ADM208EARSZ1 [ADI]

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers; EMI / EMC兼容,A ±15千伏ESDProtected , RS - 232线路驱动器/接收器
ADM208EARSZ1
型号: ADM208EARSZ1
厂家: ADI    ADI
描述:

EMI/EMC-Compliant, ±15 kV ESDProtected, RS-232 Line Drivers/Receivers
EMI / EMC兼容,A ±15千伏ESDProtected , RS - 232线路驱动器/接收器

驱动器
文件: 总20页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMI/EMC-Compliant, ± ±1 ꢀk EꢁSD­Potꢂetꢂꢃ,  
Rꢁ-232 Linꢂ SPivꢂPs/RꢂeꢂivꢂPs  
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
FEATURES  
CONNECTION DIAGRAM  
5V INPUT  
Complies with 89/336/EEC EMC directive  
ESD protection to IEC 1000-4-2 (801-2)  
Contact discharge: 8 kV  
12  
14  
V
CC  
C1+  
C1–  
11  
13  
+5V TO+10V  
VOLTAGE  
DOUBLER  
+
+
+
0.1µF  
10V  
0.1µF  
6.3V  
0.1µF  
+
+
V+  
V–  
Air-gap discharge: 1ꢀ kV  
+10V TO –10V  
VOLTAGE  
INVERTER  
15 C2+  
17  
0.1µF  
10V  
0.1µF  
10V  
Human body model: 1ꢀ kV  
16  
C2–  
EFT/burst immunity (IEC 1000-4-4)  
Low EMI emissions (EN ꢀꢀ022)  
Eliminates need for TransZorb® suppressors  
230 kbps data rate guaranteed  
Single ꢀ V power supply  
Shutdown mode 1 μW  
Plug-in upgrade for MAX2xxE  
Space saving TSSOP package available  
T1  
IN  
T1  
T2  
T3  
T4  
R1  
R2  
R3  
R4  
R5  
2
3
T1  
7
6
OUT  
T2  
IN  
T2  
OUT  
TTL/CMOS  
RS-232  
1
INPUTS  
OUTPUTS  
T3  
IN  
T3  
20  
21  
8
1
28  
9
OUT  
T4  
IN  
T4  
OUT  
R1  
R1  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
APPLICATIONS  
Laptop computers  
Notebook computers  
Printers  
Peripherals  
Modems  
R2  
R3  
R4  
R5  
4
R2  
IN  
5
TTL/CMOS  
OUTPUTS  
RS-232  
27  
23  
26  
22  
19  
24  
R3  
IN  
2
INPUTS  
R4  
IN  
18  
25  
R5  
IN  
GENERAL DESCRIPTION  
SHDN (ADM211E)  
SHDN (ADM213E)  
EN (ADM211E)  
EN (ADM213E)  
ADM211E/  
ADM213E  
GND  
10  
The ADM2xxE is a family of robust RS-232 and V.28 interface  
devices that operate from a single 5 V power supply. These pro-  
ducts are suitable for operation in harsh electrical environments  
and are compliant with the EU directive on electromagnetic  
compatibility (EMC) (89/336/EEC). The level of emissions and  
immunity are both in compliance. EM immunity includes ESD  
protection in excess of ±±5 kV on all I/O lines (IEC ±000-4-2),  
fast transient burst protection (IEC ±000­4­4), and radiated  
immunity (IEC ±000-4-3). EM emissions include radiated and  
conducted emissions as required by Information Technology  
Equipment EN 55022, CISPR 22.  
1
2
INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT.  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT.  
Figure 1.  
charge pump, all transmitters, and three of the five receivers are  
disabled. The remaining two receivers remain active, thereby  
allowing monitoring of peripheral devices. This feature allows  
the device to be shut down until a peripheral device begins  
communication. The active receivers can alert the processor,  
which can then take the ADM2±3E out of the shutdown mode.  
Operating from a single 5 V supply, four external 0.± μF  
capacitors are required.  
All devices fully conform to the EIA-232-E and CCITT V.28  
specifications and operate at data rates up to 230 kbps. Shut-  
down and enable control pins are provided on some of the  
products (see Table ±).  
The ADM207E and ADM208E are available in 24-lead PDIP, SSOP,  
available in 28-lead SSOP, TSSOP, and SOIC_W packages. All  
products are backward compatible with earlier ADM2xx products,  
facilitating easy upgrading of older designs.  
The shutdown function on the ADM2±±E disables the charge  
pump and all transmitters and receivers. On the ADM2±3E the  
Table 1. Selection Table  
Model  
Supply Voltage  
Drivers  
Receivers  
ESD Protection  
Shutdown  
Enable  
Packages  
ADM206E  
ADM207E  
ADM208E  
ADM2±±E  
ADM2±3E  
5 V  
5 V  
5 V  
5 V  
5 V  
4
5
4
4
4
3
3
4
5
5
±±5 kV  
±±5 kV  
±±5 kV  
±±5 kV  
±±5 kV  
Yes  
No  
No  
Yes  
Yes  
RW-24  
No  
N-24-±, RW-24, RS-24, RU-24  
N-24-±, RW-24, RS-24, RU-24  
RW-28, RS-28, RU-28  
RW-28, RS-28, RU-28  
No  
Yes  
±
SHDN  
Yes (EN)  
Yes (  
)
± Two receivers active.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
TABLE OF CONTENTꢁ  
Enable and Shutdown ................................................................ ±0  
Features .............................................................................................. ±  
Applications....................................................................................... ±  
General Description......................................................................... ±  
Connection Diagram ....................................................................... ±  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... ±0  
Circuit Description..................................................................... ±0  
High Baud Rate........................................................................... ±±  
ESD/EFT Transient Protection Scheme .................................. ±±  
ESD Testing (IEC ±000­4­2) ..................................................... ±±  
EFT/Burst Testing (IEC ±000­4­4)........................................... ±2  
IEC ±000-4-3 Radiated Immunity ........................................... ±3  
Emissions/Interference.............................................................. ±4  
Conducted Emissions ................................................................ ±4  
Radiated Emissions.................................................................... ±4  
Outline Dimensions....................................................................... ±6  
Ordering Guide .......................................................................... ±9  
REVISION HISTORY  
9/06—Rev. D to Rev. E  
3/01—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to Figure ± and Table ±..................................................... ±  
Changes to Table 2............................................................................ 3  
Changes to Figure 2, Figure 3, and Figure 5.................................. 5  
Changes to Figure 7 and Figure 9................................................... 6  
Changes to Figure ±±........................................................................ 7  
Changes to Figure ±7........................................................................ 8  
Updated Outline Dimensions....................................................... ±6  
Changes to Ordering Guide .......................................................... ±9  
Changes to Features Section ............................................................±  
Changes to Specifications Table ......................................................2  
Changes to Absolute Maximum Ratings........................................3  
Changes to Figure 6 ..........................................................................5  
Changes to Typical Performance Characteristics Section ...... 7, 8  
Changes to Table V......................................................................... ±±  
4/05—Rev. C to Rev. D  
Changes to Specifications Section.................................................. 2  
Changes to Ordering Guide ............................................................ 4  
Updated Outline Dimensions......................................................... 6  
Rev. E | Page 2 of 20  
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
ꢁ­ECIFICATIONꢁ  
VCC = 5.0 V ± ±0ꢀ, C± to C4 = 0.± μF. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
Operating Voltage Range  
VCC Power Supply Current  
SHUTDOWN SUPPLY CURRENT  
LOGIC  
4.5  
5.0  
3.5  
0.2  
5.5  
±3  
±0  
V
mA  
μA  
No load  
Input Pull-Up Current  
±0  
25  
μA  
V
V
TIN = GND  
TIN, EN, EN, SHDN, SHDN  
TIN  
EN, EN, SHDN, SHDN  
IOUT = ±.6 mA  
IOUT = −40 μA  
Input Logic Threshold Low, VINL  
Input Logic Threshold High, VINH  
Input Logic Threshold High, VINH  
TTL/CMOS Output Voltage Low, VOL  
TTL/CMOS Output Voltage High, VOH  
TTL/CMOS Output Leakage Current  
RS-232 RECEIVER  
0.8  
2.0  
2.0  
V
V
V
0.4  
3.5  
EN = VCC, EN = GND, 0 V ≤ ROUT ≤ VCC  
+0.05 ±±0  
μA  
Input Voltage Range±  
Input Threshold Low  
−30  
0.8  
+30  
±.3  
V
V
Input Threshold High  
Input Hysteresis  
Input Resistance  
2.0  
0.65  
5
2.4  
V
V
kΩ  
3
7
TA = 0°C to 85°C  
RS-232 TRANSMITTER  
Output Voltage Swing  
Output Resistance  
±5.0 ±ꢀ.0  
300  
V
Ω
All transmitter outputs loaded with 3 kΩ to ground  
VCC = 0 V, VOUT = ±2 V  
Output Short-Circuit Current  
TIMING CHARACTERISTICS  
Maximum Data Rate  
Receiver Propagation Delay, TPHL, TPLH  
Receiver Output Enable Time, tER  
Receiver Output Disable Time, tDR  
Transmitter Propagation Delay, TPHL, TPLH  
Transition Region Slew Rate  
±6  
±20  
±60  
2
mA  
230  
kbps RL = 3 kΩ to 7 kΩ, CL = 50 pF to 2500 pF  
μs  
ns  
ns  
μs  
V/μs  
0.4  
±20  
±20  
±
CL = ±50 pF  
RL = 3 kΩ, CL = 2500 pF  
RL = 3 kΩ, CL = 50 pF to 2500 pF, measured from  
+3 V to −3 V or −3 V to +3 V  
8
EM IMMUNITY  
ESD Protection (I/O Pins)  
±±5  
±±5  
±8  
kV  
kV  
kV  
V/m  
Human body model  
IEC ±000-4-2 air-gap discharge  
IEC ±000-4-2 contact discharge  
IEC ±000-4-3  
Radiated Immunity  
±0  
± Guaranteed by design.  
Table 3. ADM211E Truth Table  
Table 4. ADM213E Truth Table  
EN  
SHDN  
SHDN  
Status  
TOUT 1:4  
Enabled  
Enabled  
Disabled  
ROUT 1:ꢀ  
EN Status  
TOUT 1:4  
Disabled  
Disabled  
Enabled  
Enabled  
ROUT 1:3  
Disabled  
Disabled  
Disabled  
Enabled  
ROUT 4:ꢀ  
Disabled  
Enabled  
Disabled  
Enabled  
0
0
±
0
Normal operation  
Normal operation  
Shutdown  
Enabled  
Disabled  
Disabled  
0
0
±
±
0
±
0
±
Shutdown  
±
X±  
Shutdown  
Normal operation  
Normal operation  
± X = don’t care.  
Rev. E | Page 3 of 20  
 
 
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
ABꢁOLUTE MAXIMUM RATINGꢁ  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
VCC  
V+  
V–  
−0.3 V to +6 V  
(VCC – 0.3 V) to +±4 V  
+0.3 V to −±4 V  
Input Voltages  
TIN  
RIN  
−0.3 V to (V+ + 0.3 V)  
±30 V  
ESD CAUTION  
Output Voltages  
TOUT  
±±5 V  
ROUT  
−0.3 V to (VCC + 0.3 V)  
Short-Circuit Duration  
TOUT  
Continuous  
Power Dissipation  
N-24-± PDIP  
(Derate ±3.5 mW/°C above 70°C)  
RW-24 SOIC_W  
(Derate ±2 mW/°C above 70°C)  
RS-24 SSOP  
(Derate ±2 mW/°C above 70°C)  
RU-24 TSSOP  
(Derate ±2 mW/°C above 70°C)  
RW-28 SOIC_W  
(Derate ±2 mW/°C above 70°C)  
RS-28 SSOP  
(Derate ±0 mW/°C above 70°C)  
±000 mW  
ꢀ00 mW  
850 mW  
ꢀ00 mW  
ꢀ00 mW  
ꢀ00 mW  
RU-28 TSSOP  
(Derate ±2 mW/°C above 70°C)  
ꢀ00 mW  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature, Soldering (±0 sec)  
ESD Rating  
−40°C to +85°C  
−65°C to +±50°C  
300°C  
MIL-STD-883B (I/O Pins)  
IEC ±000-4-2 Air-Gap (I/O Pins)  
IEC ±000-4-2 Contact (I/O Pins)  
±±5 kV  
±±5 kV  
±8 kV  
Rev. E | Page 4 of 20  
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
­IN CONFIGURATIONꢁ ANS FUNCTION SEꢁCRI­TIONꢁ  
1
24  
23  
22  
21  
20  
19  
18  
17  
1
24  
23  
22  
21  
20  
19  
18  
17  
T3  
T1  
T2  
T4  
T3  
T1  
T2  
T4  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
2
R2  
R2  
T5  
R2  
R2  
IN  
IN  
3
3
OUT  
OUT  
4
4
R1  
R1  
SHDN  
EN  
IN  
IN  
IN  
5
5
R1  
T5  
T4  
T3  
R1  
OUT  
OUT  
OUT  
ADM207E  
TOP VIEW  
(Not to Scale)  
ADM206E  
TOP VIEW  
(Not to Scale)  
6
6
T2  
T1  
T2  
T1  
T4  
IN  
IN  
IN  
IN  
IN  
IN  
7
7
T3  
IN  
IN  
8
8
GND  
R3  
GND  
R3  
OUT  
IN  
OUT  
V
9
16 R3  
V
9
16 R3  
IN  
CC  
CC  
10  
11  
12  
15  
14  
13  
10  
11  
15  
14  
C1+  
V–  
C1+  
V+  
V–  
C2–  
V+  
C2–  
C2+  
C1–  
13 C2+  
C1– 12  
Figure 2. ADM206E Pin Configuration  
Figure 4. ADM207E Pin Configuration  
5V INPUT  
5V INPUT  
10  
12  
V
CC  
C1+  
C1–  
9
+5V TO +10V  
VOLTAGE  
DOUBLER  
+
+
+
0.1µF  
10V  
0.1µF  
0.1µF  
V
9
+
+
10 C1+  
+5V TO +10V  
VOLTAGE  
DOUBLER  
+
CC  
+
6.3V  
11  
15  
V+  
V–  
0.1µF  
6.3V  
0.1µF  
6.3V  
0.1µF  
+
+
12  
13  
C1–  
C2+  
V+ 11  
+10V TO –10V  
VOLTAGE  
INVERTER  
13 C2+  
0.1µF  
10V  
0.1µF  
10V  
V–  
15  
+10V TO –10V  
VOLTAGE  
INVERTER  
+
14  
C2–  
0.1µF  
16V  
0.1µF  
16V  
14 C2–  
T1  
IN  
2
3
T1  
T2  
T3  
T4  
T5  
R1  
R2  
T1  
7
6
OUT  
T1  
IN  
T1  
T2  
T3  
T4  
R1  
R2  
R3  
T1  
7
6
2
3
1
OUT  
T2  
IN  
T2  
OUT  
T2  
IN  
T2  
OUT  
TTL/CMOS  
TTL/CMOS  
RS-232  
OUTPUTS  
T3  
IN  
T3  
RS-232  
1
18  
19  
21  
5
1
OUT  
1
INPUTS  
INPUTS  
OUTPUTS  
T3  
IN  
T3  
18  
OUT  
T4  
IN  
T4  
24  
20  
4
OUT  
T4  
IN  
T4  
24  
4
19  
5
OUT  
T5  
IN  
T5  
OUT  
R1  
R1  
IN  
OUT  
OUT  
R1  
R1  
IN  
OUT  
OUT  
OUT  
TTL/CMOS  
OUTPUTS  
RS-232  
R2  
R3  
22  
17  
20  
R2  
IN  
23  
16  
2
INPUTS  
TTL/CMOS  
OUTPUTS  
R2  
R3  
RS-232  
INPUTS  
22  
17  
R2  
IN  
23  
16  
2
R3  
IN  
OUT  
EN  
R3  
R3  
IN  
21  
SHDN  
ADM206E  
GND  
GND  
8
ADM207E  
8
1
2
INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT.  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT.  
1
2
INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT.  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT.  
Figure 5. ADM207E Typical Operating Circuit  
Figure 3. ADM206E Typical Operating Circuit  
Rev. E | Page 5 of 20  
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
1
2
28  
27  
26  
25  
24  
23  
22  
T3  
T1  
T2  
T4  
OUT  
OUT  
R3  
R3  
OUT  
IN  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
T2  
T1  
T3  
OUT  
3
OUT  
OUT  
OUT  
R3  
R3  
T4  
4
R2  
SHDN  
EN  
OUT  
IN  
IN  
3
R2  
5
R2  
IN  
OUT  
OUT  
4
R2  
T2  
T1  
6
R4  
IN  
OUT  
IN  
IN  
IN  
ADM211E  
TOP VIEW  
5
7
R4  
T1  
IN  
T4  
T3  
T2  
OUT  
OUT  
ADM208E  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
6
R1  
R1  
8
21 T4  
OUT  
IN  
OUT  
IN  
7
R1  
9
T3  
R1  
20  
19  
18  
17  
16  
15  
IN  
IN  
IN  
IN  
8
GND  
GND  
R4  
10  
11  
12  
13  
R5  
R5  
V–  
OUT  
IN  
OUT  
V
9
16 R4  
V
CC  
CC  
IN  
10  
11  
15  
14  
C1+  
V+  
V–  
C2–  
C1+  
V+  
C2–  
C2+  
13 C2+  
C1– 12  
C1– 14  
Figure 6. ADM208E Pin Configuration  
Figure 8. ADM211E Pin Configuration  
5V INPUT  
5V INPUT  
V
12  
14  
C1+  
C1–  
11  
13  
+5V TO +10V  
VOLTAGE  
DOUBLER  
+
+
CC  
+
0.1µF  
6.3V  
0.1µF  
10V  
0.1µF  
+
+
V
9
10  
12  
V+  
V–  
C1+  
C1–  
+
+5V TO+10V  
VOLTAGE  
DOUBLER  
CC  
+
0.1µF  
10V  
0.1µF  
0.1µF  
+
+
6.3V  
11  
15  
V+  
V–  
+10V TO –10V  
VOLTAGE  
INVERTER  
C2+  
15  
17  
0.1µF  
10V  
0.1µF  
10V  
16 C2–  
13 C2+  
14 C2–  
+10V TO –10V  
VOLTAGE  
INVERTER  
+
0.1µF  
10V  
0.1µF  
10V  
T1  
IN  
T1  
T2  
T3  
T4  
R1  
R2  
R3  
R4  
R5  
2
3
T1  
7
6
OUT  
T1  
IN  
2
T1  
T2  
T3  
T4  
R1  
R2  
R3  
R4  
T1  
5
OUT  
T2  
IN  
T2  
OUT  
TTL/CMOS  
RS-232  
OUTPUTS  
1
T2  
IN  
INPUTS  
1
T2  
18  
19  
21  
OUT  
T3  
IN  
T3  
TTL/CMOS  
1
28  
9
20  
21  
8
OUT  
RS-232  
OUTPUTS  
1
INPUTS  
T3  
IN  
T3  
24  
20  
OUT  
T4  
IN  
T4  
OUT  
T4  
IN  
T4  
OUT  
R1  
R1  
IN  
OUT  
OUT  
OUT  
OUT  
R1  
R1  
IN  
7
3
OUT  
OUT  
OUT  
OUT  
6
4
R2  
R3  
R4  
R5  
4
R2  
IN  
5
R2  
R3  
R4  
R2  
IN  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
26  
22  
19  
24  
27  
23  
R3  
IN  
TTL/CMOS  
OUTPUTS  
2
RS-232  
INPUTS  
2
22  
17  
23  
16  
R3  
IN  
R4  
IN  
R4  
IN  
18  
25  
R5  
IN  
OUT  
EN  
ADM208E  
GND  
8
SHDN  
ADM211E  
GND  
10  
1
2
1
INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT.  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT.  
INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT.  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT.  
2
Figure 7. ADM208E Typical Operating Circuit  
Figure 9. ADM211E Typical Operating Circuit  
Rev. E | Page 6 of 20  
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
5V INPUT  
1
2
28  
27  
26  
25  
24  
23  
T3  
T1  
T2  
T4  
OUT  
OUT  
12  
14  
V
11  
13  
C1+  
C1–  
+
+
CC  
+
+5V TO+10V  
VOLTAGE  
DOUBLER  
R3  
R3  
OUT  
IN  
0.1µF  
6.3V  
0.1µF  
16V  
0.1µF  
+
+
V+  
3
OUT  
OUT  
4
R2  
SHDN  
EN  
15  
16  
V– 17  
C2+  
C2–  
IN  
+10V TO –10V  
VOLTAGE  
INVERTER  
0.1µF  
16V  
0.1µF  
16V  
5
R2  
OUT  
6
T2  
T1  
R4  
1
IN  
IN  
IN  
ADM213E  
TOP VIEW  
T1  
IN  
7
6
2
3
T1  
T2  
T3  
T4  
R1  
R2  
R3  
R4  
R5  
T1  
7
22 R4  
1
1
OUT  
OUT  
(Not to Scale)  
21  
T4  
R1  
8
OUT  
IN  
IN  
T2  
IN  
T2  
OUT  
R1  
9
20 T3  
IN  
TTL/CMOS  
RS-232  
OUTPUTS  
1
INPUTS  
GND  
10  
11  
19  
18  
17  
16  
15  
R5  
OUT  
T3  
IN  
1
28  
9
T3  
20  
21  
8
OUT  
V
R5  
V–  
1
IN  
CC  
T4  
IN  
T4  
C1+ 12  
OUT  
13  
14  
V+  
C2–  
C2+  
R1  
R1  
IN  
OUT  
OUT  
C1–  
R2  
R3  
1
4
5
R2  
IN  
ACTIVE IN SHUTDOWN.  
Figure 10. ADM213E Pin Configuration  
TTL/CMOS  
OUTPUTS  
RS-232  
INPUTS  
26  
22  
19  
24  
27  
23  
R3  
IN  
OUT  
3
2
R4  
R4  
R5  
3
OUT  
IN  
IN  
18  
25  
R5  
3
3
OUT  
EN  
SHDN  
ADM213E  
GND  
10  
1
INTERNAL 400kPULL-UP RESISTOR ON EACH TTL/CMOS INPUT.  
INTERNAL 5kPULL-DOWN RESISTOR ON EACH RS-232 INPUT.  
ACTIVE IN SHUTDOWN.  
2
3
Figure 11. ADM213E Typical Operating Circuit  
Table 6. Pin Function Descriptions  
Mnemonic  
Function  
VCC  
Power Supply Input (5 V ± ±0ꢁ).  
V+  
V–  
GND  
Internally Generated Positive Supply (+ꢀ V nominal).  
Internally Generated Negative Supply (−ꢀ V nominal).  
Ground Pin. Must be connected to 0 V.  
C±+, C±–  
External Capacitor ± is connected between these pins. A 0.± μF capacitor is recommended, but larger capacitors (up to  
47 μF) can be used.  
C2+, C2–  
TIN  
External Capacitor 2 is connected between these pins. A 0.± μF capacitor is recommended, but larger capacitors (up to  
47 μF) can be used.  
Transmitter (Driver) Inputs. These inputs accept TTL/CMOS levels. An internal 400 kΩ pull-up resistor to VCC is connected on  
each input.  
TOUT  
RIN  
Transmitter (Driver) Outputs. These are RS-232 signal levels (typically ±ꢀ V).  
Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 kΩ pull-down resistor to GND is connected on  
each input.  
ROUT  
Receiver Outputs. These are TTL/CMOS output logic levels.  
EN/EN  
Receiver Enable (active high on ADM2±3E, active low on ADM2±±E). This input is used to enable/disable the receiver  
outputs. With EN = low for the ADM2±±E (EN = high for the ADM2±3E), the receiver outputs are enabled. With EN = high  
for the ADM2±±E (EN = low for the ADM2±3E), the receiver outputs are placed in a high impedance state. (See Table 3  
and Table 4.)  
SHDN/SHDN Shutdown Control (active low on ADM2±3E, active high on ADM2±±E). When the ADM2±±E is in shutdown, the charge  
pump is disabled, the transmitter outputs are turned off, and all receiver outputs are placed in a high impedance state.  
When the ADM2±3E is in shutdown, the charge pump is disabled, the transmitter outputs are turned off, and Receiver R± to  
Receiver R3 are placed in a high impedance state; Receiver R4 and Receiver R5 on the ADM2±3E continue to operate  
normally during shutdown. (See Table 3 and Table 4.) Power consumption for all parts reduces to 5 μW in shutdown.  
Rev. E | Page 7 of 20  
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
TY­ICAL ­ERFORMANCE CHARACTERIꢁTICꢁ  
80  
80  
70  
70  
60  
50  
40  
30  
20  
10  
LIMIT  
60  
50  
40  
30  
20  
10  
0
LIMIT  
0.33  
0.6  
1
3
6
18  
30  
0
LOG FREQUENCY (MHz)  
START 30.0MHz  
STOP 200.0MHz  
Figure 12. EMC Conducted Emissions  
Figure 15. EMC Radiated Emissions  
9
7
5
3
1
9
7
5
3
1
Tx O/P HI LOADED  
Tx O/P HI  
–1  
–3  
–5  
–1  
–3  
Tx O/P LO  
–5  
–7  
–7  
–9  
Tx O/P LO LOADED  
5.5  
4.0  
4.5  
5.0  
(V)  
6.0  
0
500  
1000  
1500  
2000  
2500  
3000  
V
LOAD CAPACITANCE (pF)  
CC  
Figure 13. Transmitter Output Voltage  
High/Low vs. Load Capacitance (230 kbps)  
Figure 16. Transmitter Output Voltage vs. Power Supply Voltage  
15  
10  
5
T
SHDN  
1
Tx O/P HI  
V+  
T
2
0
–5  
T
3
Tx O/P LO  
–10  
–15  
V–  
CH2  
5.00V M 50.0µs  
CH1  
CH3  
5.00V  
5.00V  
CH1  
3.1V  
0
2
4
6
8
10  
LOAD CURRENT (mA)  
V+, V– EXITING SHDN  
Figure 14. Transmitter Output Voltage vs. Load Current  
Figure 17. Charge Pump V+, V− Exiting Shutdown  
Rev. E | Page 8 of 20  
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
350  
300  
15  
V+  
10  
V–  
250  
200  
5
0
150  
100  
V+  
–5  
V–  
–10  
50  
0
–15  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
0
5
10  
15  
20  
V
(V)  
CC  
LOAD CURRENT (mA)  
Figure 18. Charge Pump Impedance vs. Power Supply Voltage  
Figure 19. Charge Pump V+, V− vs. Load Current  
Rev. E | Page ꢀ of 20  
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
THEORY OF O­ERATION  
S1  
S2  
S3  
S4  
The ADM206E/ADM207E/ADM208E/ADM2±±E/ADM2±3E  
are ruggedized RS-232 line drivers/receivers that operate from a  
single 5 V supply. Step-up voltage converters coupled with level  
shifting transmitters and receivers allow RS-232 levels to be  
developed while operating from a single 5 V supply.  
V
V+ = 2V  
CC  
CC  
+
+
C1  
C3  
GND  
V
CC  
INTERNAL  
OSCILLATOR  
Features include low power consumption, high transmission  
rates, and compliance with the EU directive on EMC, which  
includes protection against radiated and conducted interfere-  
ence, including high levels of electrostatic discharge.  
Figure 20. Charge Pump Voltage Doubler  
S1  
S2  
S3  
S4  
V+  
GND  
FROM  
VOLTAGE  
DOUBLER  
+
+
C2  
C4  
All RS-232 inputs and outputs contain protection against  
electrostatic discharges up to ±±5 kV and electrical fast tran-  
sients up to ±2 kV. This ensures compliance to IEC ±000­4­2  
and IEC ±000­4­4 requirements.  
GND  
V– = –(V+)  
INTERNAL  
OSCILLATOR  
Figure 21. Charge Pump Voltage Inverter  
The devices are ideally suited for operation in electrically harsh  
environments or where RS-232 cables are plugged/unplugged  
frequently. They are also immune to high RF field strengths  
without special shielding precautions.  
Transmitter (Driver) Section  
The drivers convert 5 V logic input levels into EIA-232 output  
levels. With VCC = 5 V and driving an EIA-232 load, the output  
voltage swing is typically ±9 V.  
Emissions are also controlled to within very strict limits.  
TTL/CMOS technology is used to keep the power dissipation to  
an absolute minimum, allowing maximum battery life in  
portable applications. The ADM2xxE is a modification,  
enhancement, and improvement to the ADM2xx family and its  
derivatives. It is essentially plug-in compatible and does not  
have materially different applications.  
Unused inputs can be left unconnected, as an internal 400 kΩ  
pull-up resistor pulls them high, forcing the outputs into a low  
state. The input pull-up resistors typically source 8 μA when  
grounded, so unused inputs should either be connected to VCC  
or left unconnected in order to minimize power consumption.  
Receiver Section  
CIRCUIT DESCRIPTION  
The receivers are inverting level shifters that accept EIA-232 input  
levels and translate them into 5 V logic output levels. The inputs  
have internal 5 kΩ pull-down resistors to ground and are  
protected against overvoltages of up to ±25 V. The guaranteed  
switching thresholds are 0.4 V minimum and 2.4 V maximum.  
Unconnected inputs are pulled to 0 V by the internal 5 kΩ pull-  
down resistor. This, therefore, results in a Logic ± output level for  
unconnected inputs or for inputs connected to GND.  
The internal circuitry consists of four main sections:  
A charge pump voltage converter.  
5 V logic to EIA-232 transmitters.  
EIA-232 to 5 V logic receivers.  
Transient protection circuit on all I/O lines.  
Charge Pump DC-to-DC Voltage Converter  
The charge pump voltage converter consists of a 200 kHz  
oscillator and a switching matrix. The converter generates a  
±±0 V supply from the input 5 V level. This is done in two  
stages using a switched capacitor technique as illustrated in  
Figure 20 and Figure 2±. First, the 5 V input supply is doubled  
to ±0 V using Capacitor C± as the charge storage element. The  
±0 V level is then inverted to generate −±0 V using C2 as the  
storage element.  
The receivers have Schmitt trigger inputs with a hysteresis level  
of 0.65 V. This ensures error-free reception for both noisy  
inputs and for inputs with slow transition times.  
ENABLE AND SHUTDOWN  
Table 3 and Table 4 are truth tables for the enable and shutdown  
control signals. The enable function is intended to facilitate data  
bus connections where it is desirable to tristate the receiver  
outputs. In the disabled mode, all receiver outputs are placed in  
a high impedance state. The shutdown function is intended to  
shut down the device, thereby minimizing the quiescent  
current. In shutdown, all transmitters are disabled and all  
receivers on the ADM2±±E are tristated.  
Capacitor C3 and Capacitor C4 are used to reduce the output  
ripple. If desired, larger capacitors (up to 47 μF) can be used for  
Capacitor C± to Capacitor C4. This facilitates direct substitution  
with older generation charge pump RS-232 transceivers.  
The V+ and V– supplies can also be used to power external  
circuitry, if the current requirements are small (see the Typical  
Performance Characteristics section).  
Rev. E | Page ±0 of 20  
 
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
On the ADM2±3E, Receiver R4 and Receiver R5 remain  
enabled in shutdown. Note that the transmitters are disabled  
protection structure is shown in Figure 24 and Figure 25. Each  
input and output contains two back-to-back high speed  
but are not tristated in shutdown; it is not permitted to connect  
multiple (RS-232) driver outputs together.  
clamping diodes. During normal operation, with maximum  
RS­232 signal levels, the diodes have no effect because one or  
the other is reverse biased, depending on the polarity of the  
signal. If, however, the voltage exceeds about ±50 V, reverse  
breakdown occurs, and the voltage is clamped at this level. The  
diodes are large p-n junctions designed to handle the  
The shutdown feature is very useful in battery-operated systems  
since it reduces the power consumption to ± μW. During  
shutdown, the charge pump is also disabled. The shutdown  
control input is active high on the ADM2±±E, and it is active  
low on the ADM2±3E. When exiting shutdown, the charge  
pump is restarted, and it takes approximately ±00 μs for it to  
reach its steady state operating condition.  
instantaneous current surges that can exceed several amperes.  
The transmitter outputs and receiver inputs have a similar  
protection structure. The receiver inputs can also dissipate some  
of the energy through the internal 5 kΩ resistor to GND as well  
as through the protection diodes.  
HIGH BAUD RATE  
The ADM2xxE feature high slew rates, permitting data  
transmission rates well in excess of the EIA-232-E  
The protection structure achieves ESD protection up to  
±±5 kV and EFT protection up to ±2 kV on all RS-232 I/O  
lines. The methods used to test the protection scheme are  
discussed in the ESD Testing (IEC ±000­4­2) and EFT/Burst  
Testing (IEC ±000­4­4) sections.  
specifications. RS-232 levels are maintained at data rates up to  
230 kbps, even under worst-case loading conditions. This  
allows for high speed data links between two terminals, making  
it suitable for the new generation modem standards that require  
data rates of 200 kbps. The slew rate is controlled internally to  
less than 30 V/μs to minimize EMI interference.  
R1  
RECEIVER  
RX  
INPUT  
3V  
D1  
EN INPUT  
R
IN  
D2  
0V  
tDR  
VOH  
Figure 24. Receiver Input Protection Scheme  
VOH –0.1V  
RECEIVER  
OUTPUT  
VOL +0.1V  
T
OUT  
TRANSMITTER  
OUTPUT  
RX  
VOL  
D1  
D2  
NOTES  
1. EN IS THE COMPLEMENT OF EN FOR THE ADM213E.  
Figure 22. Receiver Disable Timing  
Figure 25. Transmitter Output Protection Scheme  
3V  
EN INPUT  
ESD TESTING (IEC 1000-4-2)  
0V  
IEC ±000-4-2 (previously IEC 80±-2) specifies compliance  
testing using two coupling methods, contact discharge and air-  
gap discharge. Contact discharge calls for a direct connection to  
the unit being tested. Air-gap discharge uses a higher test voltage  
but does not make direct contact with the unit under test. With  
air-gap discharge, the discharge gun is moved toward the unit  
under test, developing an arc across the air gap. This method is  
influenced by humidity, temperature, barometric pressure,  
distance, and rate of closure of the discharge gun. The contact  
discharge method, while less realistic, is more repeatable and is  
gaining acceptance in preference to the air-gap method.  
tER  
+3.5V  
RECEIVER  
OUTPUT  
+0.8V  
NOTES  
1. EN IS THE COMPLEMENT OF EN FOR THE ADM213E.  
Figure 23. Receiver Enable Timing  
ESD/EFT TRANSIENT PROTECTION SCHEME  
The ADM2xxE use protective clamping structures on all inputs  
and outputs that clamp the voltage to a safe level and dissipate  
the energy present in ESD (electrostatic) and EFT (electrical  
fast transient) discharges. A simplified schematic of the  
Although very little energy is contained within an ESD pulse,  
the extremely fast rise time, coupled with high voltages, can  
cause failures in unprotected semiconductors. Catastrophic  
Rev. E | Page ±± of 20  
 
 
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
destruction can occur immediately because of arcing or heating.  
Even if catastrophic failure does not occur immediately, the  
device can suffer from parametric degradation that can result in  
degraded performance. The cumulative effects of continuous  
exposure can eventually lead to complete failure.  
100  
90  
I/O lines are particularly vulnerable to ESD damage. Simply  
touching or plugging in an I/O cable can result in a static  
discharge that can damage or destroy the interface product  
connected to the I/O port. Traditional ESD test methods, such  
as the MIL-STD-883B method 30±5.7, do not fully test product  
susceptibility to this type of discharge. This test was intended to  
test product susceptibility to ESD damage during handling.  
Each pin is tested with respect to all other pins.  
10  
0.1ns TO 1ns  
TIME t  
30ns  
60ns  
Figure 28. IEC 1000-4-2 ESD Current Waveform  
ADM2xxE products are tested using both of the previously  
mentioned test methods. Pins are tested with respect to all other  
pins as per the MIL-STD-883B specification. In addition, all I/O  
pins are tested per the IEC test specification. The products are  
tested under the following conditions:  
There are some important differences between the traditional  
test and the IEC test:  
The IEC test is much more stringent in terms of discharge  
energy. The peak current injected is over four times greater.  
The current rise time is significantly faster in the IEC test.  
The IEC test is carried out while power is applied to  
the device.  
Power on (normal operation).  
Power on (shutdown mode).  
Power off.  
It is possible that the ESD discharge could induce latch-up in  
the device being tested. This test, therefore, is more represent-  
tative of a real-world I/O discharge, where the equipment is  
operating normally with power applied. However, both tests  
should be performed to ensure maximum protection both  
during handling and later during field service.  
There are four levels of compliance defined by IEC ±000-4-2.  
ADM2xxE products meet the most stringent compliance level  
both for contact and for air-gap discharge. This means that the  
products are able to withstand contact discharges in excess of  
8 kV and air-gap discharges in excess of ±5 kV.  
Table 7. IEC 1000-4-2 Compliance Levels  
R1  
R2  
HIGH  
VOLTAGE  
GENERATOR  
Level Contact Discharge (kV)  
Air-Gap Discharge (kV)  
DEVICE  
±
2
3
4
2
4
6
8
2
4
8
±5  
UNDER TEST  
C1  
ESD TEST METHOD  
H. BODY MIL-STD-883B 1.5k  
IEC 1000-4-2 330Ω  
R2  
C1  
100pF  
150pF  
Table 8. ADM2xxE ESD Test Results  
ESD Test Method  
MIL-STD-883B  
IEC ±000-4-2  
Contact  
Figure 26. ESD Test Standards  
I/O Pin (kV)  
±±5  
100  
90  
±8  
Air-Gap  
±±5  
EFT/BURST TESTING (IEC 1000-4-4)  
IEC ±000-4-4 (previously IEC 80±-4) covers EFT/burst  
immunity. Electrical fast transients occur because of arcing  
contacts in switches and relays. The tests simulate the  
interference generated when, for example, a power relay  
disconnects an inductive load. A spark is generated due to the  
well-known back EMF effect. In fact, the spark consists of a  
36.8  
10  
tDL  
tRL  
TIME t  
Figure 27. Human Body Model ESD Current Waveform  
Rev. E | Page ±2 of 20  
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
burst of sparks as the relay contacts separate. The voltage  
appearing on the line, therefore, consists of a burst of extremely  
fast transient impulses. A similar effect occurs when switching  
on fluorescent lights.  
Classification 3: Temporary degradation or loss of function  
or performance that requires operator intervention or  
system reset.  
Classification 4: Degradation or loss of function that is not  
recoverable due to damage.  
The fast transient burst test defined in IEC ±000-4-4 simulates  
this arcing; its waveform is illustrated in Figure 29. It consists of  
a burst of 2.5 kHz to 5 kHz transients repeating at 300 ms  
intervals. It is specified for both power and data lines.  
ADM2xxE products meet Classification 2 and have been tested  
under worst-case conditions using unshielded cables. Data  
transmission during the transient condition is corrupted, but it  
can resume immediately following the EFT event without user  
intervention.  
V
C
R
D
L
R
M
HIGH  
C
50  
OUTPUT  
t
VOLTAGE  
SOURCE  
300ms  
15ms  
Z
C
S
C
5ns  
V
Figure 30. IEC 1000-4-4 Fast Transient Generator  
IEC 1000-4-3 RADIATED IMMUNITY  
50ns  
IEC ±000-4-3 (previously IEC 80±-3) describes the measure-  
ment method and defines the levels of immunity to radiated  
electromagnetic fields. It was originally intended to simulate the  
electromagnetic fields generated by portable radio transceivers  
or any other devices that generate continuous wave-radiated  
EM energy. Its scope has since been broadened to include  
spurious EM energy that can be radiated from fluorescent  
lights, thyristor drives, inductive loads, and other sources.  
t
0.2ms/0.4ms  
Figure 29. IEC 1000-4-4 Fast Transient Waveform  
Table 9.  
V Peak (kV)  
PSU  
V Peak (kV)  
I/O  
Level  
±
2
3
4
0.5  
±
2
0.25  
0.5  
±
Testing for immunity involves irradiating the device with an EM  
field. There are various methods of achieving this, including use of  
anechoic chamber, stripline cell, TEM cell, and GTEM cell. A  
stripline cell consists of two parallel plates with an electric field  
developed between them. The device under test is placed within  
the cell and exposed to the electric field. There are three severity  
levels having field strengths ranging from ± V/m to ±0 V/m.  
Results are classified in a similar fashion to those for IEC ±000­4­4.  
4
2
A simplified circuit diagram of the actual EFT generator is  
illustrated in Figure 30.  
The transients are coupled onto the signal lines using an EFT  
coupling clamp. The clamp is ± m long and surrounds the cable  
completely, providing maximum coupling capacitance (50 pF to  
200 pF typical) between the clamp and the cable. High energy  
transients are capacitively coupled onto the signal lines. Fast rise  
times (5 ns), as specified by the standard, result in very effective  
coupling. Because high voltages are coupled onto the signal  
lines, this test is very severe. The repetitive transients can often  
cause problems where single pulses do not. Destructive latch-up  
can be induced due to the high energy content of the transients.  
Note that this stress is applied while the interface products are  
powered up and are transmitting data. The EFT test applies  
hundreds of pulses with higher energy than ESD. Worst-case  
transient current on an I/O line can be as high as 40 A.  
Classification ±: Normal operation.  
Classification 2: Temporary degradation or loss of function  
that is self recoverable when the interfering signal is  
removed.  
Classification 3: Temporary degradation or loss of function  
that requires operator intervention or system reset when  
the interfering signal is removed.  
Classification 4: Degradation or loss of function that is not  
recoverable due to damage.  
The ADM2xxE family of products easily meets Classification ± at  
the most stringent requirement (Level 3). In fact, field strengths  
up to 30 V/m showed no performance degradation, and error-  
free data transmission continued even during irradiation.  
Test results are classified according to the following:  
Classification ±: Normal performance within speci-  
fication limits.  
Classification 2: Temporary degradation or loss of  
performance that is self recoverable.  
Rev. E | Page ±3 of 20  
 
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
Table 10. Test Severity Levels (IEC 1000-4-3)  
ø1  
ø2  
Level  
Field Strength (V/m)  
±
2
3
±
3
±0  
EMISSIONS/INTERFERENCE  
SWITCHING GLITCHES  
EN 55022, CISPR 22 defines the permitted limits of radiated  
and conducted interference from information technology (IT)  
equipment. The objective of the standard is to minimize the  
level of emissions, both conducted and radiated.  
Figure 32. Switching Glitches  
80  
70  
60  
50  
For ease of measurement and analysis, conducted emissions are  
assumed to predominate below 30 MHz, and radiated emissions  
are assumed to predominate above 30 MHz.  
LIMIT  
CONDUCTED EMISSIONS  
This is a measure of noise that is conducted onto the line power  
supply. Switching transients from the charge pump that are 20 V  
in magnitude and that contain significant energy can lead to  
conducted emissions. Another source of conducted emissions is  
the overlap in switch-on times in the charge pump voltage  
converter. In the voltage doubler shown in Figure 3±, if S2 has  
not fully turned off before S4 turns on, a transient current glitch  
occurs between VCC and GND that results in conducted emis-  
sions. Therefore, it is important that the switches in the charge  
pump guarantee break-before-make switching under all condi-  
tions so instantaneous short-circuit conditions do not occur.  
40  
30  
20  
10  
0
0.33  
0.6  
1
3
6
18  
30  
LOG FREQUENCY (MHz)  
Figure 33. Conducted Emissions Plot  
RADIATED EMISSIONS  
The ADM2xxE have been designed to minimize the switching  
transients and ensure break-before-make switching, thereby  
minimizing conducted emissions. This results in emission  
levels well below specified limits. Other than the recom-  
mended 0.± μF capacitor, no additional filtering/decoupling  
is required.  
Radiated emissions are measured at frequencies in excess of  
30 MHz. RS-232 outputs designed for operation at high baud  
rates while driving cables can radiate high frequency EM  
energy. The previously described causes of conducted emissions  
can also cause radiated emissions. Fast RS-232 output tran-  
sitions can radiate interference, especially when lightly loaded  
and driving unshielded cables. Charge pump devices are also  
prone to radiating noise due to the high frequency oscillator  
and the high voltages being switched by the charge pump. The  
move toward smaller capacitors in order to conserve board  
space has resulted in higher frequency oscillators being em-  
ployed in the charge pump design, resulting in higher levels of  
conducted and radiated emissions.  
Conducted emissions are measured by monitoring the line  
power supply. The equipment used consists of a line impedance  
stabilizing network (LISN) that essentially presents a fixed  
impedance at RF and a spectrum analyzer. The spectrum  
analyzer scans for emissions up to 30 MHz. A plot for the  
ADM2±±E is shown in Figure 33.  
S1  
S3  
V
V+ = 2V  
CC  
CC  
The RS-232 outputs on the ADM2xxE products feature a con-  
trolled slew rate in order to minimize the level of radiated  
emissions, yet they are fast enough to support data rates of up to  
230 kbps.  
+
+
C1  
C3  
S2  
S4  
GND  
V
CC  
INTERNAL  
OSCILLATOR  
Figure 31. Charge Pump Voltage Doubler  
Rev. E | Page ±4 of 20  
 
 
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
RADIATED NOISE  
80  
70  
60  
50  
DUT  
TO  
RECEIVER  
ADJUSTABLE  
ANTENNA  
TURNTABLE  
40  
30  
20  
10  
0
LIMIT  
Figure 34. Radiated Emissions Test Setup  
Figure 35 shows a plot of radiated emissions vs. frequency. The  
levels of emissions are well within specifications, without the  
need for any additional shielding or filtering components. The  
ADM2xxE were operated at maximum baud rates and  
configured like a typical RS-232 interface.  
START 30.0MHz  
STOP 200.0MHz  
Figure 35. Radiated Emissions  
Testing for radiated emissions was carried out in a shielded  
anechoic chamber.  
Rev. E | Page ±5 of 20  
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
OUTLINE SIMENꢁIONꢁ  
1.280 (32.51)  
1.250 (31.75)  
1.230 (31.24)  
24  
1
13  
12  
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-AF  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 36. 24-Lead Plastic Dual In-Line Package [PDIP]  
(N-24-1)  
Dimensions shown in inches and (millimeters)  
15.60 (0.6142)  
15.20 (0.5984)  
24  
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
1
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 24-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-24)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page ±6 of 20  
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
18.10 (0.7126)  
17.70 (0.6969)  
28  
1
15  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
14  
10.00 (0.3937)  
0.75 (0.0295)  
45°  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 38. 28-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-28)  
Dimensions shown in millimeters and (inches)  
8.50  
8.20  
7.90  
13  
12  
24  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AG  
Figure 39. 24-Lead Shrink Small Outline Package [SSOP]  
(RS-24)  
Dimensions shown in millimeters  
Rev. E | Page ±7 of 20  
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
10.50  
10.20  
9.90  
15  
28  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
14  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AH  
Figure 40. 28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-AD  
Figure 41. 24-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-24)  
Dimensions shown in millimeters  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 42. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
Rev. E | Page ±8 of 20  
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
ORDERING GUIDE  
Model  
ADM206EAR  
ADM206EAR-REEL  
ADM206EARZ±  
ADM206EARZ-REEL±  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead PDIP  
Package Option  
RW-24  
RW-24  
RW-24  
RW-24  
N-24-±  
N-24-±  
RW-24  
RW-24  
RW-24  
RW-24  
RS-24  
ADM207EAN  
ADM207EANZ±  
ADM207EAR  
ADM207EAR-REEL  
ADM207EARZ±  
ADM207EARZ-REEL±  
ADM207EARS  
ADM207EARS-REEL  
ADM207EARU  
ADM207EARU-REEL  
ADM207EARU-REEL7  
ADM207EARUZ±  
ADM207EARUZ-REEL7±  
ADM208EAN  
ADM208EANZ±  
ADM208EAR  
ADM208EAR-REEL  
ADM208EARZ±  
ADM208EARZ-REEL±  
24-Lead PDIP  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SSOP  
24-Lead SSOP  
RS-24  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead PDIP  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
N-24-±  
N-24-±  
RW-24  
RW-24  
RW-24  
RW-24  
RS-24  
24-Lead PDIP  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SOIC_W  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead SSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
24-Lead TSSOP  
28-Lead SOIC_W  
28-Lead SOIC_W  
28-Lead SOIC_W  
28-Lead SOIC_W  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
ADM208EARS  
ADM208EARS-REEL  
ADM208EARSZ±  
ADM208EARSZ-REEL±  
ADM208EARU  
ADM208EARU-REEL  
ADM208EARU-REEL7  
ADM208EARUZ±  
ADM208EARUZ-REEL±  
ADM2±±EAR  
RS-24  
RS-24  
RS-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
RW-28  
RW-28  
RW-28  
RW-28  
RS-28  
RS-28  
RS-28  
RS-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
ADM2±±EAR-REEL  
ADM2±±EARZ±  
ADM2±±EARZ-REEL±  
ADM2±±EARS  
ADM2±±EARS-REEL  
ADM2±±EARSZ±  
ADM2±±EARSZ-REEL±  
ADM2±±EARU  
ADM2±±EARU-REEL  
ADM2±±EARU-REEL7  
ADM2±±EARUZ±  
ADM2±±EARUZ-REEL±  
ADM2±±EARUZ-REEL7±  
Rev. E | Page ±ꢀ of 20  
 
ASM206E/ASM207E/ASM208E/ASM2±±E/ASM2±3E  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
28-Lead SOIC_W  
28-Lead SOIC_W  
28-Lead SOIC_W  
28-Lead SOIC_W  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
28-Lead SSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
28-Lead TSSOP  
Package Option  
RW-28  
RW-28  
RW-28  
RW-28  
RS-28  
RS-28  
RS-28  
RS-28  
RU-28  
ADM2±3EAR  
ADM2±3EAR-REEL  
ADM2±3EARZ±  
ADM2±3EARZ-REEL±  
ADM2±3EARS  
ADM2±3EARS-REEL  
ADM2±3EARSZ±  
ADM2±3EARSZ-REEL±  
ADM2±3EARU  
ADM2±3EARU-REEL  
ADM2±3EARU-REEL7  
ADM2±3EARUZ±  
ADM2±3EARUZ-REEL±  
ADM2±3EARUZ-REEL7±  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
± Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00068-0-9/06(E)  
Rev. E | Page 20 of 20  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY