ADM3251E_VE [ADI]

Isolated, Single-Channel RS-232 Line Driver/Receiver; 隔离,单通道RS - 232线路驱动器/接收器
ADM3251E_VE
型号: ADM3251E_VE
厂家: ADI    ADI
描述:

Isolated, Single-Channel RS-232 Line Driver/Receiver
隔离,单通道RS - 232线路驱动器/接收器

驱动器
文件: 总16页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated, Single-Channel  
RS-232 Line Driver/Receiver  
ADM3251E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
C1  
0.1µF  
16V  
C3  
0.1µF  
10V  
C2  
0.1µF  
16V  
C4  
0.1µF  
16V  
2.5 kV fully isolated (power and data) RS-232 transceiver  
isoPower integrated, isolated dc-to-dc converter  
460 kbps data rate  
0.1µF  
V
1 Tx and 1 Rx  
V+  
ISO  
C1+ C1–  
C2+  
V–  
C2–  
VOLTAGE  
DOUBLER  
VOLTAGE  
INVERTER  
ADM3251E  
Meets EIA/TIA-232E specifications  
ESD protection on RIN and TOUT pins  
8 kV: contact discharge  
V
CC  
RECT  
REG  
OSC  
15 kV: air gap discharge  
0.1 μF charge pump capacitors  
High common-mode transient immunity: >25 kV/μs  
Safety and regulatory approvals  
UL recognition  
0.1µF  
DECODE  
ENCODE  
ENCODE  
DECODE  
R
T
*
IN  
R
T
R
OUT  
OUT  
T
IN  
2500 V rms for 1 minute per UL 1577  
VDE Certificate of Conformity  
GND  
GND  
ISO  
*INTERNAL 5kPULL-DOWN RESISTOR ON THE RS-232 INPUT.  
DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01  
CSA Component Acceptance Notice #5A  
Operating temperature range: −40°C to +85°C  
Wide body, 20-lead SOIC package  
Figure 1.  
APPLICATIONS  
High noise data communications  
Industrial communications  
General-purpose RS-232 data links  
Industrial/telecommunications diagnostic ports  
Medical equipment  
GENERAL DESCRIPTION  
transformer. Special care must be taken during printed circuit  
board (PCB) layout to meet emissions standards. Refer to  
Application Note AN-0971, Control of Radiated Emissions with  
isoPower Devices, for details on board layout considerations.  
The ADM3251E is a high speed, 2.5 kV fully isolated, single-  
channel RS-232/V.28 transceiver device that operates from a  
single 5 V power supply. Due to the high ESD protection on the  
RIN and TOUT pins, the device is ideally suited for operation in  
electrically harsh environments or where RS-232 cables are  
frequently being plugged and unplugged.  
The ADM3251E conforms to the EIA/TIA-232E and ITU-T V. 28  
specifications and operates at data rates up to 460 kbps.  
The ADM3251E incorporates dual-channel digital isolators with  
isoPower™ integrated, isolated power. There is no requirement  
to use a separate isolated dc-to-dc converter. Chip-scale trans-  
former iCoupler® technology from Analog Devices, Inc., is used  
both for the isolation of the logic signals as well as for the inte-  
grated dc-to-dc converter. The result is a total isolation solution.  
Four external 0.1 μF charge pump capacitors are used for the  
voltage doubler/inverter, permitting operation from a single  
5 V supply.  
The ADM3251E is available in a 20-lead, wide body SOIC package  
and is specified over the −40°C to +85°C temperature range.  
The ADM3251E contains isoPower technology that uses high  
frequency switching elements to transfer power through the  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2008–2010 Analog Devices, Inc. All rights reserved.  
 
 
ADM3251E  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 11  
Isolation of Power and Data...................................................... 11  
Charge Pump Voltage Converter ............................................. 12  
5.0 V Logic to EIA/TIA-232E Transmitter.............................. 12  
EIA/TIA-232E to 5 V Logic Receiver ...................................... 12  
High Baud Rate........................................................................... 12  
Thermal Analysis ....................................................................... 12  
Insulation Lifetime..................................................................... 12  
Applications Information.............................................................. 13  
PCB Layout ................................................................................. 13  
Example PCB for Reduced EMI............................................... 13  
Isolated Power Supply Circuit .................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Package Characteristics ............................................................... 5  
Regulatory Information............................................................... 5  
Insulation and Safety-Related Specifications............................ 5  
DIN EN 60747-5-2 (VDE 0884 Teil 2): 2003-01 Insulation  
Characteristics .............................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
5/10—Rev. D to Rev. E  
11/09—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Changes to Table 4............................................................................ 5  
Changes to Figure 1...........................................................................1  
Changed to Primary Side Supply Input Current, ICC(DISABLE)  
Maximum Limit to 2.5 mA ..............................................................4  
Changes to Table 4.............................................................................5  
Changes to Figure 13...................................................................... 11  
3/10—Rev. C to Rev. D  
Changes to Features and General Description Sections.............. 1  
Changes to Table 4 and Table 5....................................................... 5  
Changed DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Insulation Characteristics (Pending) Heading to DIN EN  
60747-5-2 (VDE 0884 Teil 2): 2003-01 Insulation  
Characteristics................................................................................... 6  
Changes to Pollution Degree and Input–to-Output Test  
Voltage Parameters, Table 6............................................................. 6  
Added Applications Information Section and Example PCB  
for Reduced EMI Section .............................................................. 13  
Added Table 9 and Table 10; Renumbered Sequentially ........... 13  
Changes to PCB Layout Section................................................... 13  
Added Isolated Power Supply Circuit Section............................ 14  
Added Figure 22; Renumbered Sequentially .............................. 14  
9/08—Rev. 0 to Rev. A  
Changes to Timing Parameters in Table 1 .....................................3  
Changes to Timing Parameters in Table 2 .....................................4  
Changes to Ordering Guide.......................................................... 14  
7/08—Revision 0: Initial Version  
1/10—Rev. B to Rev. C  
Changes to Table 4............................................................................ 5  
Rev. E | Page 2 of 16  
 
ADM3251E  
SPECIFICATIONS  
All voltages are relative to their respective ground; all minimum/maximum specifications apply over the entire recommended operating  
range; TA = 25°C and VCC = 5.0 V (dc-to-dc converter enabled), unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
5.5  
Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
VCC Operating Voltage Range  
DC-to-DC Converter Enable Threshold, VCC(ENABLE)  
4.5  
4.5  
V
V
V
1
1
3.7  
DC-to-DC Converter Disable Threshold, VCC(DISABLE)  
DC-to-DC Converter Enabled  
Input Supply Current, ICC(ENABLE)  
110  
145  
mA  
mA  
V
VCC = 5.5 V, no load  
VCC = 5.5 V, RL = 3 kΩ  
IISO = 0 μA  
VISO Output2  
5.0  
LOGIC  
Transmitter Input, TIN  
Logic Input Current, ITIN  
−10  
+0.01  
+10  
μA  
V
Logic Low Input Threshold, VTINL  
Logic High Input Threshold, VTINH  
Receiver Output, ROUT  
0.3 VCC  
0.7 VCC  
V
Logic High Output, VROUTH  
VCC − 0.1  
VCC − 0.5  
VCC  
V
V
V
V
IROUTH = −20 μA  
IROUTH = −4 mA  
IROUTH = 20 μA  
IROUTH = 4 mA  
VCC − 0.3  
0.0  
Logic Low Output, VROUTL  
0.1  
0.4  
0.3  
RS-232  
Receiver, RIN  
EIA-232 Input Voltage Range3  
EIA-232 Input Threshold Low  
EIA-232 Input Threshold High  
EIA-232 Input Hysteresis  
EIA-232 Input Resistance  
Transmitter, TOUT  
−30  
0.6  
+30  
2.4  
7
V
2.0  
2.1  
0.1  
5
V
V
V
3
kΩ  
Output Voltage Swing (RS-232)  
Transmitter Output Resistance  
Output Short-Circuit Current (RS-232)  
TIMING CHARACTERISTICS  
Maximum Data Rate  
5
5.7  
12  
V
RL = 3 kΩ to GND  
VISO = 0 V  
300  
Ω
mA  
460  
kbps  
RL = 3 kΩ to 7 kΩ, CL = 50 pF to 1000 pF  
RL = 3 kΩ, CL = 1000 pF  
Receiver Propagation Delay  
tPHL  
190  
135  
650  
80  
ns  
tPLH  
ns  
Transmitter Propagation Delay  
Transmitter Skew  
ns  
ns  
Receiver Skew  
70  
ns  
Transition Region Slew Rate3  
5.5  
10  
30  
V/μs  
+3 V to −3 V or −3 V to +3 V, VCC = +3.3 V,  
RL = 3 kΩ, CL = 1000 pF, TA = 25°C  
AC SPECIFICATIONS  
Output Rise/Fall Time, tR/tF (10% to 90%)  
2.3  
ns  
CL = 15 pF, CMOS signal levels  
Common-Mode Transient Immunity at Logic High Output4  
Common-Mode Transient Immunity at Logic Low Output4  
ESD PROTECTION (RIN And TOUT PINS)  
25  
25  
kV/μs  
kV/μs  
VCM = 1 kV, transient magnitude = 800 V  
VCM = 1 kV, transient magnitude = 800 V  
15  
8
kV  
kV  
Human body model air discharge  
Human body model contact discharge  
1 Enable/disable threshold is the VCC voltage at which the internal dc-to-dc converter is enabled/disabled.  
2 To maintain data sheet specifications, do not draw current from VISO  
3 Guaranteed by design.  
.
4 VCM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. E | Page 3 of 16  
 
ADM3251E  
All voltages are relative to their respective ground; all minimum/maximum specifications apply over the entire recommended operating  
range; TA = 25°C, VCC = 3.3 V (dc-to-dc converter disabled), and the secondary side is powered externally by VISO = 3.3 V, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC CHARACTERISTICS  
VCC Operating Voltage Range  
DC-to-DC Converter Disable Threshold, VCC(DISABLE)  
DC-to-DC Converter Disabled  
3.0  
3.7  
3.7  
V
V
1
2
VISO  
3.0  
5.5  
2.5  
12  
V
Primary Side Supply Input Current, ICC(DISABLE)  
mA  
mA  
mA  
No load  
Secondary Side Supply Input Current, IISO(DISABLE)  
Secondary Side Supply Input Current, IISO(DISABLE)  
VISO = 5.5 V, RL = 3 kΩ  
RL = 3 kΩ  
6.2  
LOGIC  
Transmitter Input, TIN  
Logic Input Current, ITIN  
−10  
+0.01  
+10  
μA  
V
Logic Low Input Threshold, VTINL  
Logic High Input Threshold, VTINH  
Receiver Output, ROUT  
0.3 VCC  
0.7 VCC  
V
Logic High Output, VROUTH  
VCC − 0.1  
VCC − 0.5  
VCC  
V
V
V
V
IROUTH = −20 μA  
IROUTH = −4 mA  
IROUTH = 20 μA  
IROUTH = 4 mA  
VCC − 0.3  
0.0  
Logic Low Output, VROUTL  
0.1  
0.4  
0.3  
RS-232  
Receiver, RIN  
EIA-232 Input Voltage Range3  
EIA-232 Input Threshold Low  
EIA-232 Input Threshold High  
EIA-232 Input Hysteresis  
EIA-232 Input Resistance  
Transmitter, TOUT  
−30  
0.6  
+30  
2.4  
7
V
1.3  
1.6  
0.3  
5
V
V
V
3
kΩ  
Output Voltage Swing (RS-232)  
Transmitter Output Resistance  
Output Short-Circuit Current (RS-232)  
TIMING CHARACTERISTICS  
Maximum Data Rate  
5
5.7  
11  
V
RL = 3 kΩ to GND  
VISO = 0 V  
300  
Ω
mA  
460  
kbps  
RL = 3 kΩ to 7 kΩ, CL = 50 pF to 1000 pF  
RL = 3 kΩ, CL = 1000 pF  
Receiver Propagation Delay  
tPHL  
190  
135  
650  
80  
ns  
tPLH  
ns  
Transmitter Propagation Delay  
Transmitter Skew  
ns  
ns  
Receiver Skew  
55  
ns  
Transition Region Slew Rate3  
5.5  
10  
30  
V/μs  
+3 V to −3 V or −3 V to +3 V, VCC = 3.3 V,  
RL = 3 kΩ, CL = 1000 pF, TA = 25°C  
AC SPECIFICATIONS  
Output Rise/Fall Time, tR/tF (10% to 90%)  
Common-Mode Transient Immunity at Logic High Output4  
Common-Mode Transient Immunity at Logic Low Output4  
ESD PROTECTION (RIN AND TOUT PINS)  
2.3  
ns  
CL = 15 pF, CMOS signal levels  
25  
25  
kV/μs  
kV/μs  
kV  
VCM = 1 kV, transient magnitude = 800 V  
VCM = 1 kV, transient magnitude = 800 V  
Human body model air discharge  
Human body model contact discharge  
15  
8
kV  
1 Enable/disable threshold is the VCC voltage at which the internal dc-to-dc converter is enabled/disabled.  
2 To maintain data sheet specifications, do not draw current from VISO  
3 Guaranteed by design.  
.
4 VCM is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. VCM is the common-mode potential  
difference between the logic and bus sides. The transient magnitude is the range over which the common mode is slewed. The common-mode voltage slew rates  
apply to both rising and falling common-mode voltage edges.  
Rev. E | Page 4 of 16  
 
ADM3251E  
PACKAGE CHARACTERISTICS  
Table 3.  
Parameter  
Symbol  
RI-O  
CI-O  
Min  
Typ  
1012  
2.2  
Max  
Unit  
Ω
pF  
Test Conditions  
f = 1 MHz  
Resistance (Input-to-Output)  
Capacitance (Input-to-Output)  
Input Capacitance  
CI  
4.0  
pF  
IC Junction-to-Air Thermal Resistance  
θJA  
47.05  
°C/W  
REGULATORY INFORMATION  
Table 4.  
UL1  
VDE2  
CSA  
Recognized under 1577 Component Certified according to DIN EN 60747-5-2 (VDE  
Approved under CSA Component Acceptance  
Notice #5A  
Recognition Program  
0884 Teil 2):2003-01  
File E214100  
File 2471900-4880-0001/123328  
Basic Insulation per CSA 60950-1-07 and IEC  
60950-1, 400 V rms (566 V peak) maximum  
working voltage  
File 2268268  
1 In accordance with UL 1577, each ADM3251E is proof-tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 Each ADM3251E is proof tested by applying an insulation test voltage ≥4000 V peak for 1 sec (partial discharge detection limit = 5 pC).  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol Value Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7  
V rms  
mm  
1 minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
4.16  
mm  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017  
>175  
IIIa  
mm  
V
Distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
CTI  
Maximum Working Voltage Compatible with  
50-Year Service Life  
VIORM  
425  
V peak  
Continuous peak voltage across the isolation barrier  
Rev. E | Page 5 of 16  
 
 
 
 
ADM3251E  
DIN EN 60747-5-2 (VDE 0884 TEIL 2): 2003-01 INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits.  
Table 6.  
Description  
Conditions  
Symbol  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
Climatic Classification  
I to IV  
I to III  
40/105/21  
2
Pollution Degree  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage  
Method b1  
VIORM  
424  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec, VPR  
partial discharge < 5 pC  
795  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Case Temperature  
Supply Current  
Insulation Resistance at TS  
Transient overvoltage, tTR = 10 sec  
Maximum value allowed in the event of a failure  
VTR  
4000  
TS  
IS1  
RS  
150  
531  
>109  
°C  
mA  
Ω
VIO = 500 V  
Rev. E | Page 6 of 16  
 
ADM3251E  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
Rating  
VCC, VISO  
V+  
V−  
−0.3 V to +6 V  
(VCC − 0.3 V) to +13 V  
–13 V to +0.3 V  
Input Voltages  
TIN  
RIN  
−0.3 V to (VCC + 0.3 V)  
30 V  
ESD CAUTION  
Output Voltages  
TOUT  
15 V  
ROUT  
−0.3 V to (VCC + 0.3 V)  
Short-Circuit Duration  
TOUT  
Power Dissipation  
θJA, Thermal Impedance  
Operating Temperature Range  
Industrial  
Continuous  
47.05°C/W  
−40°C to +85°C  
−65°C to +150°C  
Storage Temperature Range  
Pb-Free Temperature (Soldering, 30 sec) 260°C  
Rev. E | Page 7 of 16  
 
 
 
ADM3251E  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
1
2
3
4
5
6
7
8
9
20 V  
ISO  
V
19 V+  
CC  
CC  
V
18 C1+  
17 C1–  
GND  
GND  
GND  
GND  
ADM3251E  
16  
15  
T
OUT  
TOP VIEW  
(Not to Scale)  
R
IN  
14 C2+  
13 C2–  
12 V–  
R
OUT  
T
IN  
GND 10  
11 GND  
ISO  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2, 3  
NC  
VCC  
No Connect. This pin should always remain unconnected.  
Power Supply Input. A 0.1 μF decoupling capacitor is required between VCC and ground. When a voltage  
between 4.5 V and 5.5 V is applied to the VCC pin, the integrated dc-to-dc converter is enabled. If this voltage is  
lowered to between 3.0 V and 3.7 V, the integrated dc-to-dc converter is disabled.  
4, 5, 6, 7, 10 GND  
Ground.  
8
9
ROUT  
TIN  
GNDISO  
V−  
C2−, C2+  
Receiver Output. This pin outputs CMOS logic levels.  
Transmitter (Driver) Input. This pin accepts TTL/CMOS levels.  
Ground Reference for Isolator Primary Side.  
Internally Generated Negative Supply.  
Positive and Negative Connections for Charge Pump Capacitors. External Capacitor C2 is connected between  
these pins; a 0.1 μF capacitor is recommended, but larger capacitors up to 10 μF can be used.  
11  
12  
13, 14  
15  
RIN  
Receiver Input. This input accepts RS-232 signal levels.  
16  
TOUT  
Transmitter (Driver) Output. This outputs RS-232 signal levels.  
17, 18  
C1−, C1+  
Positive and Negative Connections for Charge Pump Capacitors. External Capacitor C1 is connected between  
these pins; a 0.1 μF capacitor is recommended, but larger capacitors up to 10 μF can be used.  
19  
20  
V+  
VISO  
Internally Generated Positive Supply.  
Isolated Supply Voltage for Isolator Secondary Side. A 0.1 μF decoupling capacitor is required between VISO and  
ground. When the integrated dc-to-dc converter is enabled, the VISO pin should not be used to power external  
circuitry. If the integrated dc-to-dc converter is disabled, power the secondary side by applying a voltage in the  
range of 3.0 V to 5.5 V to this pin.  
Rev. E | Page 8 of 16  
 
ADM3251E  
TYPICAL PERFORMANCE CHARACTERISTICS  
12  
12  
10  
8
Tx HIGH (V = 5V)  
CC  
Tx OUTPUT HIGH (V = 5V)  
CC  
8
4
0
Tx HIGH (V  
ISO  
= 3.3V)  
6
Tx OUTPUT HIGH (V  
ISO  
= 3.3V)  
4
2
0
–2  
–4  
–6  
–4  
–8  
Tx LOW (V  
ISO  
= 3.3V)  
Tx OUTPUT LOW (V  
ISO  
= 3.3V)  
–8  
–10  
–12  
Tx LOW (V = 5V)  
CC  
Tx OUTPUT LOW (V = 5V)  
CC  
–12  
0
200  
400  
600  
800  
1000  
0
1
2
3
4
LOAD CAPACITANCE (pF)  
LOAD CURRENT (mA)  
Figure 3. Transmitter Output Voltage High/Low vs. Load  
Capacitance at 460 kbps  
Figure 6. Transmitter Output Voltage High/Low vs. Load Current  
12  
10  
15  
Tx OUTPUT HIGH  
V+ (V = 5V)  
CC  
10  
5
8
6
V+ (V  
= 3.3V)  
= 3.3V)  
ISO  
ISO  
4
2
0
0
–2  
–4  
–6  
V– (V  
–5  
–10  
–15  
V– (V = 5V)  
CC  
Tx OUTPUT LOW  
–8  
–10  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
0
1
2
3
4
V
(V)  
LOAD CURRENT (mA)  
CC  
Figure 7. Charge Pump V+, V− vs. Load Current  
Figure 4. Transmitter Output Voltage High/Low vs. VCC, RL = 3 kΩ  
400  
12  
V–  
10  
Tx OUTPUT HIGH  
350  
300  
250  
200  
8
6
4
2
V+  
0
–2  
–4  
150  
100  
50  
Tx OUTPUT LOW  
–6  
–8  
–10  
–12  
0
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
V
(V)  
CC  
ISO  
Figure 8. Charge Pump Impedance vs. VCC  
Figure 5. Transmitter Output Voltage High/Low vs. VISO, RL = 3 kΩ  
Rev. E | Page 9 of 16  
 
ADM3251E  
400  
350  
300  
250  
200  
V–  
V+  
1
150  
100  
50  
2
5
CC  
LOAD = 3kAND 1nF  
0
3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
ISO  
TIME (500ns/DIV)  
Figure 9. Charge Pump Impedance vs. VISO  
Figure 11. 460 kbps Data Transmission  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
180  
160  
140  
120  
100  
80  
V
= 5.5V  
CC  
HIGH THRESHOLD  
LOW THRESHOLD  
V
= 5V  
CC  
V
= 4.5V  
CC  
60  
40  
20  
0
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
0
46  
92  
138 184 230 276 322 368 414 460  
DATA RATE (kbps)  
V
CC  
Figure 10. Primary Supply Current vs. Data Rate  
Figure 12. TIN Voltage Threshold vs. VCC  
Rev. E | Page 10 of 16  
ADM3251E  
THEORY OF OPERATION  
The ADM3251E is a high speed, 2.5 kV fully isolated, single-  
channel RS-232 transceiver device that operates from a single  
power supply.  
The TIN pin accepts TTL/CMOS input levels. The driver input  
signal that is applied to the TIN pin is referenced to logic ground  
(GND). It is coupled across the isolation barrier, inverted, and  
then appears at the transceiver section, referenced to isolated  
ground (GNDISO). Similarly, the receiver input (RIN) accepts  
RS-232 signal levels that are referenced to isolated ground.  
The RIN input is inverted and coupled across the isolation  
barrier to appear at the ROUT pin, referenced to logic ground.  
The internal circuitry consists of the following main sections:  
Isolation of power and data  
A charge pump voltage converter  
A 5.0 V logic to EIA/TIA-232E transmitter  
A EIA/TIA-232E to 5.0 V logic receiver  
The digital signals are transmitted across the isolation barrier  
using iCoupler technology. Chip-scale transformer windings  
couple the digital signals magnetically from one side of the  
barrier to the other. Digital inputs are encoded into waveforms  
that are capable of exciting the primary transformer of the winding.  
At the secondary winding, the induced waveforms are decoded  
into the binary value that was originally transmitted.  
C1  
0.1µF  
16V  
C3  
0.1µF  
10V  
C2  
0.1µF  
16V  
C4  
0.1µF  
16V  
0.1µF  
V
V+  
ISO  
C1+ C1–  
C2+  
V–  
C2–  
VOLTAGE  
DOUBLER  
VOLTAGE  
INVERTER  
ADM3251E  
V
CC  
RECT  
REG  
There is hysteresis in the VCC input voltage detect circuit.  
Once the dc-to-dc converter is active, the input voltage  
must be decreased below the turn-on threshold to disable  
the converter. This feature ensures that the converter does  
not go into oscillation due to noisy input power.  
OSC  
0.1µF  
DECODE  
ENCODE  
ENCODE  
DECODE  
R
T
*
IN  
R
T
R
OUT  
OUT  
T
IN  
V
ISO  
+
C3  
0.1µF  
10V  
GND  
GND  
ISO  
0.1µF  
4.5V TO 5.5V  
0.1µF  
+
+
V+  
V
*INTERNAL 5kPULL-DOWN RESISTOR ON THE RS-232 INPUT.  
CC  
ADM3251E  
C1+  
C1–  
C1  
0.1µF  
16V  
Figure 13. Functional Block Diagram  
ISOLATION OF POWER AND DATA  
EIA/TIA-232E OUTPUT  
EIA/TIA-232E INPUT  
T
OUT  
R
T
CMOS OUTPUT  
CMOS INPUT  
OUT  
The ADM3251E incorporates a dc-to-dc converter section,  
which works on principles that are common to most modern  
power supply designs. VCC power is supplied to an oscillating  
circuit that switches current into a chip-scale air core transformer.  
Power is transferred to the secondary side, where it is rectified  
to a high dc voltage. The power is then linearly regulated to  
about 5.0 V and supplied to the secondary side data section  
and to the VISO pin. The VISO pin should not be used to power  
external circuitry.  
R
IN  
IN  
C2+  
C2  
+
0.1µF  
16V  
C2–  
V–  
C4  
+ 0.1µF  
16V  
ISOLATION  
BARRIER  
GND  
GND  
ISO  
Figure 14. Typical Operating Circuit with the DC-to-DC Converter Enabled  
(VCC = 4.5 V to 5.5 V)  
Because the oscillator runs at a constant high frequency  
independent of the load, excess power is internally dissipated  
in the output voltage regulation process. Limited space for  
transformer coils and components also adds to internal power  
dissipation. This results in low power conversion efficiency.  
3.0V TO 5.5V  
ISOLATED SUPPLY  
V
ISO  
+
C3  
0.1µF  
10V  
3.0V TO 3.7V  
0.1µF  
0.1µF  
+
+
V+  
V
CC  
ADM3251E  
C1+  
C1–  
C1  
0.1µF  
16V  
The ADM3251E can be operated with the dc-to-dc converter  
enabled or disabled. The internal dc-to-dc converter state of the  
ADM3251E is controlled by the input VCC voltage. In normal  
operating mode, VCC is set between 4.5 V and 5.5 V and the  
internal dc-to-dc converter is enabled. To disable the dc-to-dc  
converter, lower VCC to a value between 3.0 V and 3.7 V. In this  
mode, the user must externally supply isolated power to the  
EIA/TIA-232E OUTPUT  
EIA/TIA-232E INPUT  
T
OUT  
R
T
CMOS OUTPUT  
CMOS INPUT  
OUT  
R
IN  
IN  
C2+  
C2  
+
0.1µF  
16V  
C2–  
V–  
C4  
+ 0.1µF  
16V  
ISOLATION  
BARRIER  
VISO pin. An isolated secondary side voltage of between 3.0 V  
and 5.5 V and a secondary side input current, IISO, of 12 mA  
(maximum) is required on the VISO pin. The signal channels of  
the ADM3251E then continue to operate normally.  
GND  
GND  
ISO  
Figure 15. Typical Operating Circuit with the DC-to-DC Converter Disabled  
(VCC = 3.0 V to 3.7 V)  
Rev. E | Page 11 of 16  
 
 
ADM3251E  
CHARGE PUMP VOLTAGE CONVERTER  
THERMAL ANALYSIS  
The charge pump voltage converter consists of a 200 kHz  
oscillator and a switching matrix. The converter generates a  
10.0 V supply from the input 5.0 V level. This is done in two  
stages by using a switched capacitor technique as illustrated in  
Figure 16 and Figure 17. First, the 5.0 V input supply is doubled  
to 10.0 V by using C1 as the charge storage element. The +10.0 V  
level is then inverted to generate −10.0 V using C2 as the storage  
element. C3 is shown connected between V+ and VISO, but is  
Each ADM3251E device consists of three internal die, attached  
to a split-paddle lead frame. For the purposes of thermal analysis,  
it is treated as a thermal unit with the highest junction temper-  
ature reflected in the θJA value from Table 7. The value of θJA is  
based on measurements taken with the part mounted on a JEDEC  
standard 4-layer PCB with fine-width traces in still air. Follow-  
ing the recommendations in the PCB Layout section decreases  
the thermal resistance to the PCB, allowing increased thermal  
margin at high ambient temperatures.  
equally effective if connected between V+ and GNDISO  
.
Capacitor C3 and Capacitor C4 are used to reduce the output  
ripple. Their values are not critical and can be increased, if  
desired. Larger capacitors (up to 10 ꢀF) can be used in place  
of C1, C2, C3, and C4.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of insula-  
tion degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADM3251E.  
5.0 V LOGIC TO EIA/TIA-232E TRANSMITTER  
The transmitter driver converts the 5.0 V logic input levels  
into RS-232 output levels. When driving an RS-232 load with  
VCC = 5.0 V, the output voltage swing is typically 10 V.  
The insulation lifetime of the ADM3251E depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 18, Figure 19, and Figure 20 illustrate these  
different isolation voltage waveforms.  
S1  
S2  
S3  
S4  
V
V+ = 2V  
ISO  
ISO  
+
+
C1  
C3  
V
GND  
ISO  
INTERNAL  
OSCILLATOR  
Bipolar ac voltage is the most stringent environment. In the  
case of unipolar ac or dc voltage, the stress on the insulation is  
significantly lower.  
Figure 16. Charge Pump Voltage Doubler  
RATED PEAK VOLTAGE  
S1  
S2  
S3  
S4  
V+  
GND  
ISO  
FROM  
VOLTAGE  
DOUBLER  
+
+
0V  
C2  
C4  
V– = –(V+)  
GND  
ISO  
Figure 18. Bipolar AC Waveform  
INTERNAL  
OSCILLATOR  
RATED PEAK VOLTAGE  
Figure 17. Charge Pump Voltage Inverter  
EIA/TIA-232E TO 5 V LOGIC RECEIVER  
0V  
The receiver is an inverting level-shifter that accepts the RS-232  
input level and translates it into a 5.0 V logic output level. The  
input has an internal 5 kΩ pull-down resistor to ground and is  
also protected against overvoltages of up to 30 V. An uncon-  
nected input is pulled to 0 V by the internal 5 kΩ pull-down  
resistor. This, therefore, results in a Logic 1 output level for an  
unconnected input or for an input connected to GND. The  
receiver has a Schmitt-trigger input with a hysteresis level of  
0.1 V. This ensures error-free reception for both a noisy input  
and for an input with slow transition times.  
Figure 19. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 20. DC Waveform Outline Dimensions  
HIGH BAUD RATE  
The ADM3251E offers high slew rates, permitting data trans-  
mission at rates well in excess of the EIA/TIA-232E specifications.  
The RS-232 voltage levels are maintained at data rates up to  
460 kbps.  
Rev. E | Page 12 of 16  
 
 
 
 
 
 
 
 
 
 
ADM3251E  
APPLICATIONS INFORMATION  
PCB LAYOUT  
EXAMPLE PCB FOR REDUCED EMI  
The choice of how aggressively EMI must be addressed for a design  
to pass emissions levels depends on the requirements of the design  
as well as cost and performance trade-offs.  
The ADM3251E requires no external circuitry for its logic  
interfaces. Power supply bypassing is required at the input  
and output supply pins (see Figure 21). Bypass capacitors are  
conveniently connected between Pin 3 and Pin 4 for VCC and  
between Pin 19 and Pin 20 for VISO. The capacitor value should  
be between 0.01 ꢀF and 0.1 ꢀF. The total lead length between  
both ends of the capacitor and the input power supply pin  
should not exceed 20 mm.  
The starting point for this example is a 2-layer PCB. EMI reduc-  
tions are relative to the emissions and noise from this board.  
To conform to FCC Class B levels, the emissions at these two  
frequencies must be less than 46 dBꢀV/m, normalized to 3 m  
antenna distance. As expected, EMI testing confirmed that the  
largest emissions peaks occur at the tank frequency and rectifier  
frequency.  
Because it is not possible to apply a heat sink to an isolation  
device, the device primarily depends on heat dissipating into  
the PCB through the ground pins. If the device is used at high  
ambient temperatures, care should be taken to provide a  
thermal path from the ground pins to the PCB ground plane.  
The board layout in Figure 21 shows enlarged pads for Pin 4,  
Pin 5, Pin 6, Pin 7, Pin 10, and Pin 11. Multiple vias should be  
implemented from each of the pads to the ground plane,  
which significantly reduce the temperatures inside the chip.  
The dimensions of the expanded pads are left to the discretion  
of the designer and the available board space.  
A 6-layer PCB that employs edge guarding and buried capacitive  
bypassing, which are EMI mitigation techniques described in  
detail in Application Note AN-0971, was manufactured. The  
stackup of the 6-layer test PCB is shown in Table 9. PCB layout  
Gerber files are available upon request.  
Table 9. PCB Layers  
Layer  
Description  
Top  
Components and ground planes  
VCC planes  
All tracks  
Inner Layer 1  
Inner Layer 2  
Inner Layer 3  
Inner Layer 4  
Bottom  
VIA TO GND  
ISO  
0.1µF  
V
NC  
Blank  
ISO  
C3  
Buried capacitive plane  
Ground planes  
V
V+  
CC  
ADM3251E  
V
C1+  
CC  
0.1µF  
C1  
EMI testing was repeated on the optimized board. The resulting  
reduction in radiated emissions is shown in Table 10. This  
board meets FCC Class B standards with no external shielding  
by utilizing buried stitching capacitors and edge fencing.  
GND  
GND  
GND  
GND  
C1–  
T
OUT  
R
IN  
C2+  
C2–  
C2  
C4  
Table 10. EMI Test Results  
R
OUT  
EMI Test Results  
300 MHz  
48 dB  
36 dB  
600 MHz  
53 dB  
32 dB  
T
V–  
IN  
2-Layer PCB Emissions  
6-Layer PCB Emissions  
Achieved EMI Reduction  
GND  
GND  
ISO  
12 dB  
21 dB  
NC = NO CONNECT  
Figure 21. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients,  
care should be taken to ensure that board coupling across the  
isolation barrier is minimized. Furthermore, the board layout  
should be designed such that any coupling that does occur  
equally affects all pins on a given component side.  
The power supply section of the ADM3251E uses a 300 MHz  
oscillator frequency to pass power through its chip-scale trans-  
formers. Operation at these high frequencies may raise concerns  
about radiated emissions and conducted noise. PCB layout and  
construction is a very important tool for controlling radiated  
emissions. Refer to Application Note AN-0971, Control of  
Radiated Emissions with isoPower Devices, for extensive guidance  
on radiation mechanisms and board layout considerations.  
Rev. E | Page 13 of 16  
 
 
 
 
 
 
ADM3251E  
ISOLATION  
BARRIER  
ISOLATED POWER SUPPLY CIRCUIT  
V
CC  
SD103C  
To operate the ADM3251E with its internal dc-to-dc converter  
disabled, connect a voltage of between 3.0 V and 3.7 V to the  
5V  
IN  
OUT  
ADP3330  
+
+
22µF  
10µF  
SD  
ERR  
NR  
V
CC pin and apply an isolated power of between 3.0 V and 5.5 V  
V
TRANSFORMER  
DRIVER  
CC  
to the VISO pin, referenced to GNDISO  
.
GND  
A transformer driver circuit with a center-tapped transformer  
and LDO can be used to generate the isolated supply, as shown  
in Figure 22. The center-tapped transformer provides electrical  
isolation of the 5 V power supply. The primary winding of the  
transformer is excited with a pair of square waveforms that are  
180° out of phase with each other. A pair of Schottky diodes and  
a smoothing capacitor are used to create a rectified signal from  
the secondary winding. The ADP3330 linear voltage regulator  
provides a regulated power supply to the bus side circuitry  
(VISO) of the ADM3251E.  
78253  
SD103C  
V
V
CC  
CC  
V
ISO  
ADM3251E  
GND  
GND  
ISO  
Figure 22. Isolated Power Supply Circuit  
Rev. E | Page 14 of 16  
 
 
ADM3251E  
OUTLINE DIMENSIONS  
13.00 (0.5118)  
12.60 (0.4961)  
20  
1
11  
10  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.2  
5 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 23. 20-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-20)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
ADM3251EARWZ  
ADM3251EARWZ-REEL  
EVAL-ADM3251EEBZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RW-20  
RW-20  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. E | Page 15 of 16  
 
 
ADM3251E  
NOTES  
©2008–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07388-0-5/10(E)  
Rev. E | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY