ADM3260ARSZ-RL7 [ADI]

Hot Swappable, Dual I2C Isolators with Integrated DC-to-DC Converter;
ADM3260ARSZ-RL7
型号: ADM3260ARSZ-RL7
厂家: ADI    ADI
描述:

Hot Swappable, Dual I2C Isolators with Integrated DC-to-DC Converter

文件: 总19页 (文件大小:456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hot Swappable, Dual I2C Isolators with  
Integrated DC-to-DC Converter  
ADM3260  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
isoPower integrated, isolated dc-to-dc converter  
Regulated 3.15 V to 5.25 V output  
Up to 150 mW output power  
High common-mode transient immunity: >25 kV/µs  
iCoupler integrated I2C digital isolator  
Bidirectional I2C communication  
3.0 V to 5.5 V supply/logic levels  
Open-drain interfaces  
ADM3260  
GNDP  
SCL2  
DECODE  
ENCODE  
DECODE  
ENCODE  
ENCODE  
DECODE  
ENCODE  
DECODE  
GNDISO  
SCL1  
SDA2  
VDDP  
SDA1  
VDDISO  
GNDISO  
SIGNAL ISOLATION  
GNDP  
NC  
Suitable for hot swap applications  
30 mA current sink capability  
1000 kHz maximum frequency  
NC  
20-lead SSOP package with 5.3 mm creepage  
High temperature operation: 105°C  
Safety and regulatory approvals  
POWER ISOLATION  
GNDP  
GNDISO  
VSEL  
VISO  
PCS  
PDIS  
VIN  
UL recognition  
RECT REG  
OSC  
2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A  
VDE Certificate of Conformity (pending)  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
GNDISO  
GNDP  
Figure 1.  
V
IORM = 560 V peak  
Table 1. Power Levels for Isolated Converter  
Input Voltage (V) Output Voltage (V)  
Output Power (mW)  
APPLICATIONS  
Isolated I2C, SMBus, and PMBus interfaces  
Multilevel I2C interfaces  
5.0  
5.0  
3.3  
5.0  
3.3  
3.3  
150  
100  
66  
Central office switching  
Telecommunication and data communication equipment  
−48 V distributed power systems  
−48 V power supply modules  
Networking  
Based on the Analog Devices, Inc., isoPower technology, the  
on-chip isolated dc-to-dc converter provides a regulated, isolated  
voltage of 3.15 V to 5.25 V with up to 150 mW of output power  
(see Figure 1).  
GENERAL DESCRIPTION  
Based on the iCoupler® and isoPower® chip scale transformer  
technology, the ADM32601 is a hot swappable digital and power  
isolator with two nonlatching, bidirectional communication  
channels, supporting a complete isolated I2C interface, and an  
integrated isolated dc-to-dc converter, supporting up to  
150 mW of isolated power conversion.  
With the ADM3260, the iCoupler and isoPower channels, along  
with the I2C transceivers, can be integrated with semiconductor  
circuitry, which enables a complete isolated I2C interface and  
allows the power converter to be implemented in a small form  
factor. The ADM3260 is available in 20-lead SSOP package and  
has an operating temperature range of −40°C to+105°C.  
iCoupler is a chip scale transformer technology with functional,  
performance, size, and power consumption advantages as  
compared to optocouplers. The bidirectional I2C channels  
eliminate the need for splitting I2C signals into separate transmit  
and receive signals for use with standalone optocouplers.  
isoPower uses high frequency switching elements to transfer power  
through its transformer. Special care must be taken during printed  
circuit board (PCB) layout to meet emissions standards. See the  
AN-0971 Application Note for board layout recommendations.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents are pending.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADM3260  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Recommended Operating Conditions.......................................9  
Absolute Maximum Ratings......................................................... 10  
ESD Caution ............................................................................... 10  
VISO Voltage Truth Table........................................................ 10  
Pin Configuration and Function Descriptions .......................... 11  
Typical Performance Characteristics .......................................... 12  
Test Condition................................................................................ 14  
Applications Information ............................................................. 15  
Functional Description.............................................................. 15  
Digital Isolator Startup.............................................................. 16  
Typical Application Diagram................................................... 16  
PCB Layout ................................................................................. 16  
Thermal Analysis ....................................................................... 17  
EMI Considerations................................................................... 17  
Insulation Lifetime..................................................................... 17  
Applications Example.................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications ...................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/5 V  
Secondary Isolated Supply .......................................................... 3  
Electrical Characteristics—5 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 3  
Electrical Characteristics—3.3 V Primary Input Supply/3.3 V  
Secondary Isolated Supply .......................................................... 4  
DC-to-DC Converter Characteristics ....................................... 4  
Digital Isolator DC Specifications.............................................. 5  
Digital Isolator AC Specifications.............................................. 5  
Package Characteristics ............................................................... 6  
Regulatory Approvals .................................................................. 7  
Insulation and Safety Related Specifications............................ 7  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 8  
REVISION HISTORY  
6/2020—Rev. D to Rev. E  
4/2015—Rev. A to Rev. B  
Change to PCB Layout Section..................................................... 16  
Changes to Features Section............................................................1  
Changes to Table 9 and Table 10 ....................................................7  
Changes to Functional Description Section............................... 15  
11/2017—Rev. C to Rev. D  
Change to Table 1............................................................................. 1  
6/2014—Rev. 0 to Rev. A  
3/2016—Rev. B to Rev. C  
Changes to Pin 8, Table 16............................................................ 11  
Changed VDDP (V) to VIN (V), Table 15 ................................. 10  
12/2013—Revision 0: Initial Version  
Rev. E | Page 2 of 19  
 
Data Sheet  
ADM3260  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VIN = VISO = 5 V, VSEL resistor network RBOTTOM = 10 kΩ, RTOP = 30.9 kΩ. Minimum/maximum  
specifications apply over the entire recommended operation range which is 4.5 V ≤ VIN, VISO ≤ 5.5 V, and −40°C ≤ TA ≤ +105°C, unless  
otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
VISO  
5
V
IISO = 15 mA, RBOTTOM = 10 kΩ, RTOP = 30.9 kΩ  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
−44  
20  
1.3  
75  
µV/°C  
mV/V  
%
IISO = 15 mA, VIN = 4.5 V to 5.5 V  
IISO = 3 mA to 27 mA  
20 MHz bandwidth, COUTPUT_BYPASS = 0.1 µF||10 µF,  
3
mV p-p  
I
ISO = 27 mA  
Output Noise  
VISO (NOISE)  
fOSC  
fPWM  
200  
125  
600  
mV p-p  
MHz  
kHz  
mA  
%
mA  
COUTPUT_BYPASS = 0.1 µF||10 µF, IISO = 27 mA  
Switching Frequency  
Pulse-Width Modulation Frequency  
Output Current  
Efficiency at IISO (MAX)  
IVIN, No VISO Load  
IISO (MAX)  
30  
VISO > 4.5 V  
IISO = 27 mA  
29  
6.8  
104  
IVIN (Q)  
IVIN (MAX)  
12  
IVIN, Full VISO Load  
mA  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
TSHUTDOWN  
THYST  
154  
10  
°C  
°C  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VIN = 5 V, VISO = 3.3 V, VSEL resistor network RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ. Minimum/  
maximum specifications apply over the entire recommended operation range, which is 4.5 V ≤ VIN ≤ 5.5 V, 3 V ≤ VISO ≤ 3.6 V, and −40°C ≤  
TA ≤ +105°C, unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
3.3  
−26  
20  
1.3  
50  
V
IISO = 15 mA, RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
µV/°C  
mV/V  
%
IISO = 15 mA, VIN = 4.5 V to 5.5 V  
IISO = 3 mA to 27 mA  
3
mV p-p 20 MHz bandwidth, COUTPUT_BYPASS = 0.1 µF||10 µF,  
ISO = 27 mA  
I
Output Noise  
Switching Frequency  
Pulse-Width Modulation Frequency fPWM  
VISO (NOISE)  
fOSC  
130  
125  
600  
mV p-p COUTPUT_BYPASS = 0.1 µF||10 µF, IISO = 27 mA  
MHz  
kHz  
Output Current  
Efficiency at IISO (MAX)  
IVIN, No VISO Load  
IISO (MAX)  
30  
mA  
%
mA  
mA  
3 V < VISO< 3.6 V  
IISO = 27 mA  
24  
3.2  
85  
IVIN (Q)  
IVIN (MAX)  
8
IVIN, Full VISO Load  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
TSHUTDOWN  
THYST  
154  
10  
°C  
°C  
Rev. E | Page 3 of 19  
 
 
 
ADM3260  
Data Sheet  
ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
All typical specifications are at TA = 25°C, VIN = VISO = 3.3 V, VSEL resistor network RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ. Minimum/maximum  
specifications apply over the entire recommended operation range which is 3.0 V ≤ VIN, VISO ≤ 3.6 V, and −40°C ≤ TA ≤ +105°C, unless  
otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Min Typ Max Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER SUPPLY  
Setpoint  
Thermal Coefficient  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
3.3  
−26  
20  
1.3  
50  
V
IISO = 10 mA, RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ  
IISO = 20 mA  
IISO = 10 mA, VIN = 3.0 V to 3.6 V  
IISO = 2 mA to 18 mA  
VISO (TC)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
µV/°C  
mV/V  
%
3
mV p-p  
20 MHz bandwidth, COUTPUT_BYPASS = 0.1 µF||10 µF,  
I
ISO = 18 mA  
Output Noise  
Switching Frequency  
Pulse-Width Modulation Frequency fPWM  
Output Current  
Efficiency at IISO (MAX)  
IVIN, No VISO Load  
IVIN, Full VISO Load  
VISO (NOISE)  
fOSC  
130  
125  
600  
mV p-p  
MHz  
kHz  
mA  
%
mA  
COUTPUT_BYPASS = 0.1 µF||10 µF, IISO = 18 mA  
IISO (MAX)  
20  
3.6 V > VISO > 3 V  
IISO = 18 mA  
27  
3.3  
77  
IVIN (Q)  
IVIN (MAX)  
10.5  
mA  
Thermal Shutdown  
Shutdown Temperature  
Thermal Hysteresis  
TSHUTDOWN  
THYST  
154  
10  
°C  
°C  
DC-TO-DC CONVERTER CHARACTERISTICS  
All typical specifications are at TA = 25°C. Minimum/maximum specifications apply over the entire recommended operation range  
unless otherwise noted. Switching specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
UNDERVOLTAGE LOCKOUT  
Positive Going Threshold  
Negative Going Threshold  
PDIS PIN  
VIN, VISO supply  
VUV+  
VUV−  
2.7  
2.4  
V
V
Input Threshold  
Logic High  
Logic Low  
VIH  
VIL  
IPDIS  
0.7 VIN  
−10  
V
V
µA  
0.3 VIN  
+10  
Input Current  
+0.01  
0 V ≤ VPDIS ≤ VIN  
Rev. E | Page 4 of 19  
 
 
Data Sheet  
ADM3260  
DIGITAL ISOLATOR DC SPECIFICATIONS  
All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications  
are at TA = 25°C, VDDISO = 3.3 V or 5 V, and VDDP = 3.3 V or 5 V, unless otherwise noted. All voltages are relative to their respective  
ground.  
Table 6.  
Parameter  
Symbol  
Min  
Typ Max  
Unit Test Conditions/Comments  
I2C SIGNAL ISOLATION BLOCK  
Input Supply Current  
Side 1 (5 V)  
IDDISO1  
IDDP1  
IDDISO2  
IDDP2  
2.8  
2.7  
1.9  
1.7  
5.0  
5.0  
3.0  
3.0  
mA  
mA  
mA  
mA  
µA  
VDDISO = 5 V  
VDDP = 5 V  
VDDISO = 3.3 V  
VDDP = 3.3 V  
Side 2 (5 V)  
Side 1 (3.3 V)  
Side 2 (3.3 V)  
LEAKAGE CURRENTS  
ISDA1, ISDA2, ISCL1, ISCL2  
0.01 10  
V
V
SDA1 = VDDISO, VSDA2 = VDDP,  
SCL1 = VDDISO, VSCL2 = VDDP  
SIDE 1 LOGIC LEVELS  
Logic Input Threshold1  
Logic Low Output Voltages  
VSDA1T, VSCL1T  
VSDA1OL, VSCL1OL  
500  
600  
600  
50  
700  
900  
850  
mV  
mV  
mV  
mV  
ISDA1 = ISCL1 = 3.0 mA  
ISDA1 = ISCL1 = 0.5 mA  
Input/Output Logic Low Level Difference2  
SIDE 2 LOGIC LEVELS  
Input Voltage  
ΔVSDA1, ΔVSCL1  
Logic Low  
Logic High  
Output Voltage  
Logic Low  
VSDA2IL, VSCL2IL  
VSDA2IH, VSCL2IH  
0.3 VDDP  
400  
V
V
0.7 VDDP  
VSDA2OL, VSCL2OL  
mV  
ISDA2 = ISCL2 = 30 mA  
1 VIL < 0.5 V, VIH > 0.7 V.  
2 ΔVSDA1 = VSDA1OL – VSDA1T, ΔVSCL1 = VSCL1OL – VSCL1T. This is the minimum difference between the output logic low level and the input logic threshold within a given  
component. This ensures that there is no possibility of the device latching up the bus to which it is connected.  
DIGITAL ISOLATOR AC SPECIFICATIONS  
All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications  
are at TA = 25°C, VDDISO = 3.3 V or 5 V, and VDDP = 3.3 V or 5 V, unless otherwise noted. Refer to Figure 17. All voltages are relative  
to their respective ground.  
Table 7.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions/Comments  
MAXIMUM FREQUENCY  
OUTPUT FALL TIME  
5 V Operation  
1000  
kHz  
4.5 V ≤ VDDISO, VDDP ≤ 5.5 V, CL1 = 40 pF,  
R1 = 1.6 kΩ, CL2 = 400 pF, R2 = 180 Ω  
Side 1 Output (0.9 VDDISO to 0.9 V)  
Side 2 Output (0.9 VDDP to 0.1 VDDP) tf2  
3 V Operation  
tf1  
13  
32  
26  
52  
120  
120  
ns  
ns  
3.0 V ≤ VDDISO, VDDP ≤ 3.6 V, CL1 = 40 pF,  
R1 = 1.0 kΩ, CL2 = 400 pF, R2 = 120 Ω  
Side 1 Output (0.9 VDDISO to 0.9 V)  
Side 2 Output (0.9 VDDP to 0.1 VDDP) tf2  
PROPAGATION DELAY  
tf1  
13  
32  
32  
61  
120  
120  
ns  
ns  
5 V Operation  
4.5 ≤ VDDISO, VDDP ≤ 5.5 V, CL1 = CL2 = 0 pF,  
R1 = 1.6 kΩ, R2 = 180 Ω  
Side 1 to Side 2  
Rising Edge1  
Falling Edge2  
tPLH12  
tPHL12  
95  
130  
ns  
ns  
162 275  
Rev. E | Page 5 of 19  
 
 
ADM3260  
Data Sheet  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions/Comments  
Side 2 to Side 1  
Rising Edge3  
Falling Edge4  
tPLH21  
tPHL21  
31  
85  
70  
155  
ns  
ns  
3 V Operation  
3.0 V ≤ VDDISO, VDDP ≤ 3.6 V, CL1 = CL2 = 0 pF,  
R1 = 1.0 kΩ, R2 = 120 Ω  
Side 1 to Side 2  
Rising Edge1  
Falling Edge2  
tPLH12  
tPHL12  
82  
125  
ns  
ns  
196 340  
Side 2 to Side 1  
Rising Edge3  
Falling Edge4  
tPLH21  
tPHL21  
32  
75  
ns  
ns  
110 210  
PULSE WIDTH DISTORTION  
5 V Operation  
4.5 V ≤ VDDISO, VDDP ≤ 5.5 V, CL1 = CL2 = 0 pF,  
R1 = 1.6 kΩ, R2 = 180 Ω  
Side 1 to Side 2, |tPLH12 − tPHL12  
Side 2 to Side 1, |tPLH21 − tPHL21  
3 V Operation  
|
|
PWD12  
PWD21  
67  
54  
145  
85  
ns  
ns  
3.0 V ≤ VDDISO, VDDP ≤ 3.6 V, CL1 = CL2 = 0 pF,  
R1 = 1.0 kΩ, R2 = 120 Ω  
Side 1 to Side 2, |tPLH12 − tPHL12  
Side 2 to Side 1, |tPLH21 − tPHL21  
COMMON-MODE TRANSIENT IMMUNITY5  
|
|
PWD12  
PWD21  
114 215  
ns  
ns  
77  
35  
135  
|CMH|, |CML| 25  
kV/µs  
1 tPLH12 propagation delay is measured from the Side 1 input logic threshold to an output value of 0.7 VDDP.  
2 tPHL12 propagation delay is measured from the Side 1 input logic threshold to an output value of 0.4 V.  
3 tPLH21 propagation delay is measured from the Side 2 input logic threshold to an output value of 0.7 VDDISO.  
4 tPHL21 propagation delay is measured from the Side 2 input logic threshold to an output value of 0.9 V.  
5 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDP. |CML| is the maximum common-mode voltage slew  
rate that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The  
transient magnitude is the range over which the common mode is slewed.  
PACKAGE CHARACTERISTICS  
Table 8. Thermal and Isolation Characteristics  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1012  
2.2  
4.0  
50  
pF  
pF  
f = 1 MHz  
IC Junction-to-Ambient Thermal  
Resistance  
θJA  
°C/W Thermocouple located at center of package  
underside,  
test conducted on 4-layer board with thin traces3  
1 The device is considered a 2-terminal device: Pin 1 through Pin 10 are shorted together; and Pin 11 through Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 See the Thermal Analysis section for thermal model definitions.  
Rev. E | Page 6 of 19  
 
 
Data Sheet  
ADM3260  
REGULATORY APPROVALS  
Table 9.  
UL1  
CSA  
VDE (Pending)2  
Recognized Under 1577 Component Approved under CSA Component Acceptance  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Recognition Program1  
Notice 5A  
Single Protection, 2500 V RMS  
Isolation Voltage  
File E214100  
Basic insulation per CSA 60950-1-03 and IEC 60950-1,  
400 V rms (565 V peak) maximum working voltage  
File 205078  
Reinforced insulation, 560 V peak  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADM3260 is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (current leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, ADM3260 is proof tested by applying an insulation test voltage ≥1590 V peak for 1 second (partial discharge detection limit =  
5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 10. Critical Safety Related Dimensions and Material Properties  
Parameter  
Symbol Value  
Unit Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
V rms 1-minute duration  
L(I01)  
L(I02)  
L(PCB)  
5.1  
5.1  
5.5  
mm  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane (for information only)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Distance through insulation  
DIN IEC 112/VDE 0303, Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>400  
II  
V
Rev. E | Page 7 of 19  
 
 
ADM3260  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
the protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 11. VDE Characteristics  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
Vpd(m)  
560  
1050  
V peak  
V peak  
V
IORM × 1.875 = Vpd(m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
V
IORM × 1.5 = Vpd(m), tini = 60 sec, tm = 10 sec,  
Vpd(m)  
Vpd(m)  
VIOTM  
840  
672  
V peak  
V peak  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd(m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Safety Limiting Values  
3535  
4000  
V peak  
V peak  
VIOSM(TEST) = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time VIOSM  
Maximum value allowed in the event of a  
failure (see Figure 2)  
Case Temperature  
Converter Safety Total Dissipated Power  
VDDP + VDDISO Current  
TS  
IS1  
ITMAX  
RS  
150  
2.5  
212  
>109  
°C  
W
mA  
Insulation Resistance at TS for Isolated Converter VIO = 500 V  
350  
300  
250  
200  
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 3. Digital Isolator Thermal Derating Curve, Dependence of Safety-  
Limiting Values on Case Temperature, per DIN V VDE V 0884-10  
Figure 2. Isolated Converter Thermal Derating Curve, Dependence of Safety  
Limiting Values on Case Temperature, per DIN V VDE V 0884-10  
Rev. E | Page 8 of 19  
 
 
 
Data Sheet  
ADM3260  
RECOMMENDED OPERATING CONDITIONS  
Table 12.  
Parameter  
Value  
OPERATING TEMPERATURE1  
ISOLATED CONVERTER  
Supply Voltages2  
−40°C to +105°C  
VIN at VISO Set to Regulate to 3.3 V  
VIN at VISO Set to Regulate to 5 V  
DIGITAL ISOLATOR  
3.0 V to 5.5 V  
4.5 V to 5.5 V  
Supply Voltages (VDDISO, VDDP)3  
3.0 V to 5.5 V  
5.5 V  
Input/Output Signal Voltage (VSDA1, VSCL1, VSDA2, VSCL2  
)
Capacitive Load  
Side 1 (CL1)  
40 pF  
Side 2 (CL2)  
400 pF  
STATIC OUTPUT LOADING  
Side 1 (ISDA1, ISCL1  
Side 2 (ISDA2, ISCL2  
)
)
0.5 mA to 3 mA  
0.5 mA to 30 mA  
1 Operation at 105°C requires reduction of the maximum load current (see Table 13).  
2 Each voltage is relative to its respective ground.  
3 All voltages are relative to their respective ground.  
Rev. E | Page 9 of 19  
 
ADM3260  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
Table 13.  
Parameter  
Rating  
Storage Temperature (TST)  
Ambient Operating Temperature (TA) −40°C to +105°C  
Supply Voltages (VIN, VISO)1  
Supply Voltages (VDDISO, VDDP)1  
VISO Supply Current2  
−55°C to +150°C  
−0.5 V to +7.0 V  
−0.5 V to +7.0 V  
TA = −40°C to +105°C  
Digital Isolator Average Output  
Current per Pin3  
30 mA  
ESD CAUTION  
Side 1 (IO1  
Side 2 (IO2  
)
)
18 mA  
100 mA  
Input/Output Voltage  
3
Side 1 (VSDA1, VSCL1  
Side 2 (VSDA2, VSCL2  
)
)
−0.5 V to VDDISO + 0.5 V  
−0.5 V to VDDP + 0.5 V  
−0.5 V to VIN + 0.5 V  
3
Input Voltage (PDIS, VSEL)1, 4  
Common-Mode Transients5  
−100 kV/µs to +100 kV/µs  
1 All voltages are relative to their respective ground.  
2 VISO provides current for dc and dynamic loads on the VISO input/output  
channels. This current must be included when determining the total VISO  
supply current.  
3 See Figure 3 for maximum rated current values for various temperatures.  
4 VCC can be either VIN or VISO depending on the whether the input is on the  
primary or secondary side of the device, respectively.  
5 Refers to common-mode transients across the insulation barrier. Common-mode  
transients exceeding the absolute maximum ratings may cause latch-up or  
permanent damage.  
Table 14. Maximum Continuous Working Voltage Supporting 50-Year Minimum Lifetime1  
Parameter  
Maximum  
Unit  
Applicable Certification  
AC Voltage  
Bipolar Waveform  
Unipolar Waveform  
DC Voltage  
560  
560  
V peak  
V peak  
All certifications, 50-year operation  
|DC Peak Voltage|  
560  
V peak  
1 Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more information.  
VISO VOLTAGE TRUTH TABLE  
Table 15. Truth Table (Positive Logic)  
VIN (V)  
VSEL Input  
PDIS Input  
Low  
High  
Low  
High  
Low  
High  
Low  
VISO Output (V)  
Notes  
5
5
3.3  
3.3  
5
5
3.3  
3.3  
RBOTTOM = 10 kΩ, RTOP = 30.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 30.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 16.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 30.9 kΩ  
RBOTTOM = 10 kΩ, RTOP = 30.9 kΩ  
5
0
3.3  
0
3.3  
0
5
0
Configuration not recommended  
High  
Rev. E | Page 10 of 19  
 
 
 
 
 
Data Sheet  
ADM3260  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
GNDP  
SCL2  
SDA2  
VDDP  
GNDP  
NC  
20 GNDISO  
19 SCL1  
18  
17  
16  
15  
14  
13  
12  
11  
SDA1  
VDDISO  
GNDISO  
NC  
ADM3260  
TOP VIEW  
(Not to Scale)  
GNDP  
PDIS  
VIN  
GNDISO  
VSEL  
VISO  
GNDP 10  
GNDISO  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN  
Figure 4. Pin Configuration  
Table 16. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 5, 7 ,10  
2
3
4
6, 15  
8
GNDP  
SCL2  
SDA2  
VDDP  
NC  
Ground Reference for Primary Side. Connect all GNDP pins to the primary ground reference.  
Clock Input/Output, Primary Side.  
Data Input/Output, Primary Side.  
Digital Isolator Primary Supply Input, 3.0 V to 5.5 V.  
No Connect. Do not connect to this pin.  
Power Disable. When PDIS is tied to VIN, the power supply enters low power standby mode. When PDIS is  
tied to GNDP, the power converter is active.  
PDIS  
9
VIN  
isoPower Converter Primary Supply Input, 3.0 V to 5.5 V.  
11, 14, 16, 20 GNDISO  
Ground Reference for Isolated Side. Connect all GNDISO pins to the isolated ground reference.  
VISO  
12  
Secondary Supply Voltage Output for Digital Isolator Isolated Side Power and External Loads. The output  
voltage is adjustable from 3.15 V to 5.25 V.  
VSEL  
13  
Output Voltage Set. Provide a thermally matched resistor network between VISO and GNDISO to divide the  
required output voltage to match the 1.25 V reference voltage. The VISO voltage can be programmed up to  
20% higher or 75% lower than VIN but must be within the allowed output voltage range.  
VDDISO  
SDA1  
17  
18  
19  
Digital Isolator Isolated Side Supply Input, 3.0 V to 5.5 V.  
Data Input/Output, Isolated Side.  
Clock Input/Output, Isolated Side.  
SCL1  
Rev. E | Page 11 of 19  
 
ADM3260  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
35  
I
VIN  
POWER DISSIPATION  
30  
25  
20  
VIN = 5V/VISO = 5V  
VIN = 5V/VISO = 3.3V  
VIN = 3.3V/VISO = 3.3V  
15  
10  
5
0
0
0.02  
0.04  
0.06  
0.08  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
LOAD CURRENT (A)  
VDDP SUPPLY VOLTAGE (V)  
Figure 5. Typical Power Supply Efficiency at 5 V/5 V, 5 V/3.3 V, and 3.3 V/3.3 V  
Figure 8. Power Dissipation and IVIN Current vs. VDDP Supply Voltage  
450  
400  
350  
300  
250  
200  
150  
100  
90% LOAD  
VIN = 5V/VISO = 5V  
VIN = 5V/VISO = 3.3V  
VIN = 3.3V/VISO = 3.3V  
50  
0
10% LOAD  
(1ms/DIV)  
0
10  
20  
(mA)  
30  
40  
I
ISO  
Figure 6. Typical Total Power Dissipation vs. IISO  
Figure 9. Typical VISO Transient Load Response, 5 V Output,  
10% to 90% Load Step  
35  
30  
25  
20  
15  
10  
5
90% LOAD  
VIN = 5V/VISO = 5V  
VIN = 5V/VISO = 3.3V  
VIN = 3.3V/VISO = 3.3V  
10% LOAD  
0
0
25  
50  
75  
100  
I
(mA)  
DDP  
(1ms/DIV)  
Figure 7. Typical Isolated Output Supply Current (IISO) as a Function of  
External Load at 5 V/5 V, 5 V/3.3 V, and 3.3 V/3.3 V  
Figure 10. Typical VISO Transient Load Response, 3.3 V Input, 3.3 V Output,  
10% to 90% Load Step  
Rev. E | Page 12 of 19  
 
Data Sheet  
ADM3260  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
90% LOAD  
30mA LOAD  
20mA LOAD  
10mA LOAD  
10% LOAD  
(1ms/DIV)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
OUTPUT VOLTAGE (V)  
Figure 14. Relationship Between Output Voltage and Required Input Voltage,  
Under Load to Maintain >80% Duty Factor in the PWM  
Figure 11. Typical VISO Transient Load Response, 5 V Input, 3.3 V Output,  
10% to 90% Load Step  
4.970  
4.965  
4.960  
4.955  
4.950  
4.945  
4.940  
500  
450  
400  
350  
300  
250  
VIN = 5V/VISO = 5V  
200  
VIN = 5V/VISO = 3.3V  
150  
100  
–40  
0
1
2
3
4
–20  
0
20  
40  
60  
80  
100  
120  
TIME (µs)  
AMBIENT TEMPERATURE (°C)  
Figure 12. Typical VISO = 5 V Output Voltage Ripple at 90% Load  
Figure 15. Power Dissipation with a 30 mA Load vs. Ambient Temperature  
3.280  
3.278  
3.276  
3.274  
3.272  
3.270  
500  
450  
VIN = 5V/VISO= 5V  
VIN = 3.3V/VISO = 3.3V  
VIN = 5V/VISO = 3.3V  
400  
350  
300  
250  
200  
150  
100  
0
1
2
3
4
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
TIME (µs)  
Figure 13. Typical VISO = 3.3 V Output Voltage Ripple at 90% Load  
Figure 16. Power Dissipation with a 20 mA Load vs. Ambient Temperature  
Rev. E | Page 13 of 19  
 
 
 
ADM3260  
Data Sheet  
TEST CONDITION  
VDDISO  
VDDP  
SDA2  
DECODE  
ENCODE  
DECODE  
ENCODE  
ENCODE  
DECODE  
ENCODE  
DECODE  
R2  
C
R2  
C
R1  
R1  
L1  
SDA1  
SCL1  
SCL2  
C
C
L2  
L2  
L1  
GNDISO  
GNDP  
Figure 17. Timing Test Diagram  
Rev. E | Page 14 of 19  
 
 
Data Sheet  
ADM3260  
APPLICATIONS INFORMATION  
The dc-to-dc converter section of the ADM3260 works on  
principles that are common to most modern power supplies. It has  
a split controller architecture with isolated pulse-width  
FUNCTIONAL DESCRIPTION  
The digital isolator block on the ADM3260 interfaces on each  
side to a bidirectional I2C signal. Internally, the I2C interface is  
split into two unidirectional channels communicating in  
opposing directions via a dedicated iCoupler isolation channel  
for each. One channel (the bottom channel of each channel pair  
shown in Figure 17) senses the voltage state of the Side 1 I2C  
pin (SCL1 or SDA1) and transmits its state to its respective Side  
2 I2C pin (SCL2 or SDA2).  
Both the Side 1 (isolated side) and the Side 2 (primary side) I2C  
pins interface to an I2C bus operating in the 3.0 V to 5.5 V range.  
A logic low on either pin causes the opposite pin to pull low  
enough to comply with the logic low threshold requirements of the  
other I2C devices on the bus. To avoid I2C bus contention,  
input a low threshold at SDA1 or SCL1 to guarantee at least  
50 mV less than the output low signal at the same pin. This step  
prevents an output logic low at Side 1 from transmitting back to  
Side 2 and pulling down the I2C bus.  
Because the Side 2 logic levels or thresholds are standard I2C  
values, multiple ADM3260 devices connected to a bus by their  
Side 2 pins communicate with each other and with other I2C-  
compatible devices. I2C compatibility refers to situations in  
which the logic levels of a component do not necessarily meet  
the requirements of the I2C specification but still allow the  
component to communicate with an I2C-compliant device.  
I2C compliance refers to situations in which the logic levels of  
a component meet the requirements of the I2C specification.  
modulation (PWM) feedback. VIN power is supplied to an  
oscillating circuit that switches current into a chip-scale air core  
transformer. Power transferred to the secondary side is rectified  
and regulated to a value between 3.15 V and 5.25 V depending  
on the setpoint supplied by an external voltage divider (see  
Equation 1). The secondary (VISO) side controller regulates  
the output by creating a PWM control signal that is sent to the  
primary (VIN) side by a dedicated iCoupler data channel.  
The PWM modulates the oscillator circuit to control the power  
being sent to the secondary side. Feedback allows for significantly  
higher power and efficiency.  
RTOP + RBOTTOM  
VISO =1.23×  
(V)  
(1)  
RBOTTOM  
where:  
R
R
TOP is a resistor between VSEL and VISO.  
BOTTOM is a resistor between VSEL and GNDISO.  
Because the output voltage is adjusted continuously, there are  
an infinite number of operating conditions. This data sheet  
addresses three discrete operating conditions in the Specifications  
section. Many other combinations of input and output voltage are  
possible; Figure 14 depicts the supported voltage combinations  
at room temperature. Figure 14 was generated by using a fixed  
VISO load and decreasing the input voltage until the PWM was  
at 80% duty cycle. Each of the curves represents the minimum  
input voltage that is required for operation under this criterion.  
For example, if the application requires 30 mA of output  
current at 5 V, the minimum input voltage at VIN is 4.25 V.  
Figure 14 also illustrates that a configuration with VIN = 3.3 V and  
VISO = 5 V is not recommended. Even at 10 mA of output  
current, the PWM cannot maintain less than 80% duty factor,  
leaving no margin to support load or temperature variations.  
However, because the Side 1 pin has a modified output level/  
input threshold, this side of the ADM3260 communicates only  
with devices that conform to the I2C standard. In other words,  
Side 2 of the ADM3260 is I2C compliant, whereas Side 1 is only  
I2C compatible.  
The output logic low levels are independent of the VDDISO  
and VDDP voltages. The input logic low threshold at Side 1 is  
also independent of VDDISO. However, the input logic low  
threshold at Side 2 is at 0.3 VDDP, consistent with I2C  
requirements. The Side 1 and Side 2 pins have open-collector  
outputs whose high levels are set via pull-up resistors to their  
respective supply voltages.  
Typically, the dc-to-dc converter section of the ADM3260  
dissipates about 17% more power between room temperature  
and maximum temperature; therefore, the 20% PWM margin  
covers temperature variations.  
The isolated converter implements undervoltage lockout (UVLO)  
with hysteresis on the input/output pins of the primary and  
secondary sides as well as the VIN power input. This feature  
ensures that the converter does not go into oscillation due to  
noisy input power or slow power-on ramp rates.  
Rev. E | Page 15 of 19  
 
 
ADM3260  
Data Sheet  
DIGITAL ISOLATOR STARTUP  
PCB LAYOUT  
Both the VDDISO and VDDP supplies of the digital isolator  
block have an undervoltage lockout feature to prevent the  
signal channels from operating unless certain criteria are met.  
This feature prevents input logic low signals from pulling down  
the I2C bus inadvertently during power-up/power-down.  
Supply bypassing of the 0.15 W isoPower integrated dc-to-dc  
converter with a low ESR capacitor is required as near the chip  
pads as possible. The isoPower inputs require several passive  
components to bypass the power effectively, as well as to set the  
output voltage and to bypass the core voltage regulator (see  
Figure 21 through Figure 23).  
To enable the signal channels, the following two criteria must be met:  
PDIS  
Both supplies must be at least 2.5 V.  
At least 40 µs must elapse after both supplies exceed the  
internal start-up threshold of 2.0 V.  
VIN  
GNDP  
+
0.1µF  
10µF  
Until both criteria are met for both supplies, pull the outputs of  
the digital isolator block of the ADM3260 high, ensuring a startup  
that avoids any disturbances on the bus.  
Figure 21. VIN Bias and Bypass Components  
Figure 18 and Figure 19 illustrate the supply conditions for fast  
and slow input supply slew rates.  
VSEL  
30kΩ  
VISO  
GNDISO  
+
0.1µF  
10kΩ  
10µF  
MINIMUM RECOMMENDED  
OPERATING SUPPLY, 3.0V  
Figure 22. VISO Bias and Bypass Components  
SUPPLY VALID  
MINIMUM VALID SUPPLY, 2.5V  
The power supply section of the ADM3260 uses a 125 MHz  
oscillator frequency to efficiently pass power through its chip-scale  
transformers. Choose bypass capacitors carefully because they  
must perform more than one function. Noise suppression requires  
a low inductance, high frequency capacitor; ripple suppression  
and proper regulation require a large value bulk capacitor.  
Connect these capacitors most conveniently between Pin VIN  
and Pin GNDP for VIN and between Pin VISO and Pin GNDISO  
for VISO. To suppress noise and reduce ripple, a parallel  
combination of at least two capacitors is required. The  
recommended capacitor values are 0.1 µF and 10 µF for VIN.  
The smaller capacitor must have a low ESR; for example, use of  
an NP0 or X5R ceramic capacitor is advised. Ceramic capacitors  
are also recommended for the 10 µF bulk capacitance. Add an  
additional 10 nF capacitor in parallel if further EMI/EMC control  
is desired.  
INTERNAL START-UP  
THRESHOLD, 2.0V  
40µs  
Figure 18. Digital Isolator Start-Up Condition, Supply Slew Rate > 12.5 V/ms  
MINIMUM RECOMMENDED  
OPERATING SUPPLY, 3.0V  
MINIMUM VALID SUPPLY, 2.5V  
SUPPLY VALID  
INTERNAL START-UP  
THRESHOLD, 2.0V  
40µs  
Figure 19. Digital Isolator Start-Up Condition, Supply Slew Rate < 12.5 V/ms  
TYPICAL APPLICATION DIAGRAM  
Do not exceed 2 mm for the total lead length between the ends  
of the low ESR capacitor and the input power supply.  
Figure 20 shows a typical application circuit including the pull-  
up resistors required for both Side 1 and Side 2 buses. Bypass  
capacitor with values from 0.01 µF to 0.1 µF are required between  
VDDP and GNDP and between VDDISO and GNDISO.  
GNDP  
SCL2  
GNDISO  
SCL1  
SDA1  
SDA2  
VDDP  
ISOLATION  
BARRIER  
VDDISO  
GNDP  
GNDISO  
ADM3260  
ADM3260  
5V  
5V_ISO  
GNDP  
PDIS  
VIN  
GNDISO  
VSEL  
VIN  
VISO  
GNDISO  
VSEL  
GNDP  
PDIS  
VISO  
ON/OFF  
GNDP  
GNDISO  
BYPASS < 2mm  
VDDISO  
VDDP  
Figure 23. Recommended PCB Layout  
GNDISO  
GNDP  
SDA  
SCL  
SDA_ISO  
SCL_ISO  
SDA2  
SCL2  
SDA1  
SCL1  
Figure 20. Typical Isolated I2C Interface Using the ADM3260  
Rev. E | Page 16 of 19  
 
 
 
 
 
 
 
 
Data Sheet  
ADM3260  
In applications involving high common-mode transients, design  
the board layout such that any coupling that does occur affects  
all pins on a given component side equally. Failure to ensure this  
can cause voltage differentials between pins, exceeding the  
absolute maximum ratings specified in Table 13, and thereby  
leading to latch-up and/or permanent damage.  
Accelerated life testing is performed using voltage levels higher  
than the rated continuous working voltage. Acceleration factors for  
several operating conditions are determined, allowing calculation  
of the time to failure at the working voltage of interest. The values  
shown in Table 14 summarize the peak voltages for 50 years of  
service life in several operating conditions. In many cases, the  
working voltage approved by agency testing is higher than the  
50-year service life voltage. Operation at working voltages  
higher than the service life voltage listed leads to premature  
insulation failure.  
The insulation lifetime of the ADM3260 depends on the voltage  
waveform type imposed across the isolation barrier. The iCoupler  
insulation structure degrades at different rates, depending on  
whether the waveform is bipolar ac, unipolar ac, or dc. Figure 24,  
Figure 25, and Figure 26 illustrate these different isolation voltage  
waveforms.  
THERMAL ANALYSIS  
The ADM3260 consist of four internal die attached to a split lead  
frame with four die attach paddles. For the purposes of thermal  
analysis, treat the chip as a thermal unit, with the highest junction  
temperature reflected in the θJA value from Table 8. The value of  
θJA is based on measurements taken with the devices mounted on  
a JEDEC standard, 4-layer board with fine width traces and still  
air. Under normal operating conditions, the ADM3260 operates  
at a full load across the full temperature range without derating  
the output current.  
Bipolar ac voltage is the most stringent environment. A 50-year  
operating lifetime under the bipolar ac condition determines  
the Analog Devices recommended maximum working voltage.  
Power dissipation in the device varies with ambient  
temperature due to the characteristics of the switching and  
rectification elements. Figure 15 and Figure 16 show the  
relationship between total power dissipation at two load  
conditions and ambient temperature. Use this information to  
determine the junction temperature at various operating  
conditions to ensure that the device does not go into thermal  
shutdown unexpectedly.  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 14 can be applied while maintaining the  
50-year minimum lifetime, provided that the voltage conforms to  
either the unipolar ac or dc voltage cases. Any cross-insulation  
voltage waveform that does not conform to Figure 25 or Figure 26  
must be treated as a bipolar ac waveform, and its peak voltage must  
be limited to the 50-year lifetime voltage value listed in Table 14.  
EMI CONSIDERATIONS  
The dc-to-dc converter section of the ADM3260 components  
must operate at a very high frequency to allow efficient power  
transfer through the small transformers. This high frequency  
operation creates high frequency currents that propagate in  
circuit board ground and power planes, causing edge and  
dipole radiation. Grounded enclosures are recommended for  
applications that use these devices. If grounded enclosures are  
not possible, follow good RF design practices in the layout of the  
PCB. See the AN-0971 Application Note for the most current  
PCB layout recommendations for the ADM3260.  
RATED PEAK VOLTAGE  
0V  
Figure 24. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
INSULATION LIFETIME  
Figure 25. DC Waveform  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. Analog Devices conducts  
an extensive set of evaluations to determine the lifetime of the  
insulation structure within the ADM3260.  
RATED PEAK VOLTAGE  
0V  
NOTES  
1. THE VOLTAGE IS SHOWN AS SINU SOIDAL FOR ILLUSTRATION  
PUPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE  
WAVEFORM VARYING BETWEEN 0V AND SOME LIMITING VALUE.  
THE LIMITING VALUE CAN BE POSITIVE OR NEGATIVE,  
BUT THE VOLTAGE CANNOT CROSS 0V.  
Figure 26. Unipolar AC Waveform  
Rev. E | Page 17 of 19  
 
 
 
 
 
 
ADM3260  
Data Sheet  
APPLICATIONS EXAMPLE  
RTN  
12V  
ADM1075  
–48V HOT SWAP  
CONTROLLER  
AND  
DIGITAL POWER  
MONITOR  
ADP1046  
ISOLATED  
DIGITAL  
DC-TO-DC  
CONVERTER  
–48V  
3.3V_ISO  
3.3V MANAGEMENT BUS  
VISO  
VIN  
VDDISO  
SDA1  
VDDP  
SDA_ISO  
SCL_ISO  
SDA  
SCL  
ADM3260  
SDA2  
SCL2  
GNDP  
PROCESSOR  
2
POWER + I C  
ISOLATOR  
SCL1  
–48V  
GNDISO  
Figure 27. The ADM3260 Used in −48 V Power Monitoring and Control  
Rev. E | Page 18 of 19  
 
Data Sheet  
ADM3260  
OUTLINE DIMENSIONS  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 28. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
ADM3260ARSZ  
ADM3260ARSZ-RL7  
EVAL-ADM3260EBZ  
20-Lead Shrink Small Outline Package [SSOP]  
20-Lead Shrink Small Outline Package [SSOP]  
Evaluation Board  
RS-20  
RS-20  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2013–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11890-6/20(E)  
Rev. E | Page 19 of 19  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY