 5 V , 0.8毫安PROFIBUS RS- 485收发器
ADM1486ARZ1
型号: ADM1486ARZ1
厂家: ADI    ADI
描述:

5 V, 0.8 mA PROFIBUS RS-485 Transceiver
5 V , 0.8毫安PROFIBUS RS- 485收发器

文件: 总16页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 V, 0.8 mA PROFIBUS  
RS-485 Transceiver  
ADM1486  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Meets and exceeds EIA RS-485 and EIA RS-422 standards  
30 Mbps data rate  
ADM1486  
Recommended for PROFIBUS applications  
2.1 V minimum differential output with 54 Ω termination  
Low power 0.8 mA ICC  
Thermal shutdown and short-circuit protection  
0.5 ns skew driver and receiver  
Driver propagation delay: 11 ns  
Receiver propagation delay: 12 ns  
High impedance outputs with drivers disabled or power off  
Superior upgrade for SN65ALS1176  
Available in standard 8-lead SOIC package  
1
2
3
4
8
7
6
5
V
RO  
R
CC  
B
RE  
DE  
DI  
A
D
GND  
Figure 1.  
APPLICATIONS  
Industrial field equipment  
To ensure this, the ADM1486 driver features high output  
impedance when disabled and when powered down. This  
minimizes the loading effect when the transceiver is not being  
used. The high impedance driver output is maintained over the  
entire common-mode voltage range from −7 V to +12 V.  
GENERAL DESCRIPTION  
The ADM1486 is a differential line transceiver suitable for high  
speed bidirectional data communication on multipoint bus  
transmission lines. It is designed for balanced data transmission,  
complies with EIA Standards RS-485 and RS-422, and is recom-  
mended for PROFIBUS applications. The part contains a  
differential line driver and a differential line receiver. Both the  
driver and the receiver may be enabled independently. When  
disabled or powered down, the driver outputs are high impedance.  
The receiver contains a fail-safe feature that results in a logic  
high output state if the inputs are unconnected (floating).  
The ADM1486 is fabricated on BiCMOS, an advanced mixed  
technology process combining low power CMOS with fast  
switching bipolar technology. All inputs and outputs contain  
protection against ESD; all driver outputs feature high source  
and sink current capability. An epitaxial layer is used to guard  
against latch-up.  
The ADM1486 operates from a single 5 V power supply.  
Excessive power dissipation caused by bus contention or output  
shorting is prevented by short-circuit protection and thermal  
circuitry. Short-circuit protection circuits limit the maximum  
output current to 2ꢀꢀ mA during fault conditions. A thermal  
shutdown circuit senses if the die temperature rises above  
15ꢀ°C and forces the driver outputs into a high impedance state  
under this condition.  
The ADM1486 features extremely fast and closely matched  
switching, enable, and disable times. Minimal driver propaga-  
tion delays permit transmission at data rates up to 3ꢀ Mbps  
while low skew minimizes EMI interference.  
Up to 5ꢀ transceivers may be connected simultaneously on a  
bus, but only one driver should be enabled at a time. Therefore,  
it is important that the remaining disabled drivers do not load  
the bus.  
The part is fully specified over the commercial and industrial  
temperature range and is available in an 8-lead SOIC package.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADM1486  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Applications Information.............................................................. 13  
Differential Data Transmission ................................................ 13  
Cable and Data Rate................................................................... 13  
Thermal Shutdown .................................................................... 13  
Propagation Delay...................................................................... 13  
Receiver Open-Circuit Fail-Safe............................................... 13  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Timing Specifications....................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Test Circuits ....................................................................................... 7  
Switching Characteristics ................................................................ 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
3/05—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Added PROFIBUS Logo .................................................................. 1  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 15  
11/02—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
ADM1486  
SPECIFICATIONS  
VCC = 5 V 5ꢁ. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DRIVER  
Differential Output Voltage, VOD  
5.0  
5.0  
5.0  
5.0  
0.2  
3.0  
0.2  
200  
200  
0.8  
V
V
V
V
V
V
V
mA  
mA  
V
V
µA  
R = Infinity, see Figure 3  
2.1  
2.1  
2.1  
VCC = 5 V, R = 50 Ω (RS-422), see Figure 3  
R = 27 Ω (RS-485), see Figure 3  
VTST = −7 V to +12 V, see Figure 4  
R = 27 Ω or 50 Ω, see Figure 3  
R = 27 Ω or 50 Ω, see Figure 3  
R = 27 Ω or 50 Ω  
VOD3  
∆| VOD | for Complementary Output States  
Common-Mode Output Voltage VOC  
∆| VOC | for Complementary Output States  
Output Short-Circuit Current (VOUT = High)  
Output Short-Circuit Current (VOUT = Low)  
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Input Current (DE, DI)  
60  
60  
−7 V ≤ VO ≤ +12 V  
−7 V ≤ VO ≤ +12 V  
2.0  
1.0  
RECEIVER  
Differential Input Threshold Voltage, VTH  
Input Voltage Hysteresis, ∆VTH  
Input Resistance  
−0.2  
20  
+0.2  
V
−7 V ≤ VCM ≤ +12 V  
VCM = 0 V  
−7 V ≤ VCM ≤ +12 V  
VIN = +12 V  
70  
30  
mV  
kΩ  
mA  
mA  
µA  
V
V
mA  
µA  
Input Current (A, B)  
0.6  
−0.35  
1.0  
VIN = −7 V  
Logic Enable Input Current (RE)  
CMOS Output Voltage Low, VOL  
CMOS Output Voltage High, VOH  
Short-Circuit Output Current  
Three-State Output Leakage Current  
POWER SUPPLY CURRENT  
0.4  
IOUT = +4.0 mA  
IOUT = −4.0 mA  
VOUT = GND or VCC  
0.4 V ≤ VOUT ≤ 2.4 V  
4.0  
7
85  
1.0  
ICC (Outputs Enabled)  
ICC (Outputs Disabled)  
1.2  
0.8  
2.0  
1.5  
mA  
mA  
Outputs unloaded, digital inputs = GND or VCC  
Outputs unloaded, digital inputs = GND or VCC  
Rev. A | Page 3 of 16  
 
ADM1486  
TIMING SPECIFICATIONS  
VCC = 5 V 5ꢁ. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DRIVER  
Propagation Delay Input to Output tPLH, tPHL  
4
11  
11  
0.5  
8
9
9
17  
13  
2
ns  
ns  
ns  
ns  
ns  
ns  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 5  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF @ TA = 25°C  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 51  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 5  
RL = 110 Ω, CL = 50 pF, see Figure 6  
Driver O/P to O/P tSKEW  
Driver Rise/Fall Time tR, tF  
Driver Enable to Output Valid tZH, tZL  
Driver Disable Timing tHZ, tLZ  
Matched Enable Switching  
15  
15  
15  
RL = 110 Ω, CL = 50 pF, see Figure 6  
| tAZH − tBZL |, | tBZH − tAZL  
Matched Disable Switching  
| tAHZ − tBLZ |, | tBHZ − tALZ  
RECEIVER  
Propagation Delay Input to Output tPLH, tPHL  
Skew | tPLH − tPHL  
|
1
2
3
5
ns  
ns  
RL = 110 Ω, CL = 50 pF, see Figure 6  
RL = 110 Ω, CL = 50 pF, see Figure 6  
|
6
12  
0.4  
7
20  
2
13  
13  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 7  
CL = 15 pF1, see Figure 7  
CL = 15 pF, RL = 1 kΩ, see Figure 8  
CL = 15 pF, RL = 1 kΩ, see Figure 8  
|
Receiver Enable tZH, tZL  
Receiver Disable tHZ, tLZ  
7
1 Guaranteed by characterization.  
Rev. A | Page 4 of 16  
 
 
ADM1486  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods of time may  
affect device reliability.  
Parameter  
Rating  
VCC  
7 V  
Inputs  
Driver Input (DI)  
Control Inputs (DE,  
Receiver Inputs (A, B)  
Outputs  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−9 V to +14 V  
RE  
)
Driver Outputs  
Receiver Outputs  
−9 V to +14 V  
−0.5 V to VCC + 0.5 V  
450 mW  
Power Dissipation 8-Lead SOIC  
θJA, Thermal Impedance  
Operating Temperature Range  
Industrial (A Version)  
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Vapor Phase (60 sec)  
170°C/W  
−40°C to +85°C  
−65°C to +150°C  
300°C  
215°C  
Infrared (15 sec)  
220°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
ADM1486  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
CC  
ADM1486  
B
A
TOP VIEW  
(Not to Scale)  
GND  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
RO  
RE  
Receiver Output. When enabled, if A > B by 200 mV, RO = high. If A < B by 200 mV, RO = low.  
Receiver Output Enable. A low level enables the receiver output, RO. A high level places it in a high impedance  
state.  
3
4
DE  
DI  
Driver Output Enable. A high level enables the driver differential outputs, A and B. A low level places it in a high  
impedance state.  
Driver Input. When the driver is enabled, a logic low on DI forces A low and B high, while a logic high on DI forces  
A high and B low.  
5
6
7
8
GND  
A
B
Ground Connection, 0 V.  
Noninverting Receiver Input A/Driver Output A.  
Inverting Receiver Input B/Driver Output B.  
Power Supply, 5 V 5ꢀ.  
VCC  
Table 5. Transmitting  
DE Input  
DI Input  
B Output  
A Output  
1
1
0
1
0
X
0
1
Z
1
0
Z
Table 6. Receiving  
RE  
A–B Input  
RO Output  
0
0
0
1
≥ +0.2 V  
≤ −0.2 V  
Inputs open  
X
1
0
1
Z
Rev. A | Page 6 of 16  
 
ADM1486  
TEST CIRCUITS  
V
A
B
CC  
A
B
R
R
R
L
V
OD  
S1  
0V OR 3V  
DE IN  
S2  
V
C
V
OUT  
DE  
OC  
L
Figure 6. Driver Enable/Disable  
Figure 3. Driver Voltage Measurement  
375  
A
B
A
V
OUT  
RE  
V
V
TST  
OD3  
60Ω  
C
L
B
375Ω  
Figure 4. Driver Voltage Measurement  
Figure 7. Receiver Propagation Delay  
+1.5V  
V
A
CC  
C
C
L1  
S1  
R
R
LDIFF  
L
–1.5V  
S2  
RE  
L2  
C
V
L
OUT  
B
RE IN  
Figure 8. Receiver Enable/Disable  
Figure 5. Driver Propagation Delay  
Rev. A | Page 7 of 16  
 
ADM1486  
SWITCHING CHARACTERISTICS  
3V  
1.5V  
1.5V  
0V  
B
tPLH  
tPHL  
1/2VO  
A–B  
0V  
0V  
tPHL  
|
VO  
A
tSKEW = |t  
– t  
|
PHL  
PLH  
tPLH  
VOH  
90% POINT  
90% POINT  
VO  
0V  
RO  
1.5V  
1.5V  
tSKEW = |t  
– t  
PHL  
PLH  
10% POINT  
10% POINT  
–VO  
tR  
tF  
VOL  
Figure 11. Receiver Propagation Delay  
Figure 9. Driver Propagation Delay, Rise/Fall Timing  
3V  
0V  
3V  
1.5V  
tZL  
1.5V  
DE  
1.5V  
tZL  
1.5V  
RE  
RO  
0V  
tLZ  
tLZ  
2.3V  
2.3V  
1.5V  
1.5V  
A, B  
A, B  
V
+0.5V  
V
+0.5V  
–0.5V  
OL  
OL  
O/P LOW  
O/P HIGH  
V
V
OL  
OL  
tHZ  
tHZ  
tZH  
tZH  
V
OH  
V
OH  
V
–0.5V  
OH  
V
OH  
RO  
0V  
0V  
Figure 12. Receiver Enable/Disable Timing  
Figure 10. Driver Enable/Disable Timing  
Rev. A | Page 8 of 16  
 
ADM1486  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
30  
25  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
20  
15  
10  
5
0
0.20  
0.15  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
–50  
–25  
0
25  
50  
75  
100  
125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 13. Output Current vs. Receiver Output Low Voltage  
Figure 16. Receiver Output Low Voltage vs. Temperature  
(I = 8 mA)  
0
–5  
80  
70  
60  
50  
–10  
–15  
–20  
40  
30  
20  
10  
–25  
–30  
0
–10  
3.50  
3.75  
4.00  
4.25  
4.50  
4.75  
5.00  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 14. Output Current vs. Receiver Output High Voltage  
Figure 17. Output Current vs. Driver Differential Output Voltage  
4.75  
4.70  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
4.65  
4.60  
2.70  
2.65  
2.60  
4.55  
4.50  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Receiver Output High Voltage vs. Temperature  
(I = 8 mA)  
Figure 18. Driver Differential Output Voltage vs. Temperature  
(RLDIFF = 53.6 Ω)  
Rev. A | Page 9 of 16  
 
ADM1486  
90  
1.4  
1.3  
1.2  
1.1  
1.0  
70  
60  
50  
40  
30  
0.9  
0.8  
0.7  
0.6  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
150  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 19. Output Current vs. Driver Output Low Voltage  
Figure 22. Receiver Skew vs. Temperature  
0
5.0  
4.5  
–10  
4.0  
3.5  
3.0  
–20  
–30  
–40  
–50  
|T  
–T  
|
PHLA PHLB  
2.5  
2.0  
|T  
–T  
|
PLHA PLHB  
1.5  
1.0  
–60  
–70  
–80  
CROSSPOINT A, B  
0.5  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. Output Current vs. Driver Output High Voltage  
Figure 23. Driver Skew vs. Temperature  
1.30  
1.0  
0.9  
1.25  
1.20  
0.8  
0.7  
0.6  
DRIVER ENABLED  
1.15  
1.10  
1.05  
1.00  
0.95  
0.5  
0.4  
|T |  
–T  
PLH PHL  
0.3  
0.2  
0.90  
DRIVER DISABLED  
0.85  
0.80  
0.1  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
C)  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (  
°
Figure 21. Supply Current vs. Temperature  
Figure 24. Tx Pulse Width Distortion  
Rev. A | Page 10 of 16  
ADM1486  
A
DI  
A
3
B
B
1, 2  
1, 2  
4
RO  
CH1 1.00V  
CH2 1.00VM4.00ns CH1  
1.72V  
CH1 1.00V  
CH3 2.00VΩ  
CH2 1.00VM10.0ns CH1  
CH4 5.00VΩ  
1.72V  
Figure 25. Unloaded Driver Differential Outputs  
Figure 28. Driver/Receiver Propagation Delays High to Low  
(RLDiff = 54 Ω, CL1 = CL2 = 100 pF)  
A
A
B
B
1, 2  
1, 2  
CH1 1.00VΩ  
CH2 1.00VM10.0ns CH1  
3.40V  
CH1 500mVCH2 500mVM4.00ns CH1  
1.72V  
Figure 26. Loaded Driver Differential Output  
(RLDiff = 54 Ω, CL1 = CL2 = 100 pF)  
Figure 29. Unloaded Driver Outputs at 15 Mbps  
DI  
A
3
A
B
B
1, 2  
1, 2  
RO  
4
CH1 1.00VΩ  
CH2 1.00VM4.00ns CH1  
3.40V  
CH1 1.00V  
CH3 2.00VΩ  
CH2 1.00VM10.0ns CH1  
CH4 5.00VΩ  
1.72V  
Figure 27. Driver/Receiver Propagation Delays Low to High  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
Figure 30. Unloaded Driver Outputs at 30 Mbps  
Rev. A | Page 11 of 16  
ADM1486  
A
B
A
B
1, 2  
1, 2  
CH1 1.00VΩ  
CH2 1.00VM4.00ns CH1  
3.40V  
CH1 1.00VΩ  
CH2 1.00VM4.00ns CH1  
3.50V  
Figure 31. Loaded Driver Outputs at 15 Mbps  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
Figure 32. Loaded Driver Outputs at 30 Mbps  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
Rev. A | Page 12 of 16  
ADM1486  
APPLICATIONS INFORMATION  
DIFFERENTIAL DATA TRANSMISSION  
Differential data transmission is used to reliably transmit data at  
high rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts  
and noise signals that appear as common-mode voltages on the  
line. There are two main standards approved by the Electronics  
Industries Association (EIA) that specify the electrical char-  
acteristics of transceivers used in differential data transmission.  
An RS-485 transmission line can have as many as 32 trans-  
ceivers on the bus. Only one driver can transmit at a time, but  
multiple receivers may be enabled simultaneously.  
As with any transmission line, it is important to minimize  
reflections. This can be achieved by terminating the extreme  
ends of the line using resistors equal to the characteristic  
impedance of the line. Stub lengths of the main line should also  
be kept as short as possible. A properly terminated transmission  
line appears purely resistive to the driver.  
The RS-422 standard specifies data rates up to 1ꢀ MBaud and  
line lengths up to 4,ꢀꢀꢀ feet. A single driver can drive a trans-  
mission line with up to 1ꢀ receivers.  
THERMAL SHUTDOWN  
In order to address true multipoint communications, the RS-485  
standard was defined. This standard meets or exceeds all of the  
requirements of RS-422, and it allows up to 32 drivers and  
32 receivers to connect to a single bus. An extended common-  
mode range of −7 V to +12 V is defined. The most significant  
difference between the RS-422 and the RS-485 is that the drivers  
with RS-485 can be disabled, allowing more than one driver to  
be connected to a single line; in fact, 32 drivers can be  
The ADM1486 contains thermal shutdown circuitry that pro-  
tects the part from excessive power dissipation during fault  
conditions. Shorting the driver outputs to a low impedance  
source can result in high driver currents. Thermal sensing  
circuitry detects the increase in die temperature and disables  
the driver outputs. Thermal sensing circuitry is designed to  
disable the driver outputs when a die temperature reaches  
15ꢀ°C. As the device cools, the drivers are re-enabled at 14ꢀ°C.  
connected to a single line. Only one driver should be enabled at  
a time, but the RS-485 standard contains additional specifica-  
tions to guarantee device safety in the event of line contention.  
PROPAGATION DELAY  
The ADM1486 features very low propagation delay, ensuring  
maximum baud rate operation. The well-balanced driver  
ensures distortion-free transmission.  
CABLE AND DATA RATE  
Twisted pair is the transmission line of choice for RS-485  
communications. Twisted pair cable tends to cancel common-  
mode noise and causes cancellation of the magnetic fields  
generated by the current flowing through each wire, thereby  
reducing the effective inductance of the pair.  
Another important specification is a measure of the skew  
between the complementary outputs. Excessive skew impairs  
the noise immunity of the system and increases the amount of  
electromagnetic interference (EMI).  
RECEIVER OPEN-CIRCUIT FAIL-SAFE  
The ADM1486 is designed for bidirectional data com-  
munications on multipoint transmission lines. A typical  
application showing a multipoint transmission network is  
shown in Figure 33.  
The receiver input includes a fail-safe feature that guarantees a  
logic high on the receiver when the inputs are open circuit  
or floating.  
RT  
RT  
D
D
R
R
R
R
D
D
Figure 33. Typical RS-485 Network  
Rev. A | Page 13 of 16  
 
 
ADM1486  
Table 7. Comparison of RS-422, RS-485, and PROFIBUS Interface Standards  
Specification  
RS-422  
Differential  
4,000 ft.  
2 V  
RS-485  
Differential  
4,000 ft.  
1.5 V  
PROFIBUS  
Transmission Type  
Differential  
Maximum Cable Length  
Minimum Driver Output Voltage  
Driver Load Impedance  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
No. of Drivers/Receivers per Line  
2.1 V  
54 Ω  
20 kΩ min  
200 mV  
−7 V to +12 V  
50/50  
100 Ω  
54 Ω  
4 kΩ min  
200 mV  
−7 V to +7 V  
1/10  
12 kΩ min  
200 mV  
−7 V to +12 V  
32/32  
Rev. A | Page 14 of 16  
ADM1486  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 34. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADM1486AR  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Narrow Body (SOIC)  
8-Lead Narrow Body (SOIC)  
8-Lead Narrow Body (SOIC)  
8-Lead Narrow Body (SOIC)  
8-Lead Narrow Body (SOIC)  
8-Lead Narrow Body (SOIC)  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADM1486AR-REEL  
ADM1486AR-REEL7  
ADM1486ARZ1  
ADM1486ARZ-REEL1  
ADM1486ARZ-REEL71  
1 Z = Pb-free part.  
Rev. A | Page 15 of 16  
 
 
 
ADM1486  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02603-0-3/05(A)  
Rev. A | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY