ADM2490E_VA [ADI]

High Speed, ESD-Protected, Full-Duplex, iCoupler Isolated RS-485 Transceiver; 高速, ESD保护,全双工, iCoupler隔离RS- 485收发器
ADM2490E_VA
型号: ADM2490E_VA
厂家: ADI    ADI
描述:

High Speed, ESD-Protected, Full-Duplex, iCoupler Isolated RS-485 Transceiver
高速, ESD保护,全双工, iCoupler隔离RS- 485收发器

文件: 总16页 (文件大小:513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, ESD-Protected, Full-Duplex,  
iCoupler Isolated RS-485 Transceiver  
ADM2490E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD2  
DD1  
Isolated, full-duplex RS-485/RS-422 transceiver  
8 kV ESD protection on RS-485 input/output pins  
16 Mbps data rate  
ADM2490E  
Complies with ANSI TIA/EIA-485-A-1998 and  
ISO 8482: 1987(E)  
Y
Z
TxD  
RxD  
Suitable for 5 V or 3 V operation (VDD1  
)
High common-mode transient immunity: >25 kV/μs  
Receiver has open-circuit, fail-safe design  
32 nodes on the bus  
A
B
Thermal shutdown protection  
Safety and regulatory approvals  
UL recognition: 5000 V rms isolation voltage  
for 1 minute per UL 1577  
VDE certificate of conformity  
GND  
GND  
2
1
Figure 1.  
DIN EN 60747-5-2 (VDE 0884-10 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
V
IORM = 848 V peak  
Operating temperature range: −40°C to +105°C  
Wide body, 16-lead SOIC package  
APPLICATIONS  
Isolated RS-485/RS-422 interfaces  
Industrial field networks  
INTERBUS  
Multipoint data transmission systems  
GENERAL DESCRIPTION  
The ADM2490E is an isolated data transceiver with ±± k EꢁD  
protection that is suitable for high speed, full-duplex communi-  
cation on multipoint transmission lines. It is designed for balanced  
transmission lines and complies with ANꢁI TIA/EIA-4±5-A-199±  
and IꢁO ±4±2: 19±7(E). The device employs Analog Devices, Inc.,  
iCoupler® technology to combine a 2-channel isolator, a three-  
state differential line driver, and a differential input receiver into  
a single pacꢀage.  
using the human body model (HBM). The logic side of the device  
can be powered with either a 5 k or a 3 k supply, whereas the  
bus side requires an isolated 5 k supply.  
The device has current-limiting and thermal shutdown features  
to protect against output short circuits and situations where bus  
contention could cause excessive power dissipation.  
The ADM2490E is available in a wide body, 16-lead ꢁOIC pacꢀage  
and operates over the −40°C to +105°C temperature range.  
The differential transmitter outputs and receiver inputs feature  
electrostatic discharge circuitry that provides protection to ±± ꢀk  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2008 Analog Devices, Inc. All rights reserved.  
 
ADM2490E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ꢁwitching Characteristics .................................................................9  
Typical Performance Characteristics ........................................... 10  
Circuit Description......................................................................... 12  
Electrical Isolation...................................................................... 12  
Truth Tables................................................................................. 12  
Thermal ꢁhutdown .................................................................... 13  
Fail-ꢁafe Receiver Inputs ........................................................... 13  
Magnetic Field Immunity.......................................................... 13  
Applications Information.............................................................. 14  
Isolated Power ꢁupply Circuit .................................................. 14  
PCB Layout ................................................................................. 14  
Typical Applications................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Blocꢀ Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
ꢁpecifications..................................................................................... 3  
Timing ꢁpecifications .................................................................. 4  
Pacꢀage Characteristics ............................................................... 4  
Regulatory Information............................................................... 5  
Insulation and ꢁafety-Related ꢁpecifications............................ 5  
kDE 0±±4-10 Insulation Characteristics................................... 5  
Absolute Maximum Ratings............................................................ 6  
EꢁD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Test Circuits....................................................................................... ±  
REVISION HISTORY  
8/08—Rev. 0 to Rev. A  
Changes to Regulatory Approval ꢁtatus Throughout.................. 1  
Changed kDE 0±±4 to kDE 0±±4-10 Throughout...................... 1  
Changes to Table 5............................................................................ 5  
Changes to Table ±............................................................................ 6  
Changes to Figure 9.......................................................................... 9  
Changes to iCoupler Technology ꢁection ................................... 12  
Changes to Magnetic Field Immunity ꢁection ........................... 13  
Changes to Isolated Power ꢁupply Circuit ꢁection .................... 14  
Changes to Figure 25...................................................................... 14  
Added Typical Applications ꢁection ............................................ 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 16  
10/06—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADM2490E  
SPECIFICATIONS  
All voltages are relative to their respective ground; 2.7 ≤ kDD1 ≤ 5.5 k, 4.5 k ≤ kDD2 ≤ 5.5 k. All minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, kDD1 = kDD2 = 5.0 k,  
unless otherwise noted.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
Power Supply Current, Logic Side  
TxD/RxD Data Rate < 2 Mbps  
TxD/RxD Data Rate = 16 Mbps  
Power Supply Current, Bus Side  
TxD/RxD Data Rate < 2 Mbps  
TxD/RxD Data Rate = 16 Mbps  
DRIVER  
IDD1  
IDD1  
3.0  
6
mA  
mA  
2.7 V ≤ VDD1 ≤ 5.5 V, unloaded  
100 Ω load between Y and Z  
IDD2  
IDD2  
4.0  
60  
mA  
mA  
2.7 V ≤ VDD1 ≤ 5.5 V, unloaded  
100 Ω load between Y and Z  
Differential Outputs  
Differential Output Voltage, Loaded  
|VOD2  
|
|
2.0  
1.5  
1.5  
5.0  
5.0  
5.0  
V
V
V
RL = 50 Ω (RS-422), see Figure 3  
RL = 27 Ω (RS-485), see Figure 3  
−7 V ≤ VTEST1 ≤ +12 V, see Figure 4  
|VOD4  
∆|VOD| for Complementary Output States ∆|VOD|  
Common-Mode Output Voltage VOC  
∆|VOC| for Complementary Output States ∆|VOC|  
0.2  
3.0  
0.2  
200  
V
V
V
mA  
RL = 54 Ω or 100 Ω, see Figure 3  
RL = 54 Ω or 100 Ω, see Figure 3  
RL = 54 Ω or 100 Ω, see Figure 3  
Short-Circuit Output Current  
Logic Inputs  
IOS  
Input Threshold Low  
Input Threshold High  
TxD Input Current  
VIL  
VIH  
ITxD  
0.25 × VDD1  
−10  
V
V
μA  
0.7 × VDD1  
+10  
+0.01  
70  
RECEIVER  
Differential Inputs  
Differential Input Threshold Voltage  
Input Voltage Hysteresis  
Input Current (A, B)  
VTH  
VHYS  
II  
−0.2  
+0.2  
1.0  
V
mV  
mA  
mA  
kΩ  
VOC = 0 V  
VOC = 12 V  
VOC = −7 V  
−0.8  
12  
Line Input Resistance  
Logic Outputs  
RIN  
Output Voltage Low  
Output Voltage High  
Short-Circuit Current  
VOLRxD  
VOHRxD  
0.2  
VDD1 − 0.2  
0.4  
V
V
mA  
IORxD = 1.5 mA, VA − VB = −0.2 V  
IORxD = −1.5 mA, VA − VB = 0.2 V  
VDD1 − 0.3  
25  
100  
COMMON-MODE TRANSIENT IMMUNITY1  
kV/μs VCM = 1 kV, transient  
magnitude = 800 V  
1 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common-mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. A | Page 3 of 16  
 
 
ADM2490E  
TIMING SPECIFICATIONS  
TA = −40°C to +±5°C.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DRIVER  
Maximum Data Rate  
Propagation Delay  
16  
Mbps  
ns  
tPLH, tPHL  
tPWD, tPWD  
tR, tF  
45  
60  
7
RL = 54 Ω, CL1 = C L2 = 100 pF,  
see Figure 6 and Figure 8  
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 8  
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 8  
Pulse Width Distortion,  
PWD = |tPYLH − tPYHL|, PWD = |tPZLH − tPZHL  
Single-Ended Output Rise/Fall Times  
ns  
ns  
|
20  
RECEIVER  
Propagation Delay  
Pulse Width Distortion, PWD = |tPLH − tPHL  
tPLH, tPHL  
tPWD  
60  
10  
ns  
ns  
CL = 15 pF, see Figure 7 and Figure 9  
CL = 15 pF, see Figure 7 and Figure 9  
|
TA = −40°C to +105°C.  
Table 3.  
Parameter  
Symbol  
Min  
10  
Typ  
Max  
Unit  
Test Conditions  
DRIVER  
Maximum Data Rate  
Propagation Delay  
Mbps  
ns  
tPYLH, tPYHL  
PZLH, tPZHL  
tPWD, tPWD  
,
45  
60  
9
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 8  
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 8  
RL = 54 Ω, CL1 = CL2 = 100 pF,  
see Figure 6 and Figure 8  
t
Pulse Width Distortion,  
PWD = |tPYLH − tPYHL|, PWD = |tPZLH − tPZHL  
Single-Ended Output Rise/Fall Time  
ns  
ns  
|
tR, tF  
27  
RECEIVER  
Propagation Delay  
tPLH, tPHL  
tPWD  
60  
10  
ns  
ns  
CL = 15 pF, see Figure 7 and  
Figure 9  
CL = 15 pF, see Figure 7 and  
Figure 9  
Pulse Width Distortion, PWD = |tPLH − tPHL  
|
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
1012  
3
Max  
Unit  
Ω
pF  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
f = 1 MHz  
4
pF  
Input IC Junction-to-Case Thermal Resistance  
θJCI  
33  
°C/W  
Thermocouple located at center  
of package underside  
Output IC Junction-to-Case Thermal Resistance  
θJCO  
28  
°C/W  
1 Device considered a 2-terminal device: Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14, Pin 15,  
and Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
Rev. A | Page 4 of 16  
 
ADM2490E  
REGULATORY INFORMATION  
Table 5. ADM2490E Approvals  
Organization Approval Type  
Notes  
UL  
Recognized under the Component Recognition  
Program of Underwriters Laboratories, Inc.  
In accordance with UL 1577, each ADM2490E is proof tested by  
applying an insulation test voltage ≥ 6000 V rms for 1 second  
(current leakage detection limit = 10 μA).  
VDE  
Certified according to DIN EN 60747-5-2  
(VDE 0884-10 Part 2): 2003-01,  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
In accordance with DIN EN 60747-5-2, each ADM2490E is proof  
tested by applying an insulation test voltage ≥ 1590 V peak for  
1 second (partial discharge detection limit = 5 pC).  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol  
Value  
5000  
7.45  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
V rms  
mm min  
1 minute duration  
Measured from input terminals to output  
terminals, shortest distance through air  
Measured from input terminals to output  
terminals, shortest distance along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
8.1  
mm min  
0.017  
>175  
IIIa  
mm min  
V
Material Group (DIN VDE 0110, 1/89)  
VDE 0884-10 INSULATION CHARACTERISTICS  
This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by  
means of protective circuits.  
An asterisꢀ (*) on a pacꢀage denotes kDE 0±±4-10 approval for ±4± k peaꢀ worꢀing voltage.  
Table 7.  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110 for Rated Mains Voltage  
≤300 V rms  
≤450 V rms  
≤600 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, see Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
VIORM × 1.875 = VPR, 100% Production Tested, tm = 1 sec, Partial Discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests, Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test, Subgroup 2/3  
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; see Figure 16)  
Case Temperature  
I to IV  
I to II  
I to II  
40/105/21  
2
VIORM  
VPR  
848  
1590  
V peak  
V peak  
1357  
V peak  
VPR  
VTR  
1018  
6000  
V peak  
V peak  
TS  
150  
265  
335  
>109  
°C  
Input Current  
Output Current  
Insulation Resistance at TS, VIO = 500 V  
IS, INPUT  
IS, OUTPUT  
RS  
mA  
mA  
Ω
Rev. A | Page 5 of 16  
 
ADM2490E  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Each voltage is relative to its  
respective ground.  
ꢁtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 8.  
Parameter  
Rating  
Storage Temperature Range  
Ambient Operating Temperature Range  
VDD1  
−55°C to +150°C  
−40°C to +105°C  
−0.5 V to +7 V  
−0.5 V to +6 V  
−0.5 V to VDD1 + 0.5 V  
−9 V to +14 V  
−0.5 V to VDD1 + 0.5 V  
35 mA  
Absolute maximum ratings apply individually only, not in  
combination.  
VDD2  
Logic Input Voltages  
Bus Terminal Voltages  
Logic Output Voltages  
Average Output Current, per Pin  
ESD CAUTION  
ESD (Human Body Model)  
on A, B, Y, and Z Pins  
8 kV  
θJA Thermal Impedance  
60°C/W  
Rev. A | Page 6 of 16  
 
ADM2490E  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
2
GND  
15 GND  
1
RxD  
NC  
14  
13  
A
B
ADM2490E  
TOP VIEW  
(Not to Scale)  
GND  
12 NC  
1
TxD  
NC  
11  
10  
9
Z
Y
GND  
GND  
1
2
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VDD1  
Power Supply (Logic Side). Decoupling capacitor to GND1 required; capacitor value should be between  
0.01 μF and 0.1 μF.  
2, 5, 8  
3
4, 7, 12  
6
9, 15  
10  
11  
GND1  
RxD  
NC  
TxD  
GND2  
Y
Z
B
A
Ground (Logic Side).  
Receiver Output.  
No Connect. These pins must be left floating.  
Transmit Data.  
Ground (Bus Side).  
Driver Noninverting Output.  
Driver Inverting Output.  
Receiver Inverting Input.  
Receiver Noninverting Input.  
13  
14  
16  
VDD2  
Power Supply (Bus Side). Decoupling capacitor to GND2 required; capacitor value should be between  
0.01 μF and 0.1 μF.  
Rev. A | Page 7 of 16  
 
ADM2490E  
TEST CIRCUITS  
R
R
L
C
C
Y
Z
L1  
V
OD  
R
LDIFF  
L
V
OC  
L2  
Figure 3. Driver Voltage Measurement  
Figure 6. Driver Propagation Delay  
375  
A
V
V
TEST  
OD3  
60Ω  
V
OUT  
B
C
L
375Ω  
Figure 7. Receiver Propagation Delay  
Figure 4. Driver Voltage Measurement  
V
DD2  
V
V
DD2  
DD1  
220  
100Ω  
220Ω  
Y
Z
TxD  
RxD  
A
B
GND  
GND  
2
1
GND  
2
Figure 5. Supply-Current Measurement Test Circuit (See Figure 10 and Figure 11)  
Rev. A | Page 8 of 16  
 
 
 
 
ADM2490E  
SWITCHING CHARACTERISTICS  
3V  
1.5V  
1.5V  
0V  
Z
tPLH  
tPHL  
1/2VO  
VO  
Y
tPWD = |tPLH  
tPHL|  
V
OH  
90% POINT  
90% POINT  
A, B  
10% POINT  
10% POINT  
V
OL  
tR  
tF  
Figure 8. Driver Propagation Delay, Rise/Fall Timing  
A, B  
0V  
0V  
tPLH  
tPHL  
VOH  
RxD  
1.5V  
1.5V  
VOL  
Figure 9. Receiver Propagation Delay  
Rev. A | Page 9 of 16  
 
 
 
ADM2490E  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
50  
40  
30  
20  
10  
0
3.00  
2.95  
2.90  
tPLH  
tPHL  
NO LOAD  
100LOAD  
220-100-220LOAD  
2.85  
2.80  
2.75  
2.70  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Receiver Propagation Delay vs. Temperature  
Figure 10. IDD1 Supply Current vs. Temperature (See Figure 5)  
70  
60  
TxD  
220-100-220LOAD  
50  
1
40  
100LOAD  
Y AND Z OUTPUTS  
RxD  
30  
20  
2
4
NO LOAD  
10  
0
–40  
–20  
0
20  
40  
60  
80  
100  
CH1 2V  
CH3 2V  
CH2 2V  
CH4 2V  
M20ns  
44.2%  
A CH2  
2.84V  
T
TEMPERATURE (°C)  
Figure 11. IDD2 Supply Current vs. Temperature (See Figure 5)  
Figure 14. Driver/Receiver Propagation Delay, Low to High  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
60  
tPZHL  
tPYLH  
tPZLH  
tPYHL  
50  
40  
30  
20  
10  
0
TxD  
1
Y AND Z OUTPUTS  
2
4
RxD  
–40  
–20  
0
20  
40  
60  
80  
100  
CH1 2V  
CH3 2V  
CH2 2V  
CH4 2V  
M20ns  
44.2%  
A CH2  
2.84V  
T
TEMPERATURE (°C)  
Figure 12. Driver Propagation Delay vs. Temperature  
Figure 15. Driver/Receiver Propagation Delay, High to Low  
(RLDIFF = 54 Ω, CL1 = CL2 = 100 pF)  
Rev. A | Page 10 of 16  
 
 
 
ADM2490E  
4.77  
4.76  
4.75  
4.74  
4.73  
4.72  
4.71  
4.70  
4.69  
4.68  
4.67  
4.66  
350  
300  
250  
200  
150  
100  
50  
SIDE 2  
SIDE 1  
0
–40  
–20  
0
20  
40  
60  
80  
100  
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
TEMPERATURE (°C)  
Figure 16. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per VDE 0884-10  
Figure 19. Receiver Output High Voltage vs. Temperature,  
IRxD = −4 mA  
0
–2  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–4  
–6  
–8  
–10  
–12  
–14  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
–40  
–20  
0
20  
40  
60  
80  
100  
VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 17. Output Current vs. Receiver Output High Voltage  
Figure 20. Receiver Output Low Voltage vs. Temperature,  
IRxD = –4 mA  
16  
14  
12  
10  
8
6
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
VOLTAGE (V)  
Figure 18. Output Current vs. Receiver Output Low Voltage  
Rev. A | Page 11 of 16  
 
ADM2490E  
CIRCUIT DESCRIPTION  
ELECTRICAL ISOLATION  
TRUTH TABLES  
The truth tables in this section use the abbreviations shown in  
Table 10.  
In the ADM2490E, electrical isolation is implemented on the  
logic side of the interface. Therefore, the part has two main  
sections: a digital isolation section and a transceiver section  
(see Figure 21). The driver input signal, which is applied to the  
TxD pin and referenced to logic ground (GND1), is coupled  
across an isolation barrier to appear at the transceiver section  
referenced to isolated ground (GND2). ꢁimilarly, the receiver  
input, which is referenced to isolated ground in the transceiver  
section, is coupled across the isolation barrier to appear at the  
RxD pin referenced to logic ground.  
Table 10. Truth Table Abbreviations  
Abbreviation Description  
H
I
L
X
High level  
Indeterminate  
Low level  
Irrelevant  
iCoupler Technology  
Table 11. Transmitting  
Supply Status  
Input  
TxD  
H
Outputs  
The digital signals transmit across the isolation barrier using  
iCoupler technology. This technique uses chip scale transformer  
windings to couple the digital signals magnetically from one  
side of the barrier to the other. Digital inputs are encoded into  
waveforms that are capable of exciting the primary transformer  
winding. At the secondary winding, the induced waveforms are  
decoded into the binary value that was originally transmitted.  
VDD1  
On  
On  
VDD2  
On  
On  
Y
H
L
Z
L
H
L
Table 12. Receiving  
Supply Status  
Inputs  
A − B (V)  
>0.2  
<−0.2  
−0.2 < A − B < +0.2  
Output  
Positive and negative logic transitions at the input cause narrow  
pulses (~1 ns) to be sent to the decoder via the transformer. The  
decoder is bistable and is, therefore, either set or reset by the  
pulses, indicating input logic transitions. In the absence of logic  
transitions at the input for more than ~1 μs, a periodic set of  
refresh pulses indicative of the correct input state are sent to  
ensure dc correctness at the output. If the decoder receives no  
internal pulses for more than about 5 μs, the input side is  
assumed to be unpowered or nonfunctional, in which case the  
output is forced to a default state (see Table 12).  
VDD1  
On  
On  
On  
On  
On  
Off  
Off  
VDD2  
On  
On  
On  
On  
Off  
On  
Off  
RxD  
H
L
I
Inputs open  
H
H
H
L
X
X
X
V
V
DD1  
DD2  
ISOLATION  
BARRIER  
Y
Z
D
TxD  
RxD  
ENCODE  
DECODE  
A
B
ENCODE  
DECODE  
R
TRANSCEIVER  
DIGITAL ISOLATION  
GND  
GND  
2
1
Figure 21. ADM2490E Digital Isolation and Transceiver Sections  
Rev. A | Page 12 of 16  
 
 
 
 
ADM2490E  
100  
10  
THERMAL SHUTDOWN  
The ADM2490E contains thermal-shutdown circuitry that protects  
the part from excessive power dissipation during fault conditions.  
ꢁhorting the driver outputs to a low impedance source can result in  
high driver currents. The thermal sensing circuitry detects the  
increase in die temperature under this condition and disables  
the driver outputs. This circuitry is designed to disable the driver  
outputs when a die temperature of 150°C is reached. As the device  
cools, the drivers are re-enabled at a temperature of 140°C.  
1
0.1  
0.01  
FAIL-SAFE RECEIVER INPUTS  
The receiver inputs include a fail-safe feature that guarantees a  
logic high on the RxD pin when the A and B inputs are floating  
or open-circuited.  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 22. Maximum Allowable External Magnetic Flux Density  
MAGNETIC FIELD IMMUNITY  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 ꢀgauss induces a  
voltage of 0.25 k at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
ꢁimilarly, if such an event occurs during a transmitted pulse and  
is the worst-case polarity, it reduces the received pulse from  
>1.0 k to 0.75 k, still well above the 0.5 k sensing threshold  
of the decoder.  
The limitation on the magnetic field immunity of the iCoupler  
is set by the condition in which an induced voltage in the receiv-  
ing coil of the transformer is large enough to either falsely set or  
reset the decoder. The following analysis defines the conditions  
under which this may occur. The 3 k operating condition of  
the ADM2490E is examined because it represents the most  
susceptible mode of operation.  
The pulses at the transformer output have an amplitude greater  
than 1 k. The decoder has a sensing threshold of about 0.5 k,  
thus establishing a 0.5 k margin in which induced voltages can  
be tolerated.  
Figure 23 shows the magnetic flux density values in terms of  
more familiar quantities, such as maximum allowable current  
flow at given distances away from the ADM2490E transformers.  
1000  
The voltage induced across the receiving coil is given by  
DISTANCE = 1m  
100  
dβ  
dt  
V =  
πr2 ; n =1, 2,K, N  
n
DISTANCE = 5mm  
10  
where:  
β is the magnetic flux density (gauss).  
DISTANCE = 100mm  
1
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
Given the geometry of the receiving coil and an imposed  
requirement that the induced voltage is, at most, 50% of the  
0.5 k margin at the decoder, a maximum allowable magnetic  
field can be determined using Figure 22.  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 23. Maximum Allowable Current for  
Various Current-to-ADM2490E Spacings  
With combinations of strong magnetic field and high frequency,  
any loops formed by PCB traces can induce error voltages large  
enough to trigger the thresholds of succeeding circuitry. Care  
should be taꢀen in the layout of such traces to avoid this  
possibility.  
Rev. A | Page 13 of 16  
 
 
 
ADM2490E  
APPLICATIONS INFORMATION  
lead length between both ends of the capacitor and the input  
power-supply pin should not exceed 20 mm. Bypassing between  
Pin 1 and Pin ± and between Pin 9 and Pin 16 should also be  
considered unless the ground pair on each pacꢀage side is  
connected close to the pacꢀage.  
ISOLATED POWER SUPPLY CIRCUIT  
The ADM2490E requires isolated power capable of 5 k at up  
to approximately 65 mA (this current is dependent on the data  
rate and termination resistors used) to be supplied between the  
kDD2 and the GND2 pins. A transformer driver circuit with a  
V
V
GND  
DD1  
GND  
DD2  
center-tapped transformer and LDO can be used to generate the  
isolated 5 k supply, as shown in Figure 25. The center-tapped  
transformer provides electrical isolation of the 5 k power supply.  
The primary winding of the transformer is excited with a pair of  
square waveforms that are 1±0° out of phase with each other. A  
pair of ꢁchottꢀy diodes and a smoothing capacitor are used to  
create a rectified signal from the secondary winding. The ADP3330  
linear voltage regulator provides a regulated power supply to the  
bus-side circuitry (kDD2) of the ADM2490E.  
1
2
RxD  
NC  
GND  
1
TxD  
NC  
A
B
NC  
Z
Y
ADM2490E  
GND  
GND  
1
2
NC = NO CONNECT  
Figure 24. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, care  
should be taꢀen to ensure that board coupling across the isola-  
tion barrier is minimized. Furthermore, the board layout should  
be designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the absolute  
maximum ratings of the device, thereby leading to latch-up or  
permanent damage.  
PCB LAYOUT  
The ADM2490E isolated Rꢁ-4±5 transceiver requires no external  
interface circuitry for the logic interfaces. Power supply bypass-  
ing is required at the input and output supply pins (see Figure 24).  
Bypass capacitors are conveniently connected between Pin 1  
and Pin 2 for kDD1 and between Pin 15 and Pin 16 for kDD2. The  
capacitor value should be between 0.01 μF and 0.1 μF. The total  
ISOLATION  
BARRIER  
V
CC  
SD103C  
5V  
IN  
OUT  
ADP3330  
V
22µF  
10µF  
CC  
TRANSFORMER  
DRIVER  
SD GND ERR  
78253  
SD103C  
V
CC  
V
V
DD2  
DD1  
ADM2490E  
GND  
GND  
2
1
Figure 25. Isolated Power-Supply Circuit  
Rev. A | Page 14 of 16  
 
 
 
ADM2490E  
TYPICAL APPLICATIONS  
The ADM2490E transceiver is designed for point-to-point transmission lines. Figure 26 shows a full-duplex point-to-point application.  
To minimize reflections, terminate the line at the receiver end with a termination resistor. The value of the termination resistor should be  
equal to the characteristic impedance of the cable.  
A
B
Z
Y
Z
R
RxO  
TxD  
TxD  
RxD  
D
R
T
B
A
R
T
D
R
Y
ADM2490E  
ADM2490E  
NOTES  
1. R IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE.  
T
Figure 26. Full-Duplex Point-to-Point Application  
Rev. A | Page 15 of 16  
 
 
ADM2490E  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 27. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
ADM2490EBRWZ1  
ADM2490EBRWZ-REEL71  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
RW-16  
RW-16  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
1 Z = RoHS Compliant Part.  
©2006–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05889-0-8/08(A)  
Rev. A | Page 16 of 16  
 

相关型号:

ADM2491E

High Speed, ESD-Protected, Half-/Full-Duplex, iCoupler Isolated RS-485 Transceiver
ADI

ADM2491EBRWZ

High Speed, ESD-Protected, Half-/Full-Duplex Coupler Isolated RS-485 Transceiver
ADI

ADM2491EBRWZ-REEL7

High Speed, ESD-Protected, Half-/Full-Duplex Coupler Isolated RS-485 Transceiver
ADI
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC
ETC