ADM2563EBRNZ-RL7 [ADI]

3 kV RMS Signal and Power Isolated RS-485 Transceiver with ±15 kV IEC ESD;
ADM2563EBRNZ-RL7
型号: ADM2563EBRNZ-RL7
厂家: ADI    ADI
描述:

3 kV RMS Signal and Power Isolated RS-485 Transceiver with ±15 kV IEC ESD

文件: 总28页 (文件大小:562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 kV RMS Signal and Power Isolated  
RS-485 Transceiver with 15 kV IEC ESD  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
3 kV rms isolated RS-485/RS-422 transceiver  
The ADM2561E, ADM2563E, ADM2565E, and ADM2567E  
Low radiated emissions, integrated, isolated dc-to-dc  
converter  
Passes EN 55032 Class B with margin on a 2-layer PCB  
Cable invert smart feature  
Correct reversed cable connection on A, B, Y, and Z bus  
pins while maintaining full receiver fail-safe feature  
ESD protection on RS-485 A, B, Y and Z pins  
≥ 12 kV IEC61000-4-2 contact discharge  
≥ 15 kV IEC61000-4-2 air discharge  
High speed 25 Mbps data rate (ADM2565E/ADM2567E)  
Low speed 500 kbps data rate for EMI control  
(ADM2561E/ADM2563E)  
are 3 kV rms signal and power isolated RS-485 transceivers.  
These devices are designed for balanced transmission lines and  
comply with ANSI/TIA/EIA-485-A-98 and ISO 8482:1987(E).  
The devices pass radiated emissions testing to the EN 55032  
Class B standard with margin on a 2-layer printed circuit board  
(PCB) using two small external 0402 ferrites on isolated power  
and ground pins. The device features an integrated, low electro-  
magnetic interference (EMI), isolated dc-to-dc converter, which  
eliminates the need for an external isolated power supply. The  
isolation barrier provides immunity to system level electromag-  
netic compatibility (EMC) standards. The family of isolator  
devices features 12 kV contact and 15 kV air IEC61000-4-2  
ESD protection on the RS-485 A, B, Y, and Z pins. The devices  
also features cable invert pins, allowing the user to quickly  
correct reversed cable connection on the A, B, Y, and Z bus  
pins while maintaining full receiver fail-safe performance.  
Flexible power supplies  
Input VCC supply of 3 V to 5.5 V  
Logic VIO supply of 1.7 V to 5.5 V  
VSEL pin to select VISO supply of 5 V (VCC > 4.5 V) or 3.3 V  
PROFIBUS compliant for 5 V VISO  
Slew rate limited versions are available, which are optimized for  
low speed over long cable runs, and have a maximum data rate  
of 500 kbps. Half duplex and full duplex variants are available.  
The full duplex generics allow independent cable inversion of  
the driver and receiver for additional flexibility.  
Wide operating temperature range: −40°C to +105°C  
High common-mode transient immunity: 250 kV/µs  
Short-circuit, open-circuit, and floating input receiver fail-safe  
Supports 192 bus nodes (72 kΩ receiver input impedance)  
Full hot swap support (glitch free power-up/power-down)  
Safety and regulatory approvals (pending)  
Table 18 shows the summary description of each generic.  
CSA Component Acceptance Notice 5A, DIN V VDE V 0884-  
11, UL 1577, CQC11-471543-2012, IEC 61010-1  
Complies with ANSI/TIA/EIA-485-A-98 and ISO 8482:1987(E)  
28-lead, fine pitch SOIC_W package (10.15 mm × 10.05 mm)  
with >8.0 mm creepage and clearance  
APPLICATIONS  
Heating, ventilation, and air conditioning (HVAC) networks  
Industrial field buses  
Building automation  
Utility networks  
Energy meters  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Robust Low Power Digital Isolator.......................................... 20  
High Driver Differential Output Voltage............................... 20  
IEC61000-4-2 ESD Protection ................................................. 20  
Truth Tables................................................................................ 21  
Receiver Fail-Safe ....................................................................... 22  
Driver And Receiver Cable Inversion ..................................... 22  
Hot Swap Inputs......................................................................... 22  
192 Transceivers on the Bus ..................................................... 23  
Driver Output Protection ......................................................... 23  
1.7 V To 5.5 V VIO Logic Supply .............................................. 23  
Applications Information ............................................................. 24  
PCB Layout and Electromagnetic Interference (EMI) ......... 24  
Device Power-Up ....................................................................... 24  
Maximum Data Rate vs. Ambient Temperature ................... 24  
Isolated PROFIBUS Solution ................................................... 25  
EMC, EFT, and Surge................................................................ 25  
Insulation Lifetime..................................................................... 25  
Typical Applications.................................................................. 26  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagrams............................................................. 3  
Specifications .................................................................................... 4  
Timing Specifications .................................................................. 6  
Package Characteristics ............................................................... 9  
Regulatory Information............................................................... 9  
Insulation and Safety Related Specifications............................ 9  
DIN VDE V 0884-11 (VDE V 0884-11) Insulation  
Characteristics (Pending).......................................................... 10  
Absolute Maximum Ratings ......................................................... 11  
Thermal Resistance.................................................................... 11  
Electrostatic Discharge (ESD) Ratings.................................... 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions......................... 12  
Typical Performance Characteristics........................................... 14  
Test Circuits .................................................................................... 19  
Theory of Operation ...................................................................... 20  
Low EMI Integrated DC-to-DC Converter............................ 20  
REVISION HISTORY  
8/2020—Rev. A to Rev. B  
6/2020—Rev. 0 to Rev. A  
Changed ADM2565E Status and ADM2567E Status from  
Pending to Released ............................................................Throughout  
Changes to Features Section and General Description Section.......1  
Changes to Table 5...................................................................................9  
Changes to 192 Transceivers on the Bus Section....................... 23  
Changes to Ordering Guide.......................................................... 28  
Deleted Pending Products Section and Table 22....................... 29  
Changes to General Description Section .......................................1  
Changes to DIN VDE V 0884-11 (VDE V 0884-11) Insulation  
Characteristics (Pending) Section................................................ 10  
Changes to Table 8......................................................................... 11  
Added Electrostatic Discharge (ESD) Ratings Section, ESD  
Ratings for ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Section, and Table 11; Renumbered Sequentially...................... 11  
Changes to Ordering Guide.......................................................... 28  
Changes to Table 21....................................................................... 29  
5/2020—Revision 0: Initial Version  
Rev. B | Page 2 of 28  
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
FUNCTIONAL BLOCK DIAGRAMS  
V
CC  
V
V
ISOIN  
ISOOUT  
OSCILLATOR  
RECTIFIER  
REGULATOR  
LOW RADIATED  
EMISSIONS DC-TO-DC  
V
IO  
DIGITAL ISOLATOR  
iCoupler  
RS-485  
TRANSCEIVER  
RE  
A
B
CABLE  
R
DECODE  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
RxD  
INVERT  
INVR  
INVD  
TxD  
Z
Y
D
DE  
ADM2563E/ADM2567E  
GND  
ISOLATION  
BARRIER  
ISO  
GND  
GND  
2
1
Figure 1. ADM2563E/ADM2567E  
V
CC  
V
V
ISOIN  
ISOOUT  
OSCILLATOR  
RECTIFIER  
REGULATOR  
LOW RADIATED  
EMISSIONS DC-TO-DC  
V
IO  
DIGITAL ISOLATOR  
iCoupler  
RS-485  
TRANSCEIVER  
RE  
DECODE  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
R
RxD  
B
CABLE  
INVERT  
DE  
TxD  
INV  
A
D
ADM2561E/ADM2565E  
GND  
ISOLATION  
BARRIER  
ISO  
GND  
GND  
2
1
Figure 2. ADM2561E/ADM2565E  
Rev. B | Page 3 of 28  
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
SPECIFICATIONS  
Data Sheet  
All voltages are relative to their respective ground: 3.0 V ≤ VCC ≤ 5.5 V, 1.7 V ≤ VIO ≤ 5.5 V, TMIN (−40°C) to TMAX (+105°C). All minimum  
and maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at  
TA = 25°C, VCC = VIO = 5 V, VISOOUT output voltage (VISO) = 3.3 V (VSEL = GNDISO), unless otherwise noted. All parameters are  
characterized with a BLM15HD182SN1 ferrite bead between the VISOOUT and VISOIN pins, and between the GNDISO and GND2 pins.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PRIMARY SUPPLY CURRENT  
VCC Supply Current—Unloaded ICC  
21  
28  
20  
26  
0.65  
5
46  
48  
53  
51  
0.9  
8
mA  
mA  
mA  
mA  
mA  
mA  
VSEL = GNDISO (DE = 0 V)  
VCC ≥ 4.5 V, VSEL = VISO (DE =0 V)  
VSEL = GNDISO (DE = VIO)  
VCC ≥ 4.5 V, VSEL = VISO (DE = VIO)  
DE = 0 V  
VIO Logic Supply Current  
IIO  
DE = VIO  
ISOLATED SUPPLY CURRENT  
ADM2561E/ADM2563E  
(Data Rate = 500 kbps)  
ADM2565E/ADM2567E  
(Data Rate = 25 Mbps )  
IISOIN  
50  
55  
75  
75  
VISOIN = 3 V to 3.465 V, 54 Ω between Y and Z  
VISOIN = 3 V to 3.465 V, 54 Ω between Y and Z  
mA  
ISOLATED DC-TO-DC CONVERTER  
VISOOUT Output Voltage  
VISO  
3
3.3  
5.0  
3.465  
5.25  
V
V
SEL = GNDISO, IISOOUT = 10 mA minimum to 55 mA  
maximum1  
4.5  
90  
V
VCC ≥ 4.5 V, VSEL = VISO, IISOOUT = 10 mA minimum to  
90 mA maximum1  
Output Current Available from IISOOUT  
VISOOUT Supply Pin  
mA  
VCC ≥ 4.5 V, VSEL = VISO, VISO ≥ 4.5 V  
VCC Minimum Start-Up Voltage  
Start-Up Time  
VSTART  
tSTART  
3.135  
V
ms  
DE = GND1, see the Device Power-Up section  
DE = GND1, see the Device Power-Up section  
10  
DRIVER  
Differential Output Voltage  
Loaded  
|VOD2  
|
2.0  
2.4  
VISO  
V
VCC ≥ 3.0 V, VSEL = GNDISO, RL = 100 Ω, see Figure 40  
1.5  
2.1  
1.5  
2
3.1  
1.9  
VISO  
VISO  
VISO  
V
V
V
VCC ≥ 3.0 V, VSEL = GNDISO, RL = 54 Ω, see Figure 40  
VCC ≥ 4.5 V, VSEL = VISO, RL = 54 Ω, see Figure 40  
VCC ≥ 3.0 V, VSEL = GNDISO, −7 V ≤ common-mode  
voltage (VCM) ≤ 12 V, see Figure 41  
Over Common-Mode Range |VOD3  
|
2.1  
3.1  
1.5  
VISO  
0.2  
V
V
VCC ≥ 4.5 V, VSEL = VISO, −7 V ≤ VCM ≤ 12 V, see Figure 41  
RL = 54 Ω or 100 Ω, see Figure 40  
Δ|VOD2| for Complementary  
Output States  
Δ|VOD2|  
Common-Mode Output Voltage VOC  
3.0  
0.2  
V
V
RL = 54 Ω or 100 Ω, see Figure 40  
RL = 54 Ω or 100 Ω, see Figure 40  
Δ|VOC| for Complementary  
Output States  
Δ|VOC|  
Short-Circuit Output Current  
Output Leakage Current (Y, Z)2  
IOS  
IO  
−250  
−50  
+250  
50  
mA  
µA  
µA  
pF  
−7 V ≤ output voltage (VO) ≤ +12 V  
1
DE = RE = 0 V, VCC = 0 V or 5.5 V, VIN = 12 V  
DE = RE = 0 V, VCC = 0 V or 5.5 V, VIN = −7 V  
Input voltage (VIN) = 0.4sin(10πt × 106)  
10  
28  
Pin Capacitance (A, B, Y, Z)  
CIN  
RECEIVER  
Differential Input Threshold  
Voltage, Noninverted  
Differential Input Threshold  
Voltage, Inverted  
Input Voltage Hysteresis  
Input Current (A, B)  
VTH  
−200  
30  
−125 −30  
mV  
mV  
−7 V ≤ VCM ≤ +12 V, INV/INVR = 0 V  
−7 V ≤ VCM ≤ +12 V, INV/INVR = VIO  
125  
25  
200  
167  
VHYS  
II  
mV  
µA  
µA  
pF  
−7 V ≤ VCM ≤ +12 V  
DE = 0 V, VCC = powered/unpowered, VIN = 12 V  
DE = 0 V, VCC = powered/unpowered, VIN = −7 V  
Input voltage (VIN) = 0.4sin(10πt × 106)  
−133  
Pin Capacitance (A, B)  
CIN  
4
Rev. B | Page 4 of 28  
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DIGITAL LOGIC INPUTS  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
VIL  
0.3 × VIO  
V
DE, RE, TxD, INV, INVR, INVD  
DE, RE, TxD, INV, INVR, INVD  
DE, RE, TxD, VIN = 0 V or VIO  
INV, INVR, INVD, VIN = 0 V or VIO  
VIH  
II  
0.7 × VIO  
V
−1  
−1  
0.1  
10  
2
µA  
µA  
30  
RxD DIGITAL OUTPUT  
Output Low Voltage  
VOL  
0.4  
V
VIO = 3.6 V, output current (IOUT) = 2.0 mA, differential  
input voltage (VID) ≤ −0.2 V  
0.4  
0.2  
V
V
V
V
V
mA  
µA  
VIO = 2.7 V, IOUT = 1.0 mA, VID ≤ −0.2 V  
VIO = 1.95 V, IOUT = 500 µA, VID ≤ −0.2 V  
VIO = 3.0 V, IOUT = −2.0 mA, VID ≥ −0.03 V  
VIO = 2.3 V, IOUT = −1.0 mA, VID ≥ −0.03 V  
VIO = 1.7 V, IOUT = −500 µA, VID ≥ −0.03 V  
VO = 0 V or VIO, RE = 0 V  
Output High Voltage  
Short-Circuit Current  
VOH  
2.4  
2.0  
VIO − 0.2  
100  
Three-State Output Leakage  
Current  
IOZR  
−1  
+0.01 +1  
RE = VIO, RxD = 0 V or VIO  
COMMON-MODE TRANSIENT  
IMMUNITY3  
CMTI  
250  
kV/µs  
V
CM ≥ 1 kV, transient magnitude measured at between  
20% and 80% of VCM, see Figure 46 and Figure 47  
1 These parameters include the voltage drop across the dc resistance of the BLM15HD182SN1 ferrite beads.  
2 The ADM2563E and ADM2567E only.  
3 CMTI is the maximum common-mode voltage slew rate that can be sustained while maintaining specification compliant operation. VCM is the common-mode  
potential difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew  
rates apply to both rising and falling common-mode voltage edges.  
Rev. B | Page 5 of 28  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
TIMING SPECIFICATIONS  
ADM2565E/ADM2567E  
All minimum and maximum specifications apply over the entire recommended operation range, VCC = 3.0 V to 5.5 V, VIO = 1.7 V to 5.5  
V, TA = TMIN (−40°C) to TMAX (+105°C). All typical specifications are at TA = 25°C, VCC = VIO = 5 V, VISO = 3.3 V (VSEL = GNDISO). All  
parameters are characterized with a BLM15HD182SN1 ferrite bead between the VISOOUT and VISOIN pins, and between the GNDISO and  
GND2 pins.  
Table 2.  
Parameter  
Symbol  
Min Typ  
Max Unit  
Test Conditions/Comments  
DRIVER  
Maximum Data Rate  
Propagation Delay  
Output Skew  
Rise Time/Fall Time  
Enable Time  
25  
18  
1.5  
4.5  
25  
20  
Mbps  
tDPLH, tDPHL  
tSKEW  
tDR, tDF  
tZL, tZH  
tLZ, tHZ  
25  
5
10  
40  
40  
ns  
ns  
ns  
ns  
ns  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 3 and Figure 42  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 3 and Figure 42  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 3 and Figure 42  
RL = 110 Ω, CL = 50 pF, see Figure 5 and Figure 43  
RL = 110 Ω, CL = 50 pF, see Figure 5 and Figure 43  
Disable Time  
RECEIVER  
Propagation Delay  
Output Skew  
Enable Time  
tRPLH, tRPHL  
tSKEW  
tZL, tZH  
tLZ, tHZ  
32  
2
4
50  
6
25  
25  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 4 and Figure 44  
CL = 15 pF, see Figure 4 and Figure 44  
RL = 1 kΩ, CL = 15 pF, see Figure 6 and Figure 45  
RL = 1 kΩ, CL = 15 pF, see Figure 6 and Figure 45  
Disable Time  
8
RECEIVER CABLE INVERT, INVR  
Propagation Delay  
High to Low  
tINVRPHL  
tINVRPLH  
25  
25  
35  
35  
ns  
ns  
VID ≥ +200 mV or VID ≤ −200 mV, see Figure 7  
VID ≥ +200 mV or VID ≤ −200 mV, see Figure 7  
Low to High  
DRIVER CABLE INVERT, INVD  
Propagation Delay  
High to Low  
tINVDPHL  
tINVDPLH  
18  
18  
25  
25  
ns  
ns  
TxD = 0 V or TxD = VIO, see Figure 8  
TxD = 0 V or TxD = VIO, see Figure 8  
Low to High  
ADM2561E/ADM2563E  
All minimum and maximum specifications apply over the entire recommended operation range, VCC = 3.0 V to 5.5 V, VIO = 1.7 V to 5.5  
V, TA = TMIN (−40°C) to TMAX (+105°C). All typical specifications are at TA = 25°C, VCC = VIO = 5 V, VISO = 3.3 V (VSEL = GNDISO).  
Table 3.  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
DRIVER  
Maximum Data Rate  
Propagation Delay  
Output Skew  
Rise Time/Fall Time  
Enable Time  
500  
kbps  
ns  
ns  
tDPLH, tDPHL  
tSKEW  
tDR, tDF  
tZL, tZH  
tLZ, tHZ  
220  
5
280  
130  
800  
400  
100  
600  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 3 and Figure 42  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 3 and Figure 42  
RL = 54 Ω, CL1 = CL2 = 100 pF, see Figure 3 and Figure 42  
RL = 110 Ω, CL = 50 pF, see Figure 5 and Figure 43  
RL = 110 Ω, CL = 50 pF, see Figure 5 and Figure 43  
200  
ns  
1000 ns  
2000 ns  
Disable Time  
RECEIVER  
Propagation Delay  
Output Skew  
Enable Time  
tRPLH, tRPHL  
tSKEW  
tZL, tZH  
tLZ, tHZ  
35  
2
10  
10  
200  
50  
100  
100  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 4 and Figure 44  
CL = 15 pF, see Figure 4 and Figure 44  
RL = 1 kΩ, CL = 15 pF, see Figure 6 and Figure 45  
RL = 1 kΩ, CL = 15 pF, see Figure 6 and Figure 45  
Disable Time  
RECEIVER CABLE INVERT, INVR  
Propagation Delay  
High to Low  
tINVRPHL  
tINVRPLH  
25  
25  
200  
200  
ns  
ns  
VID ≥ +200 mV or VID ≤ −200 mV, see Figure 7  
VID ≥ +200 mV or VID ≤ −200 mV, see Figure 7  
Low to High  
DRIVER CABLE INVERT, INVD  
Propagation Delay  
High to Low  
tINVDPHL  
tINVDPLH  
220  
220  
400  
400  
ns  
ns  
TxD = 0 V or TxD = VIO, see Figure 8  
TxD = 0 V or TxD = VIO, see Figure 8  
Low to High  
Rev. B | Page 6 of 28  
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Timing Diagrams  
V
IO  
V
/2  
V
/2  
IO  
IO  
0V  
Z
tDPLH  
tDPHL  
t
= │t  
– t  
DPHL  
1/2V  
SKEW  
DPLH  
O
V
O
Y
+V  
O
90% POINT  
90% POINT  
V
= V – V  
(Y) (Z)  
DIFF  
V
DIFF  
10% POINT  
10% POINT  
–V  
O
tDF  
tDR  
NOTES  
1. Y = A, Z = B FOR ADM2561E/ADM2565E  
Figure 3. Driver Propagation Delay, Rise/Fall Timing (See Figure 42 for Test Circuit)  
A – B  
0V  
0V  
tRPHL  
tRPLH  
V
V
OH  
0.5V  
0.5V  
IO  
IO  
RxD  
tSKEW  
= |tRPLH tRPHL|  
OL  
Figure 4. Receiver Propagation Delay (See Figure 44 for Test Circuit)  
V
IO  
0.5V  
tZL  
0.5V  
IO  
IO  
DE  
0V  
tLZ  
0.5 (V  
+ V  
)
ISOIN  
OL  
Y, Z  
V
V
+ 0.5V  
– 0.5V  
OL  
V
OL  
tZH  
tHZ  
V
OH  
Y, Z  
OH  
0.5 V  
OH  
NOTES  
1. Y = A, Z = B FORADM2561E/ADM2565E  
Figure 5. Driver Enable or Disable Timing (See Figure 43 for Test Circuit)  
Rev. B | Page 7 of 28  
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
V
IO  
RE  
0.5V  
tZL  
0.5V  
IO  
IO  
0V  
tLZ  
0.5V  
IO  
RxD  
V
+ 0.5V  
OL  
OUTPUT LOW  
V
V
OL  
tHZ  
tZH  
OUTPUT HIGH  
IO  
OH  
V
– 0.5V  
RxD  
0V  
OH  
0.5V  
Figure 6. Receiver Enable or Disable Timing (See Figure 45 for Test Circuit)  
V
IO  
INVR  
0.5V  
0.5V  
IO  
IO  
0V  
tINVRPHL  
tINVRPLH  
V
OH  
0.5V  
0.5V  
IO  
IO  
RxD (V ≥ +200 mV)  
ID  
V
OL  
V
OH  
RxD (V ≤ –200 mV)  
ID  
0.5V  
0.5V  
IO  
IO  
V
OL  
NOTES  
1. INVR = INV FOR ADM2561E/ADM2565E  
Figure 7. Receiver Cable Invert Timing  
V
IO  
INVD  
0.5V  
0.5V  
IO  
IO  
tINVDPLH  
tINVDPHL  
Z
1/2|V  
|
|V  
|
O
OD  
TxD = 0  
Y
Y
1/2|V  
|
|V  
|
O
OD  
TxD = 1  
Z
NOTES  
1. INVD = INV, Y = A, Z = B FORADM2561E/ADM2565E  
Figure 8. Driver Cable Invert Timing  
Rev. B | Page 8 of 28  
 
 
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
Min  
Typ  
1013  
2.2  
Max  
Unit  
pF  
Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
f = 1 MHz  
Input capacitance  
CI  
3.0  
pF  
1 Device considered a 2-terminal device: short together Pin 1 to Pin 14 and short together Pin 15 to Pin 28.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
For additional information, see www.analog.com/icouplersafety.  
Table 5. ADM2561E/ADM2563E/ADM2565E/ADM2567E Approvals  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
To be certified under DIN V VDE 0884-112  
CQC (Pending)  
Recognized Under UL 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice 5A  
Certified under  
CQC11-471543-2012  
Single Protection, 3 kV rms  
CSA 62368-1-14, EN 62368-1:2014/A11:2017  
and IEC 62368-1:2014 second edition:  
Basic insulation:  
GB4943.1-2011:  
Basic insulation at 800 V rms (1131 V peak)  
Working voltage (VIOWM) = 400 V rms  
Basic insulation at  
800 V rms (1131 V peak)  
Reinforced insulation at 400 V rms  
(565 V peak)  
Repetitive maximum voltage (VIORM) =  
565 V peak  
Reinforced insulation at  
400 V rms (565 V peak)  
IEC 60601-1 Edition 3.1:  
Surge isolation voltage (VIOSM) = 10 kV peak  
1 means of patient protection (MOPP),  
250 V rms (354 V peak)  
Highest allowable overvoltage (VIOTM) =  
8000 V peak)  
CSA 61010-1-12 and IEC 61010-1 third edition:  
Reinforced insulation:  
Basic insulation at 300 V rms mains, 800 V  
rms (1131 V peak) from secondary circuit  
Working voltage (VIOWM) =  
330 V rms  
Reinforced insulation at 300 V rms mains,  
Repetitive maximum voltage (VIORM) =  
400 V rms (565 V peak) from secondary circuit 466 V peak  
Surge isolation voltage (VIOSM) = 6.25 kV  
peak  
Highest allowable overvoltage (VIOTM) =  
8000 V peak)  
File (Pending)  
File 205078 (basic, reinforced pending)  
File (pending)  
File (pending)  
1 In accordance with UL 1577, each ADM2561E/ADM2563E/ADM2565E/ADM2567E is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec.  
2 In accordance with DIN V VDE 0884-11, each ADM2561E/ADM2563E/ADM2565E/ADM2567E is proof tested by applying an insulation test voltage ≥ 1060 V peak for  
1 sec (partial discharge detection limit = 5 pC).  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 6. Critical Safety Related Dimensions and Material Properties  
Parameter  
Symbol Value  
Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3
kV rms  
mm  
1-minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance along body  
Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the  
PCB mounting plane  
L(I01)  
L(I02)  
L (PCB)  
8.3  
8.3  
8.1  
Minimum External Tracking (Creepage)  
mm  
mm  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
22  
µm min Insulation distance through insulation  
Tracking Resistance (Comparative Tracking Index) CTI  
Material Group  
>600  
I
V
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110: 1989-01, Table 1)  
Rev. B | Page 9 of 28  
 
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
DIN VDE V 0884-11 (VDE V 0884-11) INSULATION CHARACTERISTICS (PENDING)  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E are suitable for reinforced electrical isolation only within the safety limit data.  
Maintenance of the safety data must be ensured by means of protective circuits. The asterisk (*) marking on packages denotes DIN VDE  
V 0884-11 approval.  
Table 7.  
Test Conditions/Comments  
Description  
Symbol Characteristic  
Unit  
CLASSIFICATIONS  
Installation Classification per DIN VDE V 0110 for  
Rated Mains Voltage  
≤150 V rms  
I to IV  
≤300 V rms  
I to II  
≤400 V rms  
I
Climatic Classification  
Pollution Degree  
40/105/21  
2
Per DIN VDE V 0110, Table 1  
VOLTAGE  
Maximum Working Insulation Voltage  
Maximum Repetitive Peak Insulation Voltage  
Input to Output Test Voltage  
Method b1  
VIOWM  
VIORM  
VPR  
400  
565  
V rms  
V peak  
VIORM × 1.875 = VPR, 100% production tested,  
tm = 1 sec, partial discharge < 5 pC  
1060  
V peak  
Method a  
After Environmental Tests, Subgroup 1  
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm= 10 sec, partial  
discharge < 5 pC  
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm= 10 sec, partial  
discharge < 5 pC  
848  
678  
V peak  
V peak  
After Input and/or Safety Test,  
Subgroup 2/Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage, Basic  
Transient overvoltage, tTR = 10 sec  
Peak voltage (VPEAK) = 10 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
VIOTM  
VIOSM  
8000  
10,000  
V peak  
V peak  
Surge Isolation Voltage, Reinforced  
SAFETY LIMITING VALUES  
Case Temperature  
Total Power Dissipation at TA = 25°C  
Insulation Resistance at TS  
3.0  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Maximum value allowed in the event of a failure  
VIOSM  
6250  
V peak  
TS  
PS  
RS  
150  
2.87  
>109  
°C  
W
VIO = 500 V  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
0
50  
100  
150  
AMBIENT TEMPERATURE (°C)  
Figure 9. Thermal Derating Curve for 28-Lead Standard Small Outline,  
Wide Body, with Finer Pitch (SOIC_W_FP), Dependence of Safety Limiting  
Values with Ambient Temperature per DIN VDE V 0884-11  
Rev. B | Page 10 of 28  
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
Table 10. Maximum Continuous Working Voltage1, 2  
Parameter  
Max Unit  
Reference Standard  
Table 8.  
AC Voltage  
Parameter  
Rating  
Bipolar Waveform  
Basic Insulation  
VCC to GND1  
VIO to GND1  
Digital Input Voltage (DE, RE, TxD, INV,  
INVR, INVD) to GND1  
Digital Output Voltage (RxD) to GND1  
−0.5 V to +6.0 V  
−0.5 V to +7.0 V  
−0.3 V to VIO + 0.3 V  
565  
V peak 50-year minimum  
lifetime  
V peak 50-year minimum  
lifetime  
Reinforced Insulation 565  
Unipolar Waveform  
−0.3 V to VIO + 0.3 V  
−9 V to +14 V  
Basic Insulation  
1131 V peak 50-year minimum  
lifetime  
Driver Output/Receiver Input Voltage  
(A, B, Y, Z) to GND2  
Reinforced Insulation 1131 V peak 50-year minimum  
lifetime  
DC Voltage  
VSEL to GND2  
−0.5 V to +7.0 V  
−40°C to +105°C  
−55°C to +150°C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
Soldering (10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
Basic Insulation  
565  
V dc  
V dc  
50-year minimum  
lifetime  
50-year minimum  
lifetime  
260°C  
215°C  
220°C  
Reinforced Insulation 565  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
2 Values quoted for Material Group I, Pollution Degree II.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of  
ESD sensitive devices in an ESD protected area only.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.  
THERMAL RESISTANCE  
International Electrotechnical Commission (IEC) electromagnetic  
compatibility: Part 4-2 (IEC) per IEC 61000-4-2.  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
ESD Ratings for ADM2561E/ADM2563E/  
ADM2565E/ADM2567E  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
Table 11. ADM2561E/ADM2563E/ADM2565E/ADM2567E,  
28-Lead SOIC_W_FP  
Table 9. Thermal Resistance  
ESD Model  
Withstand Threshold (kV)  
Class  
Package Type  
θJA  
Unit  
HBM  
4
3A  
RN-28-11  
43.45  
°C/W  
CDM  
IEC1  
1.25  
C5  
1 Thermal impedance simulated values are based on JEDEC 2S2P thermal test  
board with no bias. See JEDEC JESD-51.  
12 (contact discharge) to GND2  
15 (air discharge) to GND2  
8 (across isolation barrier) to GND1  
Level 4  
Level 4  
Level 42  
1 Pin A, Pin B, Pin Y, and Pin Z only.  
2 Limited by clearance across isolation barrier.  
ESD CAUTION  
Rev. B | Page 11 of 28  
 
 
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
GND  
GND  
GND  
ISO  
1
V
1
SEL  
GND  
3
1
ISO  
4
V
V
ISOOUT  
CC  
5
GND  
GND  
GND  
V
1
ISO  
6
ADM2561E/  
ADM2565E  
1
ISOIN  
7
V
GND  
GND  
NIC  
NIC  
B
IO  
2
2
TOP VIEW  
8
RxD  
RE  
(Not to Scale)  
9
10  
DE  
TxD 11  
12  
13  
INV  
NIC  
A
GND  
GND  
2
2
GND 14  
1
NIC = NOT INTERNALLY CONNECTED  
Figure 10. ADM2561E/ADM2565E Pin Configuration  
Table 12. ADM2561E/ADM2565E Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2, 3, 5, 6, 14  
4
GND1  
VCC  
Ground 1, Logic Side.  
3.0 V to 3.6 V, or 4.5 V to 5.5 V Logic Side Power Supply. It is recommended that a 10 µF and a 0.1 µF  
decoupling capacitor be connected between VCC and GND1 (Pin 1, Pin 2, and Pin 3).  
7
8
VIO  
1.7 V to 5.5 V Logic Side Flexible I/O Supply. It is recommended that a 0.1 µF decoupling capacitor be  
connected between VIO and GND1 (Pin 5 and Pin 6).  
Receiver Output Data. When the INV pin is logic low, this output is high when (A − B) ≥ −30 mV and low  
when (A − B) ≤ −200 mV. When the INV pin is high, this output is high when (A − B) ≤ 30 mV and low  
when (A − B) ≥ 200 mV. This output is tristated when the receiver is disabled by driving the RE pin high.  
RxD  
9
RE  
Receiver Enable Input. This pin is an active low input. Driving this input low enables the receiver, and  
driving it high disables the receiver.  
10  
11  
12  
DE  
Driver Output Enable. A high level on this pin enables the driver differential outputs, Y and Z. A low level  
places these outputs in a high impedance state.  
Transmit Data Input. Data to be transmitted by the driver is applied to this input. When the INV pin is  
logic high, the data applied to this input is inverted.  
Inversion Enable. This pin is active high input. Driving this pin high inverts the TxD signal applied and  
inverts the A and B receiver inputs.  
TxD  
INV  
13, 19, 20  
15, 16, 21, 22  
17  
18  
23  
NIC  
GND2  
A
B
VISOIN  
Not Internally Connected. This pin is not internally connected.  
Isolated Ground 2 for the Integrated RS-485 Transceiver, Bus Side.  
Noninverting Driver Output/Receiver Input.  
Inverting Driver Output/Receiver Input.  
Isolated Power Supply Input. This pin must be connected externally to VISOOUT (Pin 25) through one  
BLM15HD182SN1 ferrite. It is recommended that a reservoir capacitor of 10 µF and a 0.1 µF decoupling  
capacitor be connected between VISOIN (Pin 23) and GND2 (Pin 21).  
24, 26  
25  
GNDISO  
VISOOUT  
Isolated Power Supply Ground. These pins must be connected externally to Pin 28.  
Isolated Power Supply Output. This pin must be connected externally to VISOIN (Pin 23) through one  
BLM15HD182SN1 ferrite. It is recommended that a decoupling capacitor of 0.1 µF be connected  
between VISOOUT and GNDISO (Pin 28).  
27  
28  
VSEL  
Output Voltage Selection. When VSEL = VISO, the VISO set point is 5.0 V. When VSEL = GNDISO, the VISO set  
point is 3.3 V.  
Isolated Power Supply Ground. This pin must be connected externally to GND2 (Pin 22) through one  
BLM15HD182SN1 ferrite.  
GNDISO  
Rev. B | Page 12 of 28  
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
GND  
GND  
GND  
ISO  
1
1
V
SEL  
GND  
3
1
ISO  
4
V
V
ISOOUT  
CC  
5
GND  
GND  
GND  
V
1
1
ISO  
6
ADM2563E/  
ADM2567E  
ISOIN  
7
V
GND  
GND  
A
IO  
2
2
TOP VIEW  
8
RxD  
RE  
(Not to Scale)  
9
10  
DE  
B
TxD 11  
Z
12  
13  
INVD  
INVR  
Y
GND  
GND  
2
2
GND 14  
1
Figure 11. ADM2563E/ADM2567E Pin Configuration  
Table 13. ADM2563E/ADM2567E Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 2, 3, 5, 6, 14  
4
GND1  
VCC  
Ground 1, Logic Side.  
3.0 V to 3.6 V, or 4.5 V to 5.5 V Logic Side Power Supply. It is recommended that a 10 µF and a 0.1 µF  
decoupling capacitor be connected between VCC and GND1 (Pin 1, Pin 2, and Pin 3).  
7
8
VIO  
1.7 V to 5.5 V Logic Side Flexible Input/Output (I/O) Supply. It is recommended that a 0.1 µF decoupling  
capacitor be connected between VIO and GND1 (Pin 5 and Pin 6).  
Receiver Output Data. When the INVR pin is logic low, this output is high when (A − B) ≥ −30 mV and low  
when (A − B) ≤ −200 mV. When the INVR pin is high, this output is high when (A − B) ≤ 30 mV and low  
when (A − B) ≥ 200 mV. This output is tristated when the receiver is disabled by driving the RE pin high.  
RxD  
9
RE  
Receiver Enable Input. This pin is an active low input. Driving this input low enables the receiver, and  
driving it high disables the receiver.  
10  
11  
DE  
TxD  
Driver Output Enable. A high level on this pin enables the driver differential outputs, Y and Z. A low level  
places these outputs in a high impedance state.  
Transmit Data Input. Data to be transmitted by the driver is applied to this input. When the INVD pin is  
logic high, the data applied to this input is inverted.  
12  
13  
INVD  
INVR  
Driver Inversion Enable. This pin is active high input. Driving this pin high inverts the TxD signal applied.  
Receiver Inversion Enable. This pin is active high input. Driving this pin high inverts the A and B receiver  
inputs.  
15, 16, 21, 22  
GND2  
Y
Z
B
A
VISOIN  
Isolated Ground 2 for the Integrated RS-485 Transceiver, Bus Side.  
Driver Noninverting Output.  
Driver Inverting Output.  
Receiver Inverting Input.  
Receiver Noninverting Input.  
Isolated Power Supply Input. This pin must be connected externally to VISOOUT (Pin 25) through one  
BLM15HD182SN1 ferrite. It is recommended that a reservoir capacitor of 10 µF and a 0.1 µF decoupling  
capacitor be connected between VISOIN (Pin 23) and GND2 (Pin 21).  
17  
18  
19  
20  
23  
24, 26  
25  
GNDISO  
VISOOUT  
Isolated Power Supply Ground. These pins must be connected externally to Pin 28.  
Isolated Power Supply Output. This pin must be connected externally to VISOIN (Pin 23) through one  
BLM15HD182SN1 ferrite. It is recommended that a decoupling capacitor of 0.1 µF be connected between  
V
ISOOUT and GNDISO (Pin 28).  
27  
28  
VSEL  
Output Voltage Selection. When VSEL = VISO, the VISO set point is 5.0 V. When VSEL = GNDISO, the VISO set point  
is 3.3 V.  
Isolated Power Supply Ground. This pin must be connected externally to GND2 (Pin 22) through one  
BLM15HD182SN1 ferrite.  
GNDISO  
Rev. B | Page 13 of 28  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.20  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 3.3V  
= 5V, V  
= 5V, V  
ISO  
ISO  
0.18  
= 5V  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 3.3V  
= 5V, V  
= 5V, V  
ISO  
ISO  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
= 5V  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
Figure 12. VCC Supply Current vs. Temperature at 500 kbps, No Load,  
500 kbps Models (ADM2561E and ADM2563E)  
Figure 15. VCC Supply Current vs. Frequency, TA = 25°C, No Load,  
500 kbps Models (ADM2561E and ADM2563E)  
0.30  
0.33  
V
V
V
= 3.3V, V  
= 3.3V  
ISO  
V
V
V
= 3.3V, V  
= 3.3V  
ISO  
CC  
CC  
CC  
CC  
CC  
CC  
= 5V, V  
= 3.3V  
= 5V, V  
= 3.3V  
ISO  
= 5V, V  
ISO  
= 5V, V  
= 5V  
= 5V  
ISO  
ISO  
0.25  
0.20  
0.15  
0.10  
0.05  
0.28  
0.23  
0.18  
0.13  
0.08  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
Figure 13. VCC Supply Current vs. Temperature at 500 kbps, 120 Ω Load,  
500 kbps Models (ADM2561E and ADM2563E)  
Figure 16. VCC Supply Current vs. Frequency, TA = 25°C, 120 Ω Load,  
500 kbps Models (ADM2561E and ADM2563E)  
0.35  
0.35  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 5V, V  
= 5V, V  
= 3.3V  
ISO  
ISO  
= 5V  
0.30  
0.30  
0.25  
0.20  
0.15  
0.10  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 3.3V  
= 5V, V  
= 5V, V  
ISO  
ISO  
= 5V  
0.25  
0.20  
0.15  
0.10  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
Figure 14. VCC Supply Current vs. Temperature at 500 kbps, 54 Ω Load,  
500 kbps Models (ADM2561E and ADM2563E)  
Figure 17. VCC Supply Current vs. Frequency, TA = 25°C, 54 Ω Load,  
500 kbps Models (ADM2561E and ADM2563E)  
Rev. B | Page 14 of 28  
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
0.20  
0.16  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 3.3V  
= 5V, V  
= 5V, V  
= 3.3V  
ISO  
ISO  
= 5V, V  
= 5V, V  
ISO  
ISO  
= 5V  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
= 5V  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
5
10  
15  
20  
25  
FREQUENCY (Mbps)  
Figure 18. VCC Supply Current vs. Temperature at 25 Mbps, No Load,  
25 Mbps Models (ADM2565E and ADM2567E)  
Figure 21. VCC Supply Current vs. Frequency, TA = 25°C, No Load,  
25 Mbps Models (ADM2565E and ADM2567E)  
0.30  
0.24  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 3.3V  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 5V, V  
= 5V, V  
ISO  
ISO  
= 5V, V  
= 5V, V  
= 3.3V  
ISO  
ISO  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
= 5V  
= 5V  
0.25  
0.20  
0.15  
0.10  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
5
10  
15  
20  
25  
FREQUENCY (Mbps)  
Figure 19. VCC Supply Current vs. Temperature at 25 Mbps, 120 Ω Load,  
25 Mbps Models (ADM2565E and ADM2567E)  
Figure 22. VCC Supply Current vs. Frequency, TA = 25°C, 120 Ω Load,  
25 Mbps Models (ADM2565E and ADM2567E)  
0.40  
0.30  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
V
V
V
= 3.3V, V  
= 3.3V  
CC  
CC  
CC  
ISO  
= 3.3V  
= 5V, V  
= 5V, V  
= 3.3V  
ISO  
ISO  
= 5V, V  
= 5V, V  
ISO  
ISO  
= 5V  
= 5V  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.25  
0.20  
0.15  
0.10  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
TEMPERATURE (°C)  
0
5
10  
15  
20  
25  
FREQUENCY (Mbps)  
Figure 20. VCC Supply Current vs. Temperature at 25 Mbps, 54 Ω Load,  
25 Mbps Models (ADM2565E and ADM2567E)  
Figure 23. VCC Supply Current vs. Frequency, TA = 25°C, 54 Ω Load,  
25 Mbps Models (ADM2565E and ADM2567E)  
Rev. B | Page 15 of 28  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
5.5  
0
–20  
V
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
IO  
IO  
IO  
IO  
V
V
= 3.3V  
= 5V  
ISO  
ISO  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
–40  
–60  
–80  
–100  
–120  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–8  
–6  
–4  
–2  
0
DATA RATE (bps)  
DRIVER OUTPUT HIGH VOLTAGE (V)  
Figure 24. VIO Supply Current vs. Data Rate  
Figure 27. Driver Output Current vs. Driver Output High Voltage  
120  
100  
80  
60  
40  
20  
0
140  
V
V
= 3.3V  
= 5V  
ISO  
ISO  
V
V
= 3.3V  
= 5V  
ISO  
ISO  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
0
2
4
6
8
10  
12  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE (V)  
DRIVER OUTPUT LOW VOLTAGE (V)  
Figure 25. Driver Output Current vs. Driver Differential Output Voltage  
Figure 28. Driver Output Current vs. Driver Output Low Voltage  
220  
tDPLH (V  
tDPLH (V  
tDPHL (V  
tDPHL (V  
= 3.3V)  
= 5V)  
= 3.3V)  
= 5V)  
ISO  
ISO  
ISO  
ISO  
3.8  
R
R
R
R
= 100Ω, V  
= 100Ω, V  
= 3.3V  
= 5V  
= 3.3V  
= 5V  
L
L
L
L
ISO  
ISO  
200  
180  
160  
140  
120  
= 54Ω, V  
= 54Ω, V  
ISO  
ISO  
3.3  
2.8  
2.3  
1.8  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
Figure 26. Driver Differential Output Voltage vs. Temperature  
Figure 29. Driver Differential Propagation Delay vs. Temperature,  
500 kbps Models (ADM2561E and ADM2563E)  
Rev. B | Page 16 of 28  
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
22  
6
tDPLH (V  
= 3.3V)  
= 5V)  
= 3.3V)  
= 5V)  
V
V
V
V
= 5V  
ISO  
ISO  
ISO  
ISO  
IO  
IO  
IO  
IO  
= 3.3V  
= 2.5V  
= 1.8V  
tDPLH (V  
tDPHL (V  
tDPHL (V  
20  
18  
16  
14  
12  
10  
5
4
3
2
1
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–0.015  
–0.010  
–0.005  
0
TEMPERATURE (°C)  
RECEIVER OUTPUT CURRENT (A)  
Figure 30. Driver Differential Propagation Delay vs. Temperature,  
25 Mbps Models (ADM2565E and ADM2567E)  
Figure 33. Receiver Output High Voltage vs. Receiver Output Current  
1.0  
V
V
V
V
= 5V  
CHANNEL 1 (TxD)  
IO  
IO  
IO  
IO  
= 3.3V  
= 2.5V  
= 1.8V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
CHANNEL 2 (V  
)
OD  
2
CH1 1.0V  
CH2 1.0V  
2µs/DIV  
0
5
10  
15  
RECEIVER OUTPUT CURRENT (mA)  
Figure 31. Transmitter Switching at 500 kbps,  
500 kbps Models (ADM2561E and ADM2563E)  
Figure 34. Receiver Output Low Voltage vs. Receiver Output Current  
25.5  
CHANNEL 1 (TxD)  
V
V
V
= 3.6V, 2mA LOAD  
= 2.7V, 1mA LOAD  
= 1.95V, 0.5mA LOAD  
IO  
IO  
IO  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
1
CHANNEL 2 (V  
)
OD  
2
CH1 1.0V  
CH2 1.0V  
50ns/DIV  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 32. Transmitter Switching at 25 Mbps,  
25 Mbps Models (ADM2565E and ADM2567E)  
Figure 35. Receiver Output Low Voltage vs. Temperature  
Rev. B | Page 17 of 28  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
3.0  
CHANNEL 1 (V  
)
ID  
2.8  
1
V
V
V
= 3.0V, –2mA LOAD  
= 2.3V, –1mA LOAD  
= 1.7V, –0.5mA LOAD  
IO  
IO  
IO  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
CHANNEL 2 (RxD)  
2
CH1 1.0V  
CH2 1.0V  
50ns/DIV  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 38. Receiver Switching at 25 Mbps  
Figure 36. Receiver Output High Voltage vs. Temperature  
38  
36  
34  
32  
30  
28  
26  
CHANNEL 1 (V )  
ID  
tRPLH (V  
tRPLH (V  
tRPHL (V  
tRPLH (V  
= 3.3V)  
= 5V)  
= 3.3V)  
= 5V)  
ISO  
ISO  
ISO  
ISO  
1
CHANNEL 2 (RxD)  
2
CH1 1.0V  
CH2 1.0V  
2µs/DIV  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 37. Receiver Propagation Delay vs. Temperature  
Figure 39. Receiver Switching at 500 kbps  
Rev. B | Page 18 of 28  
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
TEST CIRCUITS  
+1.5V  
A/Y  
R
L
L
V
IO  
2
S1  
V
TxD  
OD2  
R
L
R
–1.5V  
S2  
V
RE  
OC  
2
C
B/Z  
L
RE IN  
Figure 45. Receiver Enable or Disable Time Measurement  
Figure 40. Driver Voltage Measurement  
375Ω  
V
V
V
V
ISOIN  
IO CC  
ISOOUT  
A/Y  
ISOLATED  
DC-TO-DC  
CONVERTER  
V
V
CM  
TxD  
OD3  
60Ω  
A
RxD  
TxD  
B/Z  
R
120Ω  
375Ω  
15pF  
B
Z
GND  
1
Figure 41. Driver Voltage Measurement over Common-Mode Range  
V
IO  
D
Y
A/Y  
GND  
1
C
C
L
GND  
GND  
2
1
DE = V  
TxD  
R
IO  
L
ISOLATION  
BARRIER  
RE = GND  
1
L
B/Z  
Figure 42. Driver Propagation Delay Measurement  
Figure 46. CMTI Test Diagram, Full Duplex  
V
V
V
V
ISOIN  
V
V
ISOIN  
O
IO CC  
ISOOUT  
A/Y  
B/Z  
R
110Ω  
L
ISOLATED  
DC-TO-DC  
CONVERTER  
TxD  
DE  
S2  
S1  
C
L
50pF  
RxD  
TxD  
R
A
B
15pF  
GND  
Figure 43. Driver Enable or Disable Time Measurement  
120Ω  
1
V
IO  
D
A
GND  
1
V
O
GND  
GND  
2
1
RE  
B
DE = V  
IO  
ISOLATION  
BARRIER  
C
L
RE = GND  
1
Figure 44. Receiver Propagation Delay Time Measurement  
Figure 47. CMTI Test Diagram, Half Duplex  
Rev. B | Page 19 of 28  
 
 
 
 
 
 
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
THEORY OF OPERATION  
LOW EMI INTEGRATED DC-TO-DC CONVERTER  
ROBUST LOW POWER DIGITAL ISOLATOR  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E include  
a flexible integrated dc-to-dc converter optimized for low  
radiated emissions (EMI). The isolated dc-to-dc converter is  
constructed of a set of chip scale coplanar coils separated by an  
insulating material. By exciting the upper coil with an ac signal,  
power is magnetically coupled across the isolation barrier  
where it is rectified and regulated. Because no direct electrical  
connection exists between the top and bottom coil, the primary  
and secondary side of the device remain galvanically isolated.  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E feature  
a low power digital isolator to galvanically isolate the primary  
and secondary side of the device. The use of coplanar transformer  
coils with an on and off keying modulation scheme allows high  
data throughput across the isolation barrier while minimizing  
radiation emissions. This architecture provides a robust digital  
isolator with immunity to common-mode transients of greater  
than 250 kV/µs across the full temperature and supply range of  
the device.  
This isolated dc-to-dc converter features a regulated output of  
either 3.3 V or 5 V, selectable via the VSEL logic pin, which  
allows the user to optimize the supply rail of the RS-485  
transceiver. For lower power applications, a 3.3 V supply can be  
chosen. For applications requiring a large differential output  
voltage, such as PROFIBUS®, the isolated dc-to-dc converter  
can be operated with a 5 V output. Table 14 shows the  
supported supply configurations for the isolated dc-to-dc  
converter.  
CHANNEL 1 (TxD)  
1
CHANNEL 2 (V  
)
CM  
2
3
CHANNEL 3 (RxD)  
Table 14. Isolated DC-to-DC Converter Supply Configuration  
VISO Output  
Supply Voltage  
Supported VCC  
Supply Range  
VSEL Pin  
CH1 2.0V CH2 1kV  
CH3 2.0V  
100ns/DIV  
Connected to GNDISO  
Connected to VISOOUT  
3.3 V  
5 V  
3 V to 5.5 V  
4.5 V to 5.5 V  
Figure 49. Switching Correctly in the Presence of >250 kV/µs  
Common-Mode Transients  
The integrated dc-to-dc converter is optimized to minimize  
radiated EMI, and allows designers to meet the CISPR32 and  
EN 55032 Class B requirements on a 2-layer PCB with the  
addition of two low cost, surface-mount device (SMD) ferrites.  
Follow layout recommendations during PCB design to minimize  
these emissions. See the PCB Layout and Electromagnetic  
Interference (EMI) section for more details.  
HIGH DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E feature  
a proprietary transmitter architecture with a low driver output  
impedance, resulting in an increased driver differential output  
voltage. This architecture is particularly useful when operating the  
device over long cable runs, where the dc resistance of the  
transmission line dominates signal attenuation. In these  
applications, the increased differential voltage improves noise  
margin and allows transmission over longer cable lengths. In  
addition, when operated as a 5 V transceiver (VSEL = VISO), the  
ADM2561E/ADM2563E/ADM2565E/ADM2567E meet or  
exceed the PROFIBUS requirement of a minimum 2.1 V  
differential output voltage.  
80  
70  
60  
50  
CLASS A  
40  
CLASS B  
30  
20  
10  
0
IEC61000-4-2 ESD PROTECTION  
ESD is the sudden transfer of electrostatic charge between bodies  
at different potentials caused by near contact or induced by an  
electric field. ESD has the characteristics of high current in a  
short time period. The primary purpose of the IEC 61000-4-2  
test is to determine the immunity of systems to external ESD  
events outside the system during operation. IEC 61000-4-2  
describes testing using two coupling methods: contact  
30  
100  
FREQUENCY (MHz)  
1000  
Figure 48. Low Radiated Emissions DC-to-DC Converter Meets EN55022  
Class B with Margin on a 2-Layer PCB  
discharge and air discharge. Contact discharge implies a direct  
contact between the discharge gun and the equipment under  
test (EUT). During air discharge testing, the charged electrode  
of the discharge gun is moved toward the EUT until a discharge  
occurs as an arc across the air gap. The discharge gun does not  
Rev. B | Page 20 of 28  
 
 
 
 
 
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
I
PEAK  
make direct contact with the EUT. A number of factors affect  
the results and repeatability of the air discharge test, including  
humidity, temperature, barometric pressure, distance, and rate  
of approach to the EUT. Air discharge testing is a more accurate  
representation of an actual ESD event than contact discharge but is  
not as repeatable. Therefore, contact discharge is the preferred test  
method. During testing, the data port is subjected to at least  
10 positive and 10 negative single discharges. Selection of the test  
voltage is dependent on the system end environment. Figure 50  
shows the 8 kV contact discharge current waveform as described  
in the IEC 61000-4-2 specification. Some of the key waveform  
parameters are rise times of less than 1 ns and pulse widths of  
approximately 60 ns.  
30A  
90%  
IEC 61000-4-2 ESD 8kV  
16A  
8A  
I
I
30ns  
60ns  
HBM ESD 8kV  
5.33A  
10%  
TIME  
10ns  
tR = 0.7ns TO 1ns  
30ns  
60ns  
Figure 51. IEC61000-4-2 ESD 8 kV Waveform Compared to HBM ESD 8 kV  
Waveform  
I
PEAK  
30A  
90%  
TRUTH TABLES  
Table 16 and Table 17 use the abbreviations shown in Table 15.  
RE  
V
IO supplies the DE, TxD, , RxD, INVR, and INVD pins  
only.  
16A  
I
I
30ns  
60ns  
Table 15. Truth Table Abbreviations  
Letter  
8A  
Description  
H
I
L
X
Z
High level  
Indeterminate  
Low level  
Any state  
High impedance (off)  
10%  
TIME  
60ns  
30ns  
tR = 0.7ns TO 1ns  
Figure 50. IEC61000-4-2 ESD Waveform (8 kV)  
Figure 51 shows the 8 kV contact discharge current waveform  
from the IEC 61000-4-2 standard compared to the HBM ESD  
8 kV waveform. Figure 51 shows that the two standards specify  
a different waveform shape and peak current (IPEAK). The peak  
current associated with an IEC 61000-4-2 8 kV pulse is 30 A,  
whereas the corresponding peak current for HBM ESD is more  
than five times less, at 5.33 A. The other difference is the rise  
time of the initial voltage spike, with the IEC 61000-4-2 ESD  
waveform having a much faster rise time of 1 ns, compared to  
the 10 ns associated with the HBM ESD waveform. The amount  
of power associated with an IEC ESD waveform is much greater  
than that of an HBM ESD waveform. The HBM ESD standard  
requires the EUT to be subjected to three positive and three  
negative discharges, whereas in comparison, the IEC ESD  
standard requires 10 positive and 10 negative discharge tests.  
Table 16. Transmitting Truth Table  
Supply Status Inputs  
Outputs  
VCC  
VIO  
On  
On  
On  
On  
On  
Off  
X
DE  
H
H
H
H
L
TxD  
H
H
L
L
X
INVD  
Y
H
L
Z
L
H
H
L
Z
Z
Z
On  
On  
On  
On  
On  
On  
Off  
L
H
L
H
X
X
X
L
H
Z
Z
Z
X
X
X
X
Table 17. Receiving Truth Table  
Supply Status Inputs  
Output  
INVR RE  
VCC  
On  
On  
On  
On  
On  
On  
On  
X
VIO  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
On  
A − B  
RxD  
≥−0.03 V  
≤0.03 V  
≤−0.2 V  
≥0.2 V  
−0.2 V < A – B < −0.03 V  
0.03 V < A – B < 0.2 V  
Inputs open/shorted  
X
X
X
L
H
L
H
L
H
X
X
X
X
L
L
L
L
L
L
L
H
X
L
H
H
L
L
I
The ADM2561E/ADM2563E/ADM2565E/ADM2567E are  
rated to 12 kV contact and 15 kV air ESD protection to the  
IEC61000-4-2 standard between the RS-485 bus pins (A, B, Y  
and Z) and GND2. The isolation barrier provides 8 kV contact  
protection between the bus pins and GND1. These devices with  
IEC 61000-4-2 ESD ratings are better suited for operation in harsh  
environments when compared to other RS-485 transceivers that  
state varying levels of HBM ESD protection.  
I
H
Z
I
X
Off  
I
Rev. B | Page 21 of 28  
 
 
 
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
pin to correct receiver functionality when A and B are wired  
with the incorrect polarity. The ADM2561E/ADM2565E are  
half-duplex devices that have a single inversion pin, INV, to  
correct both transmitter and receiver polarity. When the  
receiver is inverted, the device maintains a Logic 1 receiver  
output with a 30 mV noise margin when inputs are shorted  
together or open circuit. Figure 52 shows the receiver output in  
both inverted and noninverted cases.  
RECEIVER FAIL-SAFE  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E  
guarantee a logic high receiver output when the receiver inputs  
are shorted, open, or connected to a terminated transmission line  
with all drivers disabled. When the receiver inversion feature is  
disabled (INV/INVR = 0 V), a fail-safe logic high output is  
achieved by setting the receiver input threshold between −30 mV  
and −200 mV. If the differential receiver input voltage (A − B) is  
greater than or equal to −30 mV, the RxD pin is logic high. If the  
A − B input is less than or equal to −200 mV, RxD is logic low.  
Fail-safe is preserved when the receiver inversion feature is  
enabled (INVR = VIO) by setting the inverted receiver input  
threshold between 30 mV and 200 mV. In the case of a shorted  
or terminated bus with all transmitters disabled, the receiver  
differential input voltage is pulled to 0 V by the termination  
resistor, resulting in a logic high with a 30 mV minimum noise  
margin. This feature eliminates the need for external biasing  
components usually required to implement fail-safe.  
A – B  
PHASE INVERTED RS-485  
INVR = H  
RS-485  
INVR = L  
0
+200mV  
+30mV  
IN  
1
FAIL SAFE  
FAIL SAFE  
–30mV  
1
–200mV  
0
These features are fully compatible with external fail-safe  
biasing configurations, which can be used in applications with  
legacy devices that lack fail-safe support, or in applications  
where additional noise margin is desired. See the AN-960  
Application Note, RS-485/RS-422 Circuit Implementation  
Guide, for details on external fail-safe biasing.  
Figure 52. RS-485 and Phase Inverted RS-485 Comparison  
HOT SWAP INPUTS  
When a circuit board is inserted in a powered (or hot)  
backplane, parasitic coupling from supply and ground rails to  
digital inputs may occur. The ADM2561E/ADM2563E/  
ADM2565E/ADM2567E contain circuitry to ensure that the  
Y and Z outputs remain in a high impedance state during  
power-up, and then default to the correct states. For example,  
DRIVER AND RECEIVER CABLE INVERSION  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E feature  
cable inversion functionality to correct errors during installa-  
tion. This adjustment can be implemented in software on the  
controller driving the RS485 transceiver and helps avoid  
additional installation costs to fix wiring errors. The ADM2563E/  
ADM2567E feature separate digital logic pins, INVD and INVR,  
to correct cases where the driver, receiver, or both are wired in  
reverse. Use the INVD pin to correct driver functionality when  
Y and Z are wired with the incorrect polarity. Use the INVR  
RE  
when VIO and VCC power up at the same time and the  
pin is  
pulled low, with the DE and TxD pins pulled high, the Y and Z  
outputs remain in high impedance until settling at an expected  
default high state for the Y pin and expected default low state  
for the Z pin.  
Table 18. Product Description Table  
Isolation  
Maximum  
Device  
Withstand Duplex Data Rate Cable Inversion Feature  
Package(s) Available  
ADM2561E 3 kV  
ADM2563E 3 kV  
ADM2565E 3 kV  
ADM2567E 3 kV  
Half  
Full  
Half  
Full  
500 kbps1 Inversion pin (INV)  
500 kbps1 Separate driver (INVD) and receiver (INVR) inversion  
28-lead SOIC_W with finer pitch  
28-lead SOIC_W with finer pitch  
28-lead SOIC_W with finer pitch  
28-lead SOIC_W with finer pitch  
25 Mbps  
25 Mbps  
Inversion pin (INV)  
Separate driver (INVD) and receiver (INVR) inversion  
1 Driver outputs are slew rate limited to minimize common-mode emissions over long cable runs.  
Rev. B | Page 22 of 28  
 
 
 
 
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
192 TRANSCEIVERS ON THE BUS  
1.7 V TO 5.5 V VIO LOGIC SUPPLY  
The standard RS-485 receiver input impedance is 12 kΩ (1 unit  
load), and the standard driver can drive up to 32 unit loads.  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E  
transceiver has a 1/6 unit load receiver input resistance  
(equivalent to 72 kΩ), allowing up to 192 transceivers to be  
connected in parallel on one communication line. Any  
combination of these devices and other RS-485 transceivers  
with a total of 32 unit loads or fewer can be connected to the line.  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E feature  
a VIO logic supply pin to allow a flexible digital interface  
operational to voltages as low as 1.7 V. The VIO pin powers the  
primary side of the signal isolation, the logic inputs, and the  
RxD output. These input and output pins interface with logic  
devices such as universal asynchronous receiver/transmitters  
(UARTs), application specific integrated circuits (ASICs), and  
microcontrollers. For applications where these devices use I/Os  
operating at voltages other than the ADM2561E/ADM2563E/  
ADM2565E/ADM2567E VCC supply voltage, the VIO supply can  
be powered from the same supply rail as the logic device. The  
DRIVER OUTPUT PROTECTION  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E feature  
two methods to prevent excessive output current and power  
dissipation caused by faults or by bus contention. Current-limit  
protection on the output stage provides immediate protection  
against short circuits over the entire common-mode voltage  
range. In addition, a thermal shutdown circuit forces the driver  
outputs to a high impedance state if the die temperature rises  
excessively. This circuitry is designed to disable the driver  
outputs when a die temperature greater than 150°C is reached.  
As the device cools, the drivers are reenabled at a temperature  
of 140°C.  
VIO supply accepts a supply voltage between 1.7 V and 5.5 V,  
allowing communication with 1.8 V, 2.5 V, 3.3 V, and 5 V  
devices.  
Rev. B | Page 23 of 28  
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
APPLICATIONS INFORMATION  
PCB LAYOUT AND ELECTROMAGNETIC  
INTERFERENCE (EMI)  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E can  
dissipate over 500 mW of power when fully loaded. Because it  
is not possible to apply a heat sink to an isolation device, the  
devices primarily depend on heat dissipation to the PCB through  
the GNDx pins. If the devices are used at high ambient  
temperatures, provide a thermal path from the GNDx pins to the  
PCB ground plane. The use of a solid GND1 and GND2 plane is  
recommended. Implementing a low thermal impedance between  
the top ground layers and internal ground layers reduce the  
temperature inside the chip significantly.  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E meet  
EN 55032 Class B/CISPR32 radiated emissions requirements.  
Two external surface-mount technology (SMT) ferrite beads  
are used to pass the Class B limits with margin. No additional  
mitigation techniques, such as stitching capacitance, are  
needed, allowing system designers to create a compliant design  
on a 2-layer PCB, without the need for complex and area  
intensive layouts.  
The ADM2561E/ADM2563E/ADM2565E/ADM2567E feature  
an internal split paddle lead frame on the bus side. For optimal  
noise suppression, filter the VISOOUT signal (Pin 25) and GNDISO  
signal (Pin 24, Pin 26, and Pin 28) for high frequency currents  
before routing power to the RS-485 transceiver and other  
circuitry. Two SMT ferrite beads, L1 and L2, are recommended  
to achieve this filtering. The size of the VISOOUT and GNDISO net  
must also be kept to a minimum. See Figure 53 for the  
recommended PCB layout.  
DEVICE POWER-UP  
The integrated isoPower isolated dc-to-dc converter requires  
10 ms to power up to the setpoint of 3.3 V or 5 V. During this  
start-up time, it is not recommended to assert the DE driver  
enable signal.  
In applications where the isolated dc-to-dc converter is  
operated with a 3.3 V output voltage (VSEL pin connected to  
GNDISO), the VCC supply rail must be greater than 3.135 V  
during the power-up sequence. After the 10 ms power-up  
duration, the VCC supply rail can operate across the full 3 V to  
5.5 V range.  
METAL KEEP OUT  
10µF  
L1  
10µF  
GND  
GND  
GND  
V
GND  
1
1
1
ISO  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
SEL  
0.1µF  
L2  
GND  
V
ISO  
3
0.1µF  
CC  
MAXIMUM DATA RATE vs. AMBIENT  
TEMPERATURE  
ISOOUT  
4
GND  
GND  
1
1
ISO  
5
GND  
V
V
ISOIN  
6
0.1µF  
0.1µF  
GND  
GND  
A
IO  
2
2
ADM2567E  
Under a large current load or when operating at high frequency  
operation, self heating effects within the isoPower dc-to-dc  
converter can limit the maximum ambient temperature achievable  
while retaining a silicon junction temperature below 150°C.  
This internal power dissipation is related to application conditions  
such as supply voltage configuration, switching frequency,  
effective load on the RS-485 bus, and the amount of time the  
transceiver is in transmit mode. Thermal performance also  
depends on the PCB design and thermal characteristics of a  
system.  
7
TOP VIEW  
RxD  
8
(Not to Scale)  
RE  
DE  
9
B
10  
11  
12  
13  
14  
TxD  
Z
INVD  
INVR  
GND  
Y
GND  
2
2
GND  
1
Figure 53. Recommended PCB Layout  
The isoPower® integrated dc-to-dc converter contains switching  
frequencies between 180 MHz and 400 MHz. To effectively  
filter these frequencies, the impedance of the ferrite bead is  
chosen to be about 2 kΩ between the 100 MHz and 1 GHz  
frequency range. Some recommended SMT ferrites are shown  
in Table 19. Although these ferrite beads are required to  
achieve compliance to EN 55032 Class B, they are not needed for  
system functionality. The ADM2561E/ADM2563E/ADM2565E/  
ADM2567E have been fully characterized with the recommended  
BLM15HD182SN1 ferrite beads.  
In applications with a fully loaded RS-485 bus (equivalent to  
54 Ω bus resistance) operating with VISO = 5 V, it is recommended  
to keep the VCC input supply greater than 4.75 V. If this is not  
possible for the ADM2565E/ADM2567E, limit either the  
maximum ambient temperature to 85°C or the maximum  
operating data rate to 6 Mbps. If this is not possible for the  
ADM2561E/ADM2563E, limit the maximum ambient  
temperature to 85°C.  
Table 19. Examples of Surface-Mount Ferrite Beads  
Manufacturer  
Murata Electronics  
Taiyo Yuden  
Device No.  
BLM15HD182SN1  
BKH1005LM182-T  
Rev. B | Page 24 of 28  
 
 
 
 
 
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Table 20. Recommended Components for ESD, EFT, and  
Surge Protection  
Recommended Components Part Number  
ISOLATED PROFIBUS SOLUTION  
The ADM2565E features a driver that is well suited for meeting  
the requirements of an isolated PROFIBUS node. When operating  
the ADM2565E as a PROFIBUS transceiver, connect the VSEL pin  
to the VISOOUT pin to operate the transceiver with a 5 V isolated  
supply voltage. The ADM2565E features the following characteris-  
tics that make it ideally suited for use in PROFIBUS applications:  
TVS  
CDSOT23-SM712  
10 Ω Pulse Proof Resistors  
CRCW060310R0FKEAHP  
Table 21. Protection Levels with Recommended Circuit  
EMC Standard  
Protection Level (kV)  
≥ 30 (exceeds Level 4)  
≥ 30 (exceeds Level 4)  
≥ 4 (exceeds Level 4)  
≥ 1 (Level 2)  
5 V isolated transceiver power supply. The 5 V VISO output  
supply provides the required current for the RS-485  
transceiver at up to 12 Mbps and the additional 5 mA  
required for the PROFIBUS termination network.  
The output driver meets or exceeds the PROFIBUS  
differential output requirements. To ensure the transmitter  
differential output does not exceed 7 V p-p over all  
conditions, place 10 Ω resistors in series with the A and B  
transmitter outputs.  
ESD—Contact (IEC61000-4-2)  
ESD—Air (IEC61000-4-2)  
EFT (IEC61000-4-4)  
Surge (IEC61000-4-5)  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period of time. The rate  
of insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation, as well as  
on the materials and material interfaces.  
High speed timing to operate at 12 Mbps with low  
propagation delay and less than 10% transmitter and  
receiver skew.  
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation wear  
out. Surface breakdown is the phenomenon of surface tracking and  
is the primary determinant of surface creepage requirements in  
system level standards. Insulation wear out is the phenomenon  
where charge injection or displacement currents inside the  
insulation material cause long-term insulation degradation.  
Low bus pin capacitance of 28 pF.  
Class I (no loss of data) immunity to IEC 61000-4-4 EFT  
to 1 kV can be achieved using a PROFIBUS shielded  
cable. At data rates of ≤500 kbps, IEC 61000-4-4 Class I to  
3 kV can be achieved with the addition of a 470 pF  
capacitor to GND1 on the RxD output pin.  
EMC, EFT, AND SURGE  
Surface Tracking  
In applications where additional levels of protection against  
IEC61000-4-4 EFT or IEC61000-4-5 surge events are required,  
external protection circuits can be added to further enhance the  
EMC robustness of these devices. See Figure 54 for a recom-  
mended protection circuit, which uses a series of SM712 transient  
voltage suppressor (TVS) and 10 Ω pulse proof resistors to  
achieve in excess of Level 4 IEC61000-4-2 ESD and IEC61000-4-4  
EFT protection, and Level 2 IEC61000-4-5 surge protection.  
Table 20 and Table 21 describe the recommended components  
for protection and the protection levels.  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working  
voltage, the environmental conditions, and the properties of the  
insulation material. Safety agencies perform characterization  
testing on the surface insulation of components, allowing the  
components to be categorized in different material groups.  
Lower material group ratings are more resistant to surface  
tracking and can therefore provide adequate lifetime with  
smaller creepage. The minimum creepage for a given working  
voltage and material group is in each system level standard and  
is based on the total rms voltage across the isolation, pollution  
degree, and material group. See Table 6 for the material group  
and creepage information for the ADM2561E/ADM2563E/  
ADM2565E/ADM2567E isolated RS-485 transceiver.  
V
V
CC  
IO  
10Ω  
A
B
R
RxD  
TxD  
120Ω  
10Ω  
10Ω  
SM712  
TVS  
Insulation Wear Out  
Z
Y
D
The lifetime of insulation caused by wear out is determined by  
the thickness, material properties, and the voltage stress applied  
across the insulation. It is important to verify that the product  
lifetime is adequate at the application working voltage. The  
working voltage supported by an isolator for wear out may not  
be the same as the working voltage supported for tracking. The  
working voltage applicable to tracking is specified in most  
standards.  
10Ω  
SM712  
TVS  
GND  
GND  
2
1
ISOLATION  
BARRIER  
Figure 54. Isolated RS-485 Solution with ESD, EFT, and Surge Protection  
Rev. B | Page 25 of 28  
 
 
 
 
 
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
Data Sheet  
Testing and modeling show that the primary driver of long-term  
degradation is displacement current in the polyimide insulation,  
causing incremental damage. The stress on the insulation can be  
divided into broad categories, such as dc stress and ac component  
time varying voltage stress. DC stress causes little wear out because  
there is no displacement current, whereas ac component time  
varying voltage stress causes wear out.  
The working voltage across the barrier from Equation 1 is  
2
VRMS = VAC RMS2 VDC  
VRMS  
RMS = 466 V  
=
2402 4002  
V
This VRMS value is the working voltage used together with the  
material group and pollution degree when determining the  
creepage required by a system standard.  
The ratings in certification documents are typically based on  
60 Hz sinusoidal stress to reflect isolation from the line voltage.  
However, many practical applications have combinations of  
60 Hz ac and dc across the barrier, as shown in Equation 1.  
Because only the ac portion of the stress causes wear out, the  
equation can be rearranged to solve for the ac rms voltage, as  
shown in Equation 2. For insulation wear out with the  
polyimide materials used in these products, the ac rms voltage  
determines the product lifetime.  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
2
VAC RMS = VRMS2 VDC  
VAC RMS  
=
4662 4002  
2
VRMS = VAC RMS2 VDC  
(1)  
V
AC RMS = 240 V rms  
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for working  
voltage in Table 10 for the expected lifetime, which is less than  
a 60 Hz sine wave, and it is well within the limit for a 50-year  
service life.  
or  
2
VAC RMS = VRMS2 VDC  
(2)  
where:  
V
V
V
RMS is the total rms working voltage.  
AC RMS is the time varying portion of the working voltage.  
DC is the dc offset of the working voltage.  
The dc working voltage limit is set by the creepage of the  
package as specified in IEC 60664-1. This value can differ for  
specific system level standards.  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
TYPICAL APPLICATIONS  
An example circuit using the ADM2567E as a full duplex  
RS-485 node is shown in Figure 56. Placement of the termina-  
tion resistor, RT, is dependent on the location of the node and  
the network topology. Refer to the AN-960 Application Note,  
RS-485/RS-422 Circuit Implementation Guide, for guidance on  
termination. Up to 192 transceivers can be connected to the  
bus. To minimize reflections, terminate the line at the receiving  
end in its characteristic impedance and keep stub lengths off  
the main line as short as possible. For half-duplex operation,  
this means that both ends of the line must be terminated  
because either end can be the receiving end.  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material  
is polyimide. To establish the critical voltages in determining  
the creepage, clearance, and lifetime of a device, see Figure 55  
and the following equations.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
TIME  
Figure 55. Critical Voltage Example  
Rev. B | Page 26 of 28  
 
 
Data Sheet  
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
LOW VOLTAGE  
1.8V/2.5V SUPPLY  
3.3V/5V POWER  
SUPPLY  
100nF  
10µF  
100nF  
GND  
ISO  
V
V
V
V
ISOIN  
CC  
SEL  
ISOOUT  
10uF  
100nF  
100nF  
LOW RADIATED EMISSIONS DC-TO-DC  
V
OSCILLATOR  
RECTIFIER  
IO  
V
CC  
REGULATOR  
DIGITAL ISOLATION  
iCoupler  
RS-485 TRANSCEIVER  
RE  
A
B
RxD  
CABLE  
INVERT  
DECODE  
ENCODE  
R
R
T
INVR  
ENCODE  
ENCODE  
DECODE  
DECODE  
MICROCONTROLLER  
Y
Z
AND  
TxD  
UART  
D
INVD  
DE  
ENCODE  
DECODE  
ADM2567E  
GND  
GND  
2
GND  
1
GND  
1
ISO  
ISOLATION  
BARRIER  
Figure 56. Example Circuit Diagram Using the ADM2567E  
Rev. B | Page 27 of 28  
 
ADM2561E/ADM2563E/ADM2565E/ADM2567E  
OUTLINE DIMENSIONS  
Data Sheet  
10.45  
10.15  
28  
15  
7.60  
7.40  
10.55  
10.05  
14  
1
PIN 1  
INDICATOR  
TOP VIEW  
0.65 BSC  
0.40  
0.25  
0.75  
0.25  
× 45°  
2.40  
2.25  
2.65  
2.35  
END VIEW  
SIDE VIEW  
0.32  
0.23  
8°  
0°  
0.25  
0.10  
0.25 BSC  
SEATING  
PLANE  
(GAUGE PLANE)  
1.40  
REF  
1.27  
0.40  
COPLANARITY  
0.10  
Figure 57. 28-Lead Standard Small Outline, Wide Body, with Finer Pitch [SOIC_W_FP]  
(RN-28-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Isolation (kV) Data Rate (Mbps) Duplex Temperature Range Package Description  
Package Option  
RN-28-1  
RN-28-1  
ADM2561EBRNZ  
3
0.5  
0.5  
0.5  
0.5  
25  
Half  
Half  
Full  
Full  
Half  
Half  
Full  
Full  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
ADM2561EBRNZ-RL7 3  
ADM2563EBRNZ  
ADM2563EBRNZ-RL7 3  
ADM2565EBRNZ  
ADM2565EBRNZ-RL7 3  
ADM2567EBRNZ  
3
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
RN-28-1  
RN-28-1  
3
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
RN-28-1  
RN-28-1  
25  
3
25  
25  
28-Lead SOIC_W_FP  
28-Lead SOIC_W_FP  
RN-28-1  
RN-28-1  
ADM2567EBRNZ-RL7 3  
EVAL-ADM2561EEBZ  
EVAL-ADM2563EEBZ  
EVAL-ADM2565EEBZ  
EVAL-ADM2567EEBZ  
Half Duplex Evaluation Board  
Full Duplex Evaluation Board  
Half Duplex Evaluation Board  
Full Duplex Evaluation Board  
1 Z = RoHS Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D22764-8/20(B)  
Rev. B | Page 28 of 28  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY