ADM1487EARZ-REEL7 [ADI]

5 V, 【15 kV ESD Protected Half-Duplex, RS-485/RS-422 Transceivers; 5 V , 【 15千伏ESD保护的半双工RS - 485 / RS -422收发器
ADM1487EARZ-REEL7
型号: ADM1487EARZ-REEL7
厂家: ADI    ADI
描述:

5 V, 【15 kV ESD Protected Half-Duplex, RS-485/RS-422 Transceivers
5 V , 【 15千伏ESD保护的半双工RS - 485 / RS -422收发器

文件: 总16页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 V, ± ±5 ꢀV ꢁES ꢂProteotꢃ  
Half-Supltx, RE-485/RE-422 TPansetivtPs  
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
CC  
TIA/EIA RS-485-/RS-422-compliant  
ESD protection on RS-485 I/O pins  
15 kV human body model  
ADM485E/  
ADM487E/  
ADM1487E  
Data rates  
ADM487E: 250 kbps  
ADM485E/ADM1487E: 2.5 Mbps  
Half-duplex options  
RO  
RE  
R
A
B
Reduced slew rates for low EMI  
−7 V to +12 V common-mode input range  
Thermal shutdown and short-circuit protection  
8-lead SOIC packages  
DE  
DI  
D
GND  
APPLICATIONS  
Figure 1.  
Energy/power metering  
Lighting systems  
Industrial control  
Telecommunications  
Security systems  
Instrumentation  
GENERAL DESCRIPTION  
The ADM485E/ADM487E/ADM1487E are 5 V, low power  
data transceivers with 15 kV ESD protection suitable for half-  
duplex communication on multipoint bus transmission lines.  
They are designed for balanced data transmission and comply  
with Telecommunication Industry Association/Electronics Indus-  
tries Association (TIA/EIA) standards RS-485 and RS-422. The  
ADM487E and ADM1487E have a 1/4 unit load receiver input  
impedance that allows up to 128 transceivers on a bus, whereas  
the ADM485E allows up to 32 transceivers on a bus. Because  
only one driver is enabled at any time, the output of a disabled or  
power-down driver is three-stated to avoid overloading the bus.  
The driver outputs are slew rate-limited to reduce EMI and data  
errors caused by reflections from improperly terminated buses.  
Excessive power dissipation caused by bus contention or output  
shorting is prevented with a thermal shutdown circuit.  
The parts are fully specified over the industrial temperature  
ranges and are available in 8-lead SOIC packages.  
Table 1. Selection Table  
Guaranteed  
Half-/Full- Data Rate  
Part  
Number  
Slew Rate Low Power Driver/Receiver Quiescent  
Number of  
Nodes on Bus Count  
Pin  
Duplex  
(Mbps)  
Limited  
Shutdown  
Enable  
Current (μA)  
ADM485E  
ADM487E  
ADM1487E Half  
Half  
Half  
2.5  
0.25  
2.5  
No  
Yes  
No  
No  
Yes  
No  
Yes  
Yes  
Yes  
300  
120  
230  
32  
128  
128  
8
8
8
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADM485E/ADM487E/ADM1487E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Test Circuits and Switching Characteristics................................ 11  
Theory of Operation ...................................................................... 13  
Circuit Description .................................................................... 13  
Applications Information.............................................................. 15  
Differential Data Transmission ................................................ 15  
Cable and Data Rate................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
REVISION HISTORY  
1/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADM485E/ADM487E/ADM1487E  
SPECIFICATIONS  
VCC = 5 V 5ꢀ, TA = TMIN to TMAX, unless otherwise noted.  
Table 2. ADM485E/ADM487E/ADM1487E  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DRIVER  
Differential Outputs  
Differential Output Voltage (no Load)  
Differential Output Voltage (with Load) VOD2  
VOD1  
5
V
V
V
V
2
1.5  
RL = 50 Ω (RS-422)  
RL = 27 Ω (RS-485) (see Figure 18)  
RL = 27 Ω or 50 Ω (see Figure 18)  
5
0.2  
Δ |VOD| for Complementary Output  
States  
Common-Mode Output Voltage  
Δ |VOC| for Complementary Output  
States  
VOC  
3
0.2  
V
V
RL = 27 Ω or 50 Ω (see Figure 18)  
RL = 27 Ω or 50 Ω (see Figure 18)  
Logic Inputs  
Input High Voltage  
Input Low Voltage  
Logic Input Current  
VIH  
VIL  
IIN1  
2.0  
V
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
0.8  
2
V
μA  
RECEIVER  
Input Current (A, B)  
IIN2  
1.0  
mA  
mA  
mA  
mA  
DE = 0 V, VIN = 12 V  
VCC = 0 V or +5.25 V, VIN = −7V (ADM485E)  
DE = 0 V, VIN = 12 V  
VCC = 0 V or +5.25 V, VIN = −7 V  
(ADM487E/ADM1487E)  
−0.8  
−0.2  
0.25  
Differential Inputs  
Differential Input Threshold Voltage  
Input Hysteresis  
Receiver Output Logic  
Output Voltage High  
Output Voltage Low  
Three-State Output Leakage Current  
Receiver Input Resistance  
VTH  
ΔVTH  
−0.2  
3.5  
+0.2  
V
mV  
−7 V < VCM < +12 V  
VCM = 0 V  
70  
VOH  
VOL  
IOZR  
RIN  
V
V
μA  
kΩ  
kΩ  
IOUT = −4 mA, VID = +200 mV  
IOUT = +4 mA, VID = −200 mV  
0.4 V < VO < 2.4 V  
−7 V < VCM < +12 V (ADM485E)  
−7 V< VCM < +12 V (ADM487E/ADM1487E)  
0.4  
1
12  
48  
POWER SUPPLY  
No Load Supply Current  
ICC  
500  
300  
300  
230  
250  
120  
0.5  
900  
500  
500  
400  
400  
250  
10  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
RE = 0 V or VCC, DE = VCC (ADM485E)  
RE = 0 V or VCC, DE = 0 V (ADM485E)  
RE = 0 V or VCC, DE = VCC (ADM1487E)  
RE = 0 V or VCC, DE = 0 V (ADM1487E)  
RE = 0 V or VCC, DE = VCC (ADM487E)  
RE = 0 V, DE = 0 V (ADM487E)  
Supply Current in Shutdown  
Driver Short-Circuit Current, VO High  
Driver Short-Circuit Current, VO Low  
Receiver Short-Circuit Current  
ESD PROTECTION  
ISHDN  
IOSD1  
IOSD2  
IOSR  
DE = 0 V, RE = VCC (ADM487E)  
35  
35  
7
250  
250  
95  
−7 V ≤ VO ≤ +12 V, applies to peak current  
−7 V ≤ VO ≤ +12 V, applies to peak current  
0 V ≤ VO ≤ VCC  
mA  
kV  
A, B Pins  
15  
Human body model  
Rev. 0 | Page 3 of 16  
 
ADM485E/ADM487E/ADM1487E  
TIMING SPECIFICATIONS  
VCC = 5 V 5ꢀ, TA = TMIN to TMAX, unless otherwise noted.  
Table 3. ADM485E/ADM1487E  
Parameter  
DRIVER  
Symbol Min  
Typ Max  
Unit  
Test Conditions/Comments  
Input to Output  
tDPLH  
10  
10  
40  
40  
5
60  
60  
10  
40  
ns  
ns  
ns  
ns  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
tDPHL  
Output Skew to Output  
Rise/Fall Time  
tSKEW  
tDR, tDF  
3
20  
Enable Time to High Level  
Enable Time to Low Level  
Disable Time from Low Level  
Disable Time from High Level  
RECEIVER  
tDZH  
tDZL  
tDLZ  
tDHZ  
45  
45  
45  
45  
70  
70  
70  
70  
ns  
ns  
ns  
ns  
CRL = 100 pF, S2 closed (see Figure 21)  
CRL = 100 pF, S1 closed (see Figure 22)  
CRL = 15 pF, S1 closed (see Figure 22)  
CRL = 15 pF, S2 closed (see Figure 21)  
Input to Output  
tRPLH  
tSKEW  
20  
60  
5
200  
ns  
ns  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 23 and Figure 24)  
|tPLH − tPHL| Differential Receiver Skew  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 4 and Figure 5)  
Enable Time to Low Level  
Enable Time to High Level  
Disable Time from Low Level  
Disable Time from High Level  
MAXIMUM DATA RATE  
tRZL  
tRZL  
tRLZ  
tRHZ  
fMAX  
25  
20  
20  
20  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
CRL = 15 pF, S2 closed (see Figure 25)  
CRL = 15 pF, S1 closed (see Figure 25)  
CRL = 15 pF, S2 closed (see Figure 25)  
tPLH, tPHL < 50% of data period  
2.5  
Mbps  
Rev. 0 | Page 4 of 16  
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
VCC = 5 V 5ꢀ, TA = TMIN to TMAX, unless otherwise noted.  
Table 4. ADM487E  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DRIVER  
Input to Output  
tDPLH  
250  
250  
250  
250  
800  
800  
20  
2000  
2000  
800  
ns  
ns  
ns  
ns  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
tDPHL  
Output Skew to Output  
Rise/Fall Time  
tSKEW  
tDR, tDF  
2000  
Enable Time to High Level  
Enable Time to Low Level  
Disable Time from Low Level  
Disable Time from High Level  
RECEIVER  
tDZH  
tDZL  
tDLZ  
tDHZ  
250  
2000  
2000  
3000  
3000  
ns  
ns  
ns  
ns  
CRL = 100 pF, S2 closed (see Figure 21)  
CRL = 100 pF, S1 closed (see Figure 22)  
CRL = 15 pF, S1 closed (see Figure 22)  
CRL = 15 pF, S2 closed (see Figure 21)  
300  
300  
Input to Output  
tRPLH  
tRPHL  
250  
250  
2000  
2000  
ns  
ns  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
RDIFF = 54 Ω, CL1 = CL2 = 100 pF  
(see Figure 19 and Figure 20)  
|tPLH − tPHL| Differential Receiver Skew  
tSKEW  
100  
ns  
CRL = 15 pF, S1 closed  
(see Figure 23 and Figure 24)  
Enable Time to Low Level  
Enable Time to High Level  
Disable Time from Low Level  
Disable Time from High Level  
Maximum Data Rate  
Time to Shutdown1  
Driver Enable from Shutdown to Output High  
Driver Enable from Shutdown to Output Low  
tRZL  
tRZL  
tRLZ  
tRHZ  
fMAX  
tDZH(SHDN) 50  
tDZL(SHDN)  
tRZL(SHDN)  
25  
25  
25  
25  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
kbps  
ns  
ns  
ns  
ns  
CRL = 15 pF, S2 closed (see Figure 25)  
CRL = 15 pF, S1 closed (see Figure 25)  
CRL = 15 pF, S2 closed (see Figure 25)  
tPLH, tPHL < 50% of data period  
250  
200  
600  
CL = 100 pF, S2 closed (see Figure 21)  
CL = 100 pF, S1 closed (see Figure 22)  
CL = 15 pF, S2 closed (see Figure 25)  
CL = 15 pF, S1 closed (see Figure 25)  
5000  
5000  
5000  
Receiver Enable from Shutdown to Output High tRZH(SHDN)  
1
RE  
The ADM487E is put into shutdown mode by bringing the high and the DE low. If the inputs are in this state for less than 50 ns, the parts are guaranteed not to  
enter shutdown. If the inputs are in this state for at least 600 ns, the ADM487E is guaranteed to enter shutdown.  
Rev. 0 | Page 5 of 16  
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
ABEOLUTꢁ MAXIMUM RATINGE  
TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
VCC to GND  
Digital I/O Voltage (DE, RE)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
−0.5 V to +6 V  
−0.5 V to (VCC + 0.5 V)  
−0.5 V to (VCC + 0.5 V)  
−0.5 V to (VCC + 0.5 V)  
−9 V to +14 V  
Driver Input Voltage (DI)  
Receiver Output Voltage (RO)  
Driver Output/Receiver Input Voltage  
(A, B)  
Operating Temperature Range  
Storage Temperature Range  
θJA Thermal Impedance  
ESD CAUTION  
−40° to +85°C  
−65° to +150°C  
158°C/W  
SOIC-8  
Lead Temperature  
Soldering (10 sec)  
260°C  
Rev. 0 | Page 6 of 16  
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
ꢂIN CONFIGURATION ANS FUNCTION SꢁECRIꢂTIONE  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
CC  
ADM485E/  
ADM487E/  
ADM1487E  
B
A
TOP VIEW  
(Not to Scale)  
GND  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
RO  
RE  
Receiver Output. When enabled, if A > B by 200 mV, then RO = high. If A < B by 200 mV, then RO = low.  
Receiver Output Enable. A low level enables the RO; a high level places it in a high impedance state.  
DE  
Driver Output Enable. A high level enables the driver differential outputs, Pin A and Pin B; a low level places it  
in a high impedance state.  
4
DI  
Driver Input. When the driver is enabled, a Logic L = low on DI forces A low and B high; a Logic H = high on DI  
forces Pin A high and Pin B low.  
5
6
7
8
GND  
A
B
Ground Connection (0 V).  
Noninverting Receiver Input A/Driver Output A.  
Inverting Receiver Input B/Driver Output B.  
Power Supply (5 V 5%).  
VCC  
Rev. 0 | Page 7 of 16  
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
TYꢂICAL ꢂꢁRFORMANCꢁ CHARACTꢁRIETICE  
50  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
I
= 8mA  
RO  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
–40  
–20  
0
20  
40  
60  
80  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 3. Output Current vs. Receiver Output Low Voltage  
Figure 6. Receiver Output Low Voltage vs. Temperature  
–30  
–25  
–20  
–15  
–10  
–5  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
1.5  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
OUTPUT HIGH VOLTAGE (V)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
Figure 4. Output Current vs. Receiver Output High Voltage  
Figure 7. Driver Output Current vs. Differential Output Voltage  
4.5  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
4.4  
4.3  
4.2  
I
= –8mA  
RO  
4.1  
4.0  
3.9  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Receiver Output High Voltage vs. Temperature  
Figure 8. Driver Differential Output Voltage vs. Temperature  
Rev. 0 | Page 8 of 16  
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
140  
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
60  
40  
DE = V AND RE = X  
CC  
20  
DE = 0 AND RE = Ø  
40 60  
TEMPERATURE (°C)  
0
0
2
4
6
8
10  
12  
–40  
–20  
0
20  
80  
OUTPUT LOW VOLTAGE (V)  
Figure 12. ADM487E Supply Current vs. Temperature  
Figure 9. Output Current vs. Driver Output Low Voltage  
10  
9
8
7
6
5
4
3
2
1
0
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–8  
–6  
–4  
–2  
0
2
4
6
TEMPERATURE (°C)  
OUTPUT HIGH VOLTAGE (V)  
Figure 10. Output Current vs. Driver Output High Voltage  
Figure 13. Shutdown Current vs. Temperature  
600  
T
3
B
500  
400  
300  
200  
100  
0
2
DE = V AND RE = X  
CC  
A
DE = 0 AND RE = X  
1
R
O
CH1 5.00V CH2 500mV  
CH3 500mV  
M200ns  
57.60%  
A
CH1  
2.80V  
–40  
–20  
0
20  
40  
60  
80  
T
TEMPERATURE (°C)  
Figure 11. ADM485E/ADM1487E Supply Current vs. Temperature  
Figure 14. ADM487E Receiver tPHL  
Rev. 0 | Page 9 of 16  
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
T
T
3
3
A
B
2
2
B
A
R
R
O
1
1
O
CH1 5.00V CH2 500mV  
CH3 500mV  
M200ns  
60.80%  
A
CH1  
2.80V  
CH1 5.00V CH2 500mV  
CH3 500mV  
M20ns  
60.80%  
A
CH1  
2.70V  
T
T
Figure 17. ADM485E/ADM1487E Receiver tPLH  
Figure 15. ADM487E Receiver tPLH Driven by External RS-485 Device  
T
3
A
2
B
R
O
1
CH1 5.00V CH2 500mV  
CH3 500mV  
M20ns  
60.80%  
A
CH1  
2.70V  
T
Figure 16. ADM485E/ADM1487E Receiver tPHL  
Rev. 0 | Page 10 of 16  
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
TꢁET CIRCUITE ANS EWITCHING CHARACTꢁRIETICE  
Y
R
L
V
CC  
V
OD  
R
= 500  
L
S1  
0V OR 5V  
OUT  
V
D
OC  
R
L
C
L
Z
Figure 18. Driver DC Test Load  
GENERATOR  
50Ω  
V
DD  
5V  
0V  
DE  
DE  
V
/2  
C
C
CC  
L
A
DI  
V
R
L
tDZL,  
tDZL(SHDN)  
OD  
tDLZ  
B
V
CC  
OUT  
L
2.3V  
0.5V  
V
OL  
Figure 19. Driver Timing Test Circuit  
Figure 22. Driver Enable and Disable Times (tDZL, tDLZ, tDZL(SHDN)  
)
RECEIVER  
OUTPUT  
B
A
V
ATE  
ID  
R
5V  
DI  
1.5V  
0V  
tDPLH  
tDPHL  
1/2 V  
O
Figure 23. Receiver Propagation Delay Test Circuit  
B
A
V
O
+1V  
–1V  
A
B
1/2V  
O
V
= V (A) – V (B)  
DIFF  
tRPLH  
tRPHL  
V
O
V
80%  
80%  
DIFF  
0V  
–V  
20%  
20%  
tDF  
V
OH  
O
RO  
tDR  
1.5V  
V
OL  
tSKEW  
= tDPLH – tDPHL  
THE RISE TIME AND FALL TIME OF INPUT A AND INPUT B < 4ns  
Figure 24. Receiver Propagation Delays  
Figure 20. Driver Propagation Delays  
S1  
0 OR 5V  
D
OUT  
C
L
R
= 500  
L
GENERATOR  
50Ω  
5V  
0V  
DE  
1.5V  
tDZH,  
tDZH(SHDN)  
0.5V  
V
OH  
OUT  
2.3V  
0V  
tDHZ  
Figure 21. Driver Enable and Disable Times (tDHZ, tDZH, tDZH(SHDN)  
)
Rev. 0 | Page 11 of 16  
 
 
 
 
 
 
 
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
S1  
S2  
S3  
+1.5V  
–1.5V  
V
CC  
1k  
V
ID  
0V OR 5V  
C
L
15pF  
GENERATOR  
50Ω  
S1 CLOSED  
S2 OPEN  
S3 = –1.5V  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
+5V  
0V  
+5V  
0V  
RE  
RO  
RE  
RO  
+1.5V  
tRZL, tRZL(SHDN)  
tRZH, tRZH(SHDN)  
V
V
OH  
CC  
OL  
+1.5V  
0V  
+1.5V  
V
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = +1.5V  
+5V  
0V  
+5V  
RE  
RO  
RE  
RO  
+1.5V  
tRHZ  
+1.5V  
0V  
tRLZ  
V
V
CC  
OL  
V
OH  
+0.5V  
0V  
+0.5V  
Figure 25. Receiver Enable and Disable Times  
Rev. 0 | Page 12 of 16  
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
THꢁORY OF OꢂꢁRATION  
5V  
5V  
The ADM485E/ADM487E/ADM1487E are ruggedized RS-485  
transceivers that operate from a single 5 V supply. They contain  
protection against high levels of electrostatic discharge and are  
ideally suited for operation in electrically harsh environments  
or where cables can be plugged or unplugged. These devices are  
intended for balanced data transmission and comply with TIA/  
EIA standards RS-485 and RS-422. They contain a differential  
line driver and a differential line receiver and are suitable for  
half-duplex data transmission, as the driver and receiver share  
the same differential pins.  
0.1µF  
0.1µF  
V
DE  
DI  
V
CC  
RE  
RO  
CC  
B
A
B
A
ADM485E/  
ADM487E/  
ADM1487E  
ADM485E/  
ADM487E/  
ADM1487E  
RS485/RS-422 LINK  
DI  
RO  
The input impedance on the ADM485E is 12 kΩ, allowing up  
to 32 transceivers on the differential bus. The ADM487E/  
ADM1487E are 48 kΩ, allowing up to 128 transceivers on the  
differential bus.  
DE  
RE  
GND  
GND  
Figure 26. Typical Half-Duplex Link Application  
CIRCUIT DESCRIPTION  
Table 7 and Table 8 show the truth tables for transmitting and  
receiving.  
The ADM485E/ADM487E/ADM1487E are operated from  
a single 5 V 1ꢁꢀ power supply. Excessive power dissipation  
caused by bus contention or output shorting is prevented by  
a thermal shutdown circuit. If, during fault conditions, a sig-  
nificant temperature increase is detected in the internal driver  
circuitry, this feature forces the driver output into a high  
impedance state.  
Table 7. Transmitting Truth Table  
Transmitting Inputs  
Transmitting Outputs  
A
RE  
DE  
DI  
B
X1  
X1  
0
1
1
0
0
1
0
X1  
X1  
0
1
1
0
The receiver contains a fail-safe feature that results in a logic  
high output state if the inputs are unconnected (floating).  
High-Z  
High-Z  
High-Z  
High-Z  
1
1 X = don’t care.  
A high level of robustness is achieved using internal protection  
circuitry, eliminating the need for external protection compo-  
nents such as tranzorbs or surge suppressors.  
Table 8. Receiving Truth Table  
Receiving Inputs  
Receiving Outputs  
RO  
Low electromagnetic emissions are achieved using slew-rate-  
limited drivers, minimizing both conducted and radiated  
interference.  
RE  
DE  
A to B  
0
0
0
1
0
0
0
0
≥ +0.2 V  
≤ −0.2 V  
1
0
The ADM485E/ADM487E/ADM1487E can transmit at data  
rates up to 25ꢁ kbps.  
Inputs Open Circuit  
X1  
1
High-Z  
1 X = don’t care.  
A typical application for the ADM485E/ADM487E/ADM1487E  
is illustrated in Figure 26, which shows a half-duplex link where  
data can be transferred at rates up to 25ꢁ kbps. A terminating  
resistor is shown at both ends of the link. This termination is  
not critical, because the slew rate is controlled by the ADM485E/  
ADM487E/ADM1487E and reflections are minimized.  
ESD Transient Protection Scheme  
The ADM485E/ADM487E/ADM1487E use protective clamping  
structures on their inputs and outputs that clamp the voltage to  
a safe level and dissipate the energy present in ESD (electrostatic).  
The protection structure achieves ESD protection up to 15 kV  
human body model (HBM).  
The communications network can be extended to include  
multipoint connections, as shown in Figure 29. As many as  
32 ADM485E transceivers or 128 ADM487E/ADM1487E  
transceivers can be connected to the bus.  
Rev. 0 | Page 13 of 16  
 
 
 
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
ESD Testing  
The ESD discharge can induce latch-up in the device under test.  
Therefore, it is important that ESD testing on the I/O pins be  
carried out while device power is applied. This type of testing  
is more representative of a real-world I/O discharge where the  
equipment is operating normally when the discharge occurs.  
Two coupling methods are used for ESD testing: contact  
discharge and air-gap discharge. Contact discharge calls for  
a direct connection to the unit being tested; air-gap discharge  
uses a higher test voltage but does not make direct contact with  
the unit under test. With air discharge, the discharge gun is moved  
toward the unit under test, developing an arc across the air gap;  
hence the term air discharge. This method is influenced by  
humidity, temperature, barometric pressure, distance, and rate  
of closure of the discharge gun. The contact-discharge method,  
though less realistic, is more repeatable and is gaining accep-  
tance and preference over the air-gap method.  
100%  
90%  
36.8%  
10%  
Although very little energy is contained within an ESD pulse,  
the extremely fast rise time, coupled with high voltages, can  
cause failures in unprotected semiconductors. Catastrophic  
destruction can occur immediately as a result of arcing or heating.  
Even if catastrophic failure does not occur immediately, the  
device can suffer from parametric degradation, which can result  
in degraded performance. The cumulative effects of continuous  
exposure can eventually lead to complete failure.  
TIME (t)  
tDL  
tRL  
Figure 28. Human Body Model ESD Current Waveform  
Table 9. ADM483E ESD Test Results  
ESD Test Method  
HIGH  
I/O Pins  
Other Pins  
R2  
VOLTAGE  
GENERATOR  
Human Body Model (HBM)  
15 kV  
3.5 V  
DEVICE  
UNDER TEST  
C1  
ESD TEST METHOD  
HUMAN BODY MODEL  
R2  
C1  
±15kV  
100pF  
Figure 27. ESD Generator  
I/O lines are particularly vulnerable to ESD damage. Simply  
touching or plugging in an I/O cable can result in a static  
discharge that can damage or completely destroy the inter  
face product connected to the I/O port. It is, therefore, extremely  
important to have high levels of ESD protection on the I/O lines.  
Rev. 0 | Page 14 of 16  
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
AꢂꢂLICATIONE INFORMATION  
DIFFERENTIAL DATA TRANSMISSION  
CABLE AND DATA RATE  
The transmission line of choice for RS-485 communications is  
a twisted pair. A twisted pair cable can cancel common-mode  
noise and can also cause cancellation of the magnetic fields  
generated by the current flowing through each wire, thereby  
reducing the effective inductance of the pair.  
Differential data transmission is used to reliably transmit data  
at high rates over long distances and through noisy environ-  
ments. Differential transmission nullifies the effects of ground  
shifts and noise signals that appear as common-mode voltages  
on the line. There are two main standards approved by TIA/EIA  
that specify the electrical characteristics of transceivers used in  
differential data transmission.  
A typical application showing a multipoint transmission net-  
work is illustrated in Figure 29. An RS-485 transmission line  
can have as many as 32 transceivers on the bus. Only one driver  
can transmit at a particular time, but multiple receivers can be  
enabled simultaneously.  
The RS-422 standard specifies data rates up to 1ꢁ MB and line  
lengths up to 4ꢁꢁꢁ feet. A single driver can drive a transmission  
line with up to 1ꢁ receivers.  
RT  
RT  
To cater to true multipoint communications, the RS-485 standard  
is defined. This standard meets or exceeds all the requirements  
of RS-422, but also allows for up to 32 drivers and 32 receivers  
to be connected to a single bus. An extended common-mode  
range of −7 V to +12 V is defined. The most significant differ-  
ence between RS-422 and RS-485 is that the drivers can be  
disabled, thereby allowing as many as 32 drivers to be connected  
to a single line. Only one driver is enabled at a time, but the  
RS-485 standard contains additional specifications to guarantee  
device safety in the event of line contention.  
D
D
R
R
R
R
D
D
Figure 29. Typical RS-485 Network  
Rev. 0 | Page 15 of 16  
 
 
ASM485ꢁ/ASM487ꢁ/ASM±487ꢁ  
OUTLINꢁ SIMꢁNEIONE  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 30. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADM485EARZ1  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADM485EARZ-REEL71  
ADM487EARZ1  
ADM487EARZ-REEL71  
ADM1487EARZ1  
ADM1487EARZ-REEL71  
1 Z = Pb-free part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06356-0-1/07(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY