ADM3251E_1 [ADI]

Isolated, Single-Channel RS-232 Line Driver/Receiver; 隔离,单通道RS - 232线路驱动器/接收器
ADM3251E_1
型号: ADM3251E_1
厂家: ADI    ADI
描述:

Isolated, Single-Channel RS-232 Line Driver/Receiver
隔离,单通道RS - 232线路驱动器/接收器

驱动器
文件: 总16页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated, Single-Channel  
RS-232 Line Driver/Receiver  
ADM3251E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
C1  
0.1µF  
16V  
C3  
0.1µF  
10V  
C2  
0.1µF  
16V  
C4  
0.1µF  
16V  
2.5 kV fully isolated (power and data) RS-232 transceiver  
isoPower integrated, isolated dc-to-dc converter  
460 kbps data rate  
0.1µF  
V
1 Tx and 1 Rx  
V+  
ISO  
C1+ C1–  
C2+  
V–  
C2–  
VOLTAGE  
DOUBLER  
VOLTAGE  
INVERTER  
ADM3251E  
Meets EIA/TIA-232E specifications  
ESD protection on RIN and TOUT pins  
8 kV: contact discharge  
V
CC  
RECT  
REG  
OSC  
15 kV: air gap discharge  
0.1µF  
0.1 μF charge pump capacitors  
High common-mode transient immunity: >25 kV/μs  
Safety and regulatory approvals (pending)  
UL recognition  
DECODE  
ENCODE  
ENCODE  
DECODE  
R
T
*
IN  
R
T
R
OUT  
OUT  
T
IN  
2500 V rms for 1 minute per UL 1577  
VDE Certificate of Conformity  
GND  
GND  
ISO  
*5kPULL-DOWN RESISTOR ON THE RS-232 INPUT.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Figure 1.  
V
IORM = 560 V peak  
Operating temperature range: −40°C to +85°C  
Wide body, 20-lead SOIC package  
APPLICATIONS  
High noise data communications  
Industrial communications  
General-purpose RS-232 data links  
Industrial/telecommunications diagnostic ports  
Medical equipment  
GENERAL DESCRIPTION  
The ADM3251E conforms to the EIA/TIA-232E and ITU-T V. 28  
specifications and operates at data rates up to 460 kbps.  
The ADM3251E is a high speed, 2.5 kV fully isolated, single-  
channel RS-232/V.28 transceiver device that operates from a  
single 5 V power supply. Due to the high ESD protection on the  
Four external 0.1 μF charge pump capacitors are used for the  
voltage doubler/inverter, permitting operation from a single  
5 V supply.  
RIN and TOUT pins, the device is ideally suited for operation in  
electrically harsh environments or where RS-232 cables are  
frequently being plugged and unplugged.  
The ADM3251E is available in a 20-lead, wide body SOIC package  
and is specified over the −40°C to +85°C temperature range.  
The ADM3251E incorporates dual-channel digital isolators with  
isoPower™ integrated, isolated power. There is no requirement  
to use a separate isolated dc-to-dc converter. Chip-scale trans-  
former iCoupler® technology from Analog Devices, Inc., is used  
both for the isolation of the logic signals as well as for the  
integrated dc-to-dc converter. The result is a total isolation  
solution.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
 
ADM3251E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................8  
Typical Performance Characteristics ..............................................9  
Theory of Operation ...................................................................... 11  
Isolation of Power and Data...................................................... 11  
Charge Pump Voltage Converter ............................................. 12  
5.0 V Logic to EIA/TIA-232E Transmitter.............................. 12  
EIA/TIA-232E to 5 V Logic Receiver ...................................... 12  
High Baud Rate........................................................................... 12  
Thermal Analysis ....................................................................... 12  
PCB Layout ................................................................................. 13  
Insulation Lifetime..................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Package Characteristics ............................................................... 5  
Regulatory Information (Pending) ............................................ 5  
Insulation and Safety-Related Specifications............................ 5  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation  
Characteristics (Pending)............................................................ 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
REVISION HISTORY  
7/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADM3251E  
SPECIFICATIONS  
All voltages are relative to their respective ground; all minimum/maximum specifications apply over the entire recommended operating  
range; TA = 25°C and VCC = 5.0 V (dc-to-dc converter enabled), unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
5.5  
Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
VCC Operating Voltage Range  
DC-to-DC Converter Enable Threshold, VCC(ENABLE)  
4.5  
4.5  
V
V
V
1
1
3.7  
DC-to-DC Converter Disable Threshold, VCC(DISABLE)  
DC-to-DC Converter Enabled  
Input Supply Current, ICC(ENABLE)  
110  
145  
mA  
mA  
V
VCC = 5.5 V, no load  
VCC = 5.5 V, RL = 3 kΩ  
IISO = 0 μA  
VISO Output2  
5.0  
LOGIC  
Transmitter Input, TIN  
Logic Input Current, ITIN  
−10  
+0.01  
+10  
μA  
V
Logic Low Input Threshold, VTINL  
Logic High Input Threshold, VTINH  
Receiver Output, ROUT  
0.3 VCC  
0.7 VCC  
V
Logic High Output, VROUTH  
VCC − 0.1  
VCC − 0.5  
VCC  
V
V
V
V
IROUTH = −20 μA  
IROUTH = −4 mA  
IROUTH = 20 μA  
IROUTH = 4 mA  
VCC − 0.3  
0.0  
Logic Low Output, VROUTL  
0.1  
0.4  
0.3  
RS-232  
Receiver, RIN  
EIA-232 Input Voltage Range3  
EIA-232 Input Threshold Low  
EIA-232 Input Threshold High  
EIA-232 Input Hysteresis  
EIA-232 Input Resistance  
Transmitter, TOUT  
−30  
0.6  
+30  
2.4  
7
V
2.0  
2.1  
0.1  
5
V
V
V
3
kΩ  
Output Voltage Swing (RS-232)  
Transmitter Output Resistance  
Output Short-Circuit Current (RS-232)  
TIMING CHARACTERISTICS  
Maximum Data Rate  
5
5.7  
12  
V
RL = 3 kΩ to GND  
VISO = 0 V  
300  
Ω
mA  
460  
kbps  
RL = 3 kΩ to 7 kΩ, CL = 50 pF to 1000 pF  
RL = 3 kΩ, CL = 1000 pF  
Receiver Propagation Delay  
tPHL  
190  
135  
650  
80  
μs  
tPLH  
μs  
Transmitter Propagation Delay  
Transmitter Skew  
μs  
ns  
Receiver Skew  
70  
ns  
Transition Region Slew Rate3  
5.5  
10  
30  
V/μs  
+3 V to −3 V or −3 V to +3 V, VCC = +3.3 V,  
RL = +3 kΩ, CL = 1000 pF, TA = 25°C  
AC SPECIFICATIONS  
Output Rise/Fall Time, tR/tF (10% to 90%)  
2.3  
ns  
CL = 15 pF, CMOS signal levels  
Common-Mode Transient Immunity at Logic High Output4  
Common-Mode Transient Immunity at Logic Low Output4  
ESD PROTECTION (RIN And TOUT PINS)  
25  
25  
kV/μs  
kV/μs  
VCM = 1 kV, transient magnitude = 800 V  
VCM = 1 kV, transient magnitude = 800 V  
15  
8
kV  
kV  
Human body model air discharge  
Human body model contact discharge  
1 Enable/disable threshold is the VCC voltage at which the internal dc-to-dc converter is enabled/disabled.  
2 To maintain data sheet specifications, do not draw current from VISO  
3 Guaranteed by design.  
.
4 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 3 of 16  
 
ADM3251E  
All voltages are relative to their respective ground; all minimum/maximum specifications apply over the entire recommended operating  
range; TA = 25°C, VCC = 3.3 V (dc-to-dc converter disabled), and the secondary side is powered externally by VISO = 3.3 V, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
VCC Operating Voltage Range  
DC-to-DC Converter Disable Threshold, VCC(DISABLE)  
DC-to-DC Converter Disabled  
3.0  
3.7  
3.7  
V
V
1
2
VISO  
3.0  
5.5  
1.5  
12  
V
Primary Side Supply Input Current, ICC(DISABLE)  
mA  
mA  
mA  
No load  
Secondary Side Supply Input Current, IISO(DISABLE)  
Secondary Side Supply Input Current, IISO(DISABLE)  
VISO = 5.5 V, RL = 3 kΩ  
RL = 3 kΩ  
6.2  
LOGIC  
Transmitter Input, TIN  
Logic Input Current, ITIN  
−10  
+0.01  
+10  
μA  
V
Logic Low Input Threshold, VTINL  
Logic High Input Threshold, VTINH  
Receiver Output, ROUT  
0.3 VCC  
0.7 VCC  
V
Logic High Output, VROUTH  
VCC − 0.1  
VCC − 0.5  
VCC  
V
V
V
V
IROUTH = −20 μA  
IROUTH = −4 mA  
IROUTH = 20 μA  
IROUTH = 4 mA  
VCC − 0.3  
0.0  
Logic Low Output, VROUTL  
0.1  
0.4  
0.3  
RS-232  
Receiver, RIN  
EIA-232 Input Voltage Range3  
EIA-232 Input Threshold Low  
EIA-232 Input Threshold High  
EIA-232 Input Hysteresis  
EIA-232 Input Resistance  
Transmitter, TOUT  
−30  
0.6  
+30  
2.4  
7
V
1.3  
1.6  
0.3  
5
V
V
V
3
kΩ  
Output Voltage Swing (RS-232)  
Transmitter Output Resistance  
Output Short-Circuit Current (RS-232)  
TIMING CHARACTERISTICS  
Maximum Data Rate  
5
5.7  
11  
V
RL = 3 kΩ to GND  
VISO = 0 V  
300  
Ω
mA  
460  
kbps  
RL = 3 kΩ to 7 kΩ, CL = 50 pF to 1000 pF  
RL = 3 kΩ, CL = 1000 pF  
Receiver Propagation Delay  
tPHL  
190  
135  
650  
80  
μs  
tPLH  
μs  
Transmitter Propagation Delay  
Transmitter Skew  
μs  
ns  
Receiver Skew  
55  
ns  
Transition Region Slew Rate3  
5.5  
10  
30  
V/μs  
+3 V to −3 V or −3 V to +3 V, VCC = 3.3 V,  
RL = 3 kΩ, CL = 1000 pF, TA = 25°C  
AC SPECIFICATIONS  
Output Rise/Fall Time, tR/tF (10% to 90%)  
Common-Mode Transient Immunity at Logic High Output4  
Common-Mode Transient Immunity at Logic Low Output4  
ESD PROTECTION (RIN AND TOUT PINS)  
2.3  
ns  
CL = 15 pF, CMOS signal levels  
25  
25  
kV/μs  
kV/μs  
kV  
VCM = 1 kV, transient magnitude = 800 V  
VCM = 1 kV, transient magnitude = 800 V  
Human body model air discharge  
Human body model contact discharge  
15  
8
kV  
1 Enable/disable threshold is the VCC voltage at which the internal dc-to-dc converter is enabled/disabled.  
2 To maintain data sheet specifications, do not draw current from VISO  
3 Guaranteed by design.  
.
4 CM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 4 of 16  
ADM3251E  
PACKAGE CHARACTERISTICS  
Table 3.  
Parameter  
Symbol  
RI-O  
CI-O  
Min  
Typ  
1012  
2.2  
Max  
Unit  
Ω
pF  
Test Conditions  
f = 1 MHz  
Resistance (Input-Output)  
Capacitance (Input-Output)  
Input Capacitance  
CI  
4.0  
pF  
IC Junction-to-Air Thermal Resistance  
θJA  
47.05  
°C/W  
REGULATORY INFORMATION (PENDING)  
Table 4.  
UL1  
VDE  
1577 Component Recognition Program (Pending)  
Single/Basic Insulation, 2500 V rms Isolation Rating  
To be certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-122  
Reinforced insulation, 560 V peak  
1 In accordance with UL 1577, each ADM3251E is proof-tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADM3251E is proof-tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection  
limit = 5 pC).  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol  
Value  
2500  
7.7  
Unit  
V rms  
mm  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
1 minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
4.16  
mm  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017  
>175  
IIIa  
mm  
V
Distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Maximum Working Voltage Compatible with  
50-Year Service Life  
VIORM  
425  
V peak Continuous peak voltage across the isolation barrier  
Rev. 0 | Page 5 of 16  
 
 
 
ADM3251E  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS (PENDING)  
This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits.  
Table 6.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage  
Method b1  
I to IV  
I to III  
40/105/21  
2
VIORM  
VPR  
424  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production  
test, tm = 1 sec, partial discharge < 5 pC  
795  
Method a  
After Environmental Test Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, partial  
discharge < 5 pC  
VIORM × 1.2 = VPR, tm = 60 sec, partial  
discharge < 5 pC  
Transient overvoltage, tTR = 10 sec  
Maximum value allowed in the event  
of a failure  
VPR  
VP  
680  
V peak  
V peak  
V peak  
After Input and/or Safety Subgroup 2/Subgroup 3  
510  
Highest Allowable Overvoltage  
Safety-Limiting Values  
VTR  
4000  
Case Temperature  
Supply Current  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
531  
>109  
°C  
mA  
Ω
VIO = 500 V  
Rev. 0 | Page 6 of 16  
 
ADM3251E  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
Rating  
VCC, VISO  
V+  
V−  
−0.3 V to +6 V  
(VCC − 0.3 V) to +13 V  
–13 V to +0.3 V  
Input Voltages  
TIN  
RIN  
−0.3 V to (VCC + 0.3 V)  
30 V  
ESD CAUTION  
Output Voltages  
TOUT  
15 V  
ROUT  
−0.3 V to (VCC + 0.3 V)  
Short-Circuit Duration  
TOUT  
Power Dissipation  
θJA, Thermal Impedance  
Operating Temperature Range  
Industrial  
Continuous  
47.05°C/W  
−40°C to +85°C  
−65°C to +150°C  
Storage Temperature Range  
Pb-Free Temperature (Soldering, 30 sec) 260°C  
Rev. 0 | Page 7 of 16  
 
 
ADM3251E  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
1
2
3
4
5
6
7
8
9
20 V  
ISO  
V
19 V+  
CC  
CC  
V
18 C1+  
17 C1–  
GND  
GND  
GND  
GND  
ADM3251E  
16  
15  
T
OUT  
TOP VIEW  
(Not to Scale)  
R
IN  
14 C2+  
13 C2–  
12 V–  
R
OUT  
T
IN  
GND 10  
11 GND  
ISO  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2, 3  
NC  
VCC  
No Connect. This pin should always remain unconnected.  
Power Supply Input. A 0.1 μF decoupling capacitor is required between VCC and ground. When a voltage  
between 4.5 V and 5.5 V is applied to the VCC pin, the integrated dc-to-dc converter is enabled. If this voltage is  
lowered to between 3.0 V and 3.7 V, the integrated dc-to-dc converter is disabled.  
4, 5, 6, 7, 10 GND  
Ground Pin.  
8
9
ROUT  
TIN  
GNDISO  
V−  
C2−, C2+  
Receiver Output. This pin outputs CMOS logic levels.  
Transmitter (Driver) Input. This pin accepts TTL/CMOS levels.  
Ground Reference for Isolator Primary Side.  
Internally Generated Negative Supply.  
Positive and Negative Connections for Charge Pump Capacitors. External Capacitor C2 is connected between  
these pins; a 0.1 μF capacitor is recommended, but larger capacitors up to 10 μF can be used.  
11  
12  
13, 14  
15  
RIN  
Receiver Input. This input accepts RS-232 signal levels.  
16  
TOUT  
Transmitter (Driver) Output. This outputs RS-232 signal levels.  
17, 18  
C1−, C1+  
Positive and Negative Connections for Charge Pump Capacitors. External Capacitor C1 is connected between  
these pins; a 0.1 μF capacitor is recommended, but larger capacitors up to 10 μF can be used.  
19  
20  
V+  
VISO  
Internally Generated Positive Supply.  
Isolated Supply Voltage for Isolator Secondary Side. A 0.1 μF decoupling capacitor is required between VISO and  
ground. When the integrated dc-to-dc converter is enabled, the VISO pin should not be used to power external  
circuitry. If the integrated dc-to-dc converter is disabled, power the secondary side by applying a voltage in the  
range of 3.0 V to 5.5 V to this pin.  
Rev. 0 | Page 8 of 16  
 
ADM3251E  
TYPICAL PERFORMANCE CHARACTERISTICS  
12  
12  
10  
8
Tx HIGH (V = 5V)  
CC  
Tx OUTPUT HIGH (V = 5V)  
CC  
8
4
0
Tx HIGH (V  
ISO  
= 3.3V)  
6
Tx OUTPUT HIGH (V  
ISO  
= 3.3V)  
4
2
0
–2  
–4  
–6  
–4  
–8  
Tx LOW (V  
ISO  
= 3.3V)  
Tx OUTPUT LOW (V  
ISO  
= 3.3V)  
–8  
–10  
–12  
Tx LOW (V = 5V)  
CC  
Tx OUTPUT LOW (V = 5V)  
CC  
–12  
0
200  
400  
600  
800  
1000  
0
1
2
3
4
LOAD CAPACITANCE (pF)  
LOAD CURRENT (mA)  
Figure 3. Transmitter Output Voltage High/Low vs. Load  
Capacitance @ 460 kbps  
Figure 6. Transmitter Output Voltage High/Low vs. Load Current  
12  
10  
15  
Tx OUTPUT HIGH  
V+ (V = 5V)  
CC  
10  
5
8
6
V+ (V  
= 3.3V)  
= 3.3V)  
ISO  
ISO  
4
2
0
0
–2  
–4  
–6  
V– (V  
–5  
–10  
–15  
V– (V = 5V)  
CC  
Tx OUTPUT LOW  
–8  
–10  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
0
1
2
3
4
V
(V)  
LOAD CURRENT (mA)  
CC  
Figure 7. Charge Pump V+, V− vs. Load Current  
Figure 4. Transmitter Output Voltage High/Low vs. VCC, RL = 3 kΩ  
400  
12  
V–  
10  
Tx OUTPUT HIGH  
350  
300  
250  
200  
8
6
4
2
V+  
0
–2  
–4  
150  
100  
50  
Tx OUTPUT LOW  
–6  
–8  
–10  
–12  
0
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
V
(V)  
CC  
ISO  
Figure 8. Charge Pump Impedance vs. VCC  
Figure 5. Transmitter Output Voltage High/Low vs. VISO, RL = 3 kΩ  
Rev. 0 | Page 9 of 16  
 
ADM3251E  
400  
350  
300  
250  
200  
V–  
V+  
1
150  
100  
50  
2
5
CC  
LOAD = 3kAND 1nF  
0
3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
ISO  
TIME (500ns/DIV)  
Figure 9. Charge Pump Impedance vs. VISO  
Figure 11. 460 kpbs Data Transmission  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
180  
160  
140  
120  
100  
80  
V
= 5.5V  
CC  
HIGH THRESHOLD  
LOW THRESHOLD  
V
= 5V  
CC  
V
= 4.5V  
CC  
60  
40  
20  
0
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
0
46  
92  
138 184 230 276 322 368 414 460  
DATA RATE (kbps)  
V
CC  
Figure 10. Primary Supply Current vs. Data Rate  
Figure 12. TIN Voltage Threshold vs. VCC  
Rev. 0 | Page 10 of 16  
ADM3251E  
THEORY OF OPERATION  
The ADM3251E is a high speed, 2.5 kV fully isolated, single-  
channel RS-232 transceiver device that operates from a single  
power supply.  
The ADM3251E can be operated with the dc-to-dc converter  
enabled or disabled. The internal dc-to-dc converter state of the  
ADM3251E is controlled by the input VCC voltage. In normal  
operating mode, VCC is set between 4.5 V and 5.5 V and the  
internal dc-to-dc converter is enabled. When/if it is desired  
to disable the dc-to-dc converter, lower VCC to a value between  
3.0 V and 3.7 V. In this mode, the user must externally supply  
isolated power to the VISO pin. An isolated secondary side  
voltage of between 3.0 V and 5.5 V and a secondary side input  
current, IISO, of 12 mA (maximum) is required on the VISO pin.  
The signal channels of the ADM3251E then continue to operate  
normally.  
The internal circuitry consists of the following main sections:  
Isolation of power and data  
A charge pump voltage converter  
A 5.0 V logic to EIA/TIA-232E transmitter  
A EIA/TIA-232E to 5.0 V logic receiver  
C1  
0.1µF  
16V  
C3  
0.1µF  
10V  
C2  
0.1µF  
16V  
C4  
0.1µF  
16V  
0.1µF  
V
V+  
ISO  
The TIN pin accepts TTL/CMOS input levels. The driver input  
signal that is applied to the TIN pin is referenced to logic ground  
(GND). It is coupled across the isolation barrier, inverted, and  
then appears at the transceiver section, referenced to isolated  
ground (GNDISO). Similarly, the receiver input (RIN) accepts  
RS-232 signal levels that are referenced to isolated ground.  
The RIN input is inverted and coupled across the isolation  
barrier to appear at the ROUT pin, referenced to logic ground.  
C1+ C1–  
C2+  
V–  
C2–  
VOLTAGE  
DOUBLER  
VOLTAGE  
INVERTER  
ADM3251E  
V
CC  
RECT  
REG  
OSC  
0.1µF  
DECODE  
ENCODE  
ENCODE  
DECODE  
R
T
*
IN  
R
T
R
OUT  
OUT  
T
IN  
The digital signals are transmitted across the isolation barrier  
using iCoupler technology. Chip-scale transformer windings  
couple the digital signals magnetically from one side of the  
barrier to the other. Digital inputs are encoded into waveforms  
that are capable of exciting the primary transformer of the winding.  
At the secondary winding, the induced waveforms are decoded  
into the binary value that was originally transmitted.  
GND  
GND  
ISO  
*5kPULL-DOWN RESISTOR ON THE RS-232 INPUT.  
Figure 13. Functional Block Diagram  
ISOLATION OF POWER AND DATA  
The ADM3251E incorporates a dc-to-dc converter section,  
which works on principles that are common to most modern  
power supply designs. VCC power is supplied to an oscillating  
circuit that switches current into a chip-scale air core transformer.  
Power is transferred to the secondary side, where it is rectified  
to a high dc voltage. The power is then linearly regulated to  
about 5.0 V and supplied to the secondary side data section  
and to the VISO pin. The VISO pin should not be used to power  
external circuitry.  
There is hysteresis in the VCC input voltage detect circuit.  
Once the dc-to-dc converter is active, the input voltage  
must be decreased below the turn-on threshold to disable  
the converter. This feature ensures that the converter does  
not go into oscillation due to noisy input power.  
Because the oscillator runs at a constant high frequency  
independent of the load, excess power is internally dissipated  
in the output voltage regulation process. Limited space for  
transformer coils and components also adds to internal power  
dissipation. This results in low power conversion efficiency.  
Rev. 0 | Page 11 of 16  
 
 
ADM3251E  
S1  
S2  
S3  
S4  
V
V+ = 2V  
ISO  
V
ISO  
ISO  
+
C3  
0.1µF  
10V  
+
+
0.1µF  
4.5V TO 5.5V  
0.1µF  
C1  
C3  
+
+
V+  
V
V
GND  
CC  
ISO  
ADM3251E  
C1+  
C1–  
C1  
0.1µF  
16V  
INTERNAL  
OSCILLATOR  
EIA/TIA-232E OUTPUT  
EIA/TIA-232E INPUT  
T
OUT  
R
T
CMOS OUTPUT  
CMOS INPUT  
Figure 16. Charge Pump Voltage Doubler  
OUT  
R
IN  
IN  
C2+  
C2  
+
0.1µF  
16V  
S1  
S2  
S3  
S4  
C2–  
V–  
V+  
GND  
ISO  
FROM  
VOLTAGE  
DOUBLER  
+
+
C2  
C4  
C4  
+ 0.1µF  
16V  
ISOLATION  
BARRIER  
V– = –(V+)  
GND  
ISO  
INTERNAL  
OSCILLATOR  
GND  
GND  
ISO  
Figure 14. Typical Operating Circuit with the DC-to-DC Converter Enabled  
(VCC = 4.5 V to 5.5 V)  
Figure 17. Charge Pump Voltage Inverter  
3.0V TO 5.5V  
ISOLATED SUPPLY  
5.0 V LOGIC TO EIA/TIA-232E TRANSMITTER  
V
ISO  
+
C3  
0.1µF  
10V  
3.0V TO 3.7V  
0.1µF  
0.1µF  
The transmitter driver converts the 5.0 V logic input levels  
into RS-232 output levels. When driving an RS-232 load with  
VCC = 5.0 V, the output voltage swing is typically 10 V.  
+
+
V+  
V
CC  
ADM3251E  
C1+  
C1–  
C1  
0.1µF  
16V  
EIA/TIA-232E TO 5 V LOGIC RECEIVER  
EIA/TIA-232E OUTPUT  
EIA/TIA-232E INPUT  
T
OUT  
R
T
CMOS OUTPUT  
CMOS INPUT  
OUT  
The receiver is an inverting level-shifter that accepts the RS-232  
input level and translates it into a 5.0 V logic output level. The  
input has an internal 5 kΩ pull-down resistor to ground and is  
also protected against overvoltages of up to 30 V. An uncon-  
nected input is pulled to 0 V by the internal 5 kΩ pull-down  
resistor. This, therefore, results in a Logic 1 output level for an  
unconnected input or for an input connected to GND. The  
receiver has a Schmitt-trigger input with a hysteresis level of  
0.1 V. This ensures error-free reception for both a noisy input  
and for an input with slow transition times.  
R
IN  
IN  
C2+  
C2  
+
0.1µF  
16V  
C2–  
V–  
C4  
+ 0.1µF  
16V  
ISOLATION  
BARRIER  
GND  
GND  
ISO  
Figure 15. Typical Operating Circuit with the DC-to-DC Converter Disabled  
(VCC = 3.0 V to 3.7 V)  
CHARGE PUMP VOLTAGE CONVERTER  
HIGH BAUD RATE  
The charge pump voltage converter consists of a 200 kHz  
oscillator and a switching matrix. The converter generates a  
10.0 V supply from the input 5.0 V level. This is done in two  
stages by using a switched capacitor technique as illustrated in  
Figure 16 and Figure 17. First, the 5.0 V input supply is doubled  
to 10.0 V by using C1 as the charge storage element. The +10.0 V  
level is then inverted to generate −10.0 V using C2 as the storage  
element. C3 is shown connected between V+ and VISO, but is  
The ADM3251E offers high slew rates, permitting data trans-  
mission at rates well in excess of the EIA/TIA-232E specifications.  
The RS-232 voltage levels are maintained at data rates up to  
460 kbps.  
THERMAL ANALYSIS  
Each ADM3251E device consists of three internal die, attached  
to a split-paddle lead frame. For the purposes of thermal analysis,  
it is treated as a thermal unit with the highest junction temper-  
ature reflected in the θJA value from Table 7. The value of θJA is  
based on measurements taken with the part mounted on a  
JEDEC standard 4-layer PCB with fine-width traces in still  
air. Following the recommendations in the PCB Layout section  
decreases the thermal resistance to the PCB, allowing increased  
thermal margin at high ambient temperatures.  
equally effective if connected between V+ and GNDISO  
.
Capacitors C3 and C4 are used to reduce the output ripple.  
Their values are not critical and can be increased, if desired.  
Larger capacitors (up to 10 ꢀF) can be used in place of  
Capacitors C1, C2, C3, and C4.  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
 
ADM3251E  
Because it is not possible to apply a heat sink to an isolation  
PCB LAYOUT  
device, the device primarily depends on heat dissipating into  
the PCB through the GND pins. If the device is used at high  
ambient temperatures, care should be taken to provide a  
thermal path from the GND pins to the PCB ground plane.  
The board layout in Figure 18 shows enlarged pads for Pin 4,  
Pin 5, Pin 6, Pin 7, Pin 10, and Pin 11. Multiple vias should be  
implemented from each of the pads to the ground plane,  
which significantly reduce the temperatures inside the chip.  
The dimensions of the expanded pads are left to the discretion  
of the designer and the available board space.  
The ADM3251E requires no external circuitry for its logic  
interfaces. Power supply bypassing is required at the input  
and output supply pins (see Figure 18).  
The power supply section of the ADM3251E uses a 300 MHz  
oscillator frequency to pass power through its chip-scale trans-  
formers. In addition, the normal operation of the data section  
of the iCoupler introduces switching transients on the power  
supply pins. Low inductance capacitors are required to bypass  
noise generated at the switching frequency as well as 1 ns pulses  
generated by the data transfer and dc refresh circuitry. The total  
lead length between both ends of the capacitor and the input  
power supply pin should not exceed 20 mm.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of insula-  
tion degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADM3251E.  
In cases where EMI emission is a concern, series inductance can  
be added to critical power and ground traces. Discrete inductors  
should be added to the line such that the high frequency bypass  
capacitors are between the inductor and the ADM3251E device  
pin. Inductance can be added in the form of discrete inductors  
or ferrite beads added to both power and ground traces. The  
recommended value corresponds to impedance between 50 Ω  
and 100 Ω at approximately 300 MHz.  
The insulation lifetime of the ADM3251E depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 19, Figure 20, and Figure 21 illustrate these  
different isolation voltage waveforms.  
In applications involving high common-mode transients,  
care should be taken to ensure that board coupling across the  
isolation barrier is minimized. Furthermore, the board layout  
should be designed such that any coupling that does occur  
equally affects all pins on a given component side. Failure  
to ensure this can cause voltage differentials between pins to  
exceed the absolute maximum ratings of the device, thereby  
leading to latch-up and/or permanent damage.  
Bipolar ac voltage is the most stringent environment. In the  
case of unipolar ac or dc voltage, the stress on the insulation is  
significantly lower.  
RATED PEAK VOLTAGE  
VIA TO GND  
ISO  
0V  
0.1µF  
V
NC  
ISO  
Figure 19. Bipolar AC Waveform  
C3  
V
V+  
CC  
CC  
ADM3251E  
V
C1+  
RATED PEAK VOLTAGE  
0.1µF  
C1  
GND  
GND  
GND  
GND  
C1–  
T
0V  
OUT  
Figure 20. Unipolar AC Waveform  
R
IN  
C2+  
C2–  
C2  
C4  
RATED PEAK VOLTAGE  
R
OUT  
T
V–  
IN  
0V  
GND  
GND  
ISO  
Figure 21. DC Waveform Outline Dimensions  
NC = NO CONNECT  
Figure 18. Recommended Printed Circuit Board Layout  
Rev. 0 | Page 13 of 16  
 
 
 
 
 
 
 
ADM3251E  
OUTLINE DIMENSIONS  
13.00 (0.5118)  
12.60 (0.4961)  
20  
1
11  
10  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 22. 20-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-20)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
ADM3251EARWZ1  
ADM3251EARWZ-REEL1  
Temperature Range  
Package Description  
Package Option  
RW-20  
RW-20  
−40°C to +85°C  
−40°C to +85°C  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 14 of 16  
 
ADM3251E  
NOTES  
Rev. 0 | Page 15 of 16  
ADM3251E  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07388-0-7/08(0)  
Rev. 0 | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY