ADM4073WFWRJZ-RL7 [ADI]

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN;
ADM4073WFWRJZ-RL7
型号: ADM4073WFWRJZ-RL7
厂家: ADI    ADI
描述:

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN

光电二极管
文件: 总12页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Voltage Output,  
High-Side, Current-Sense Amplifier  
ADM4073  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
I
LOAD  
Low cost, compact, current-sense solution  
3 available gain versions  
20 V/V (ADM4073T)  
50 V/V (ADM4073F)  
100 V/V (ADM4073H)  
Typical 1.0% full-scale accuracy  
Supply current: 500 μA  
Wide bandwidth: 1.8 MHz  
R
V
SENSE  
2V TO 28V  
OUT  
RS–  
RG2  
RS+  
RG1  
I
V
RG1  
AV  
CC  
3V TO 28V  
0.1µF  
Operating supply: 3 V to 28 V  
Wide common-mode range: 2 V to 28 V  
Independent of supply voltage  
Operating temperature range: −40°C to +125°C  
Available in a 6-lead SOT-23 package  
Pin-to-pin compatibility with the MAX4073  
ADM4073  
OUT  
CURRENT  
MIRROR  
V
OUT  
RGD = 12k  
I
RGD  
GND  
APPLICATIONS  
Figure 1.  
Cell phones  
PDAs  
Notebook computers  
APPLICATION DIAGRAM  
R
V
SENSE  
2V TO 28V  
OUT  
Portable, battery-powered systems  
Smart battery packs and chargers  
Automotive  
Power management systems  
PA bias control  
RS+  
CC  
RS–  
3V TO 28V  
0.1µF  
V
OUT  
ADC  
ADM4073  
General system-level, board-level current monitoring  
Precision current sources  
GND  
Figure 2.  
GENERAL DESCRIPTION  
The ADM4073 is a low cost, high-side, current-sense amplifier  
ideal for small portable applications, such as cell phones,  
notebook computers, PDAs, and other systems where current  
monitoring is required. The device is available in three different  
gain models, eliminating the need for gain-setting resistors.  
Because the ground path is not interrupted, the ADM4073 is  
particularly useful in rechargeable battery-powered systems,  
while its wide 1.8 MHz bandwidth makes it suitable for use  
inside battery-charger control loops. The input common-mode  
range of 2 V to 28 V is independent of the supply voltage.  
The voltage on the output pin is determined by the current  
flowing through the selectable external sense resistor and the  
gain of the version selected. The operating range is 3 V to 28 V  
with a typical supply current of 500 μA.  
The ADM4073 is available in a 6-lead SOT-23 package and is  
specified over the automotive operating temperature range  
(−40°C to +125°C).  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2008 Analog Devices, Inc. All rights reserved.  
 
ADM4073  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................4  
Pin Configuration and Function Descriptions..............................5  
Typical Performance Characteristics ..............................................6  
Theory of Operation ...................................................................... 10  
RSENSE............................................................................................. 10  
Output (OUT)............................................................................. 10  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 11  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Application Diagram........................................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Characteristics .............................................................. 4  
REVISION HISTORY  
10/08—Rev. 0 to Rev. A  
Changes to Theory of Operation Section and Output (OUT)  
Section.............................................................................................. 10  
Changes to Ordering Guide .......................................................... 11  
7/06—Revision 0: Initial Version  
Rev. A | Page 2 of 12  
 
ADM4073  
SPECIFICATIONS  
VRS+ = 2 V to 28 V, VSENSE = (VRS+ − VRS−) = 0 V, VCC = 3 V to 28 V, TA = −40°C to +125°C, unless otherwise noted. Typical values are at TA = 25°C.1  
Table 1.  
Parameter  
Min Typ  
Max Unit Conditions  
POWER SUPPLY  
Operating Voltage Range, VCC  
Common-Mode Input Range, VCMR  
Common-Mode Input Rejection, CMR  
Supply Current, ICC  
Leakage Current, IRS+/IRS−  
Input Bias Current, IRS+  
Input Bias Current, IRS−  
Full-Scale Sense Voltage, VSENSE  
Total Output Voltage Error2  
3
2
28  
28  
V
V
Inferred from PSRR test  
Inferred OUT voltage error test  
VSENSE = 100 mV, VCC = 12 V  
VCC = 28 V  
90  
0.5  
0.05  
20  
40  
150  
±1  
dB  
mA  
μA  
μA  
μA  
mV  
%
1.2  
2
60  
120  
VCC = 0 V, VRS+ = 28 V, TA = 85°C  
VSENSE = (VRS+ − VRS−)  
VSENSE = 100 mV, VCC = 12 V, VRS+ = 2 V  
±1.0 ±5.0  
±5.0  
±1.0 ±5.0  
±5.0  
%
%
%
%
VSENSE = 100 mV, VCC = 12 V, VRS+ = 12 V, TA = +25°C  
VSENSE = 100 mV, VCC = 12 V, VRS = 12V, TA = −40°C to +125°C  
VSENSE = 100 mV, VCC = 28 V, VRS = 28 V, TA = +25°C  
VSENSE = 100 mV, VCC = 28 V, VRS = 28 V, TA = −40°C to +125°C  
VSENSE = 6.25 mV,3 VCC = 12 V, VRS = 12 V  
±±.5  
%
Extrapolated Input Offset Voltage, VOS  
Output High Voltage (VCC − VOH)  
1.0  
mV  
V
V
VCC = VRS+ = 12 V, VSENSE > 10 mV  
VCC = 3 V, VSENSE = 150 mV (ADM40±3T)  
VCC = ±.5 V, VSENSE = 150 mV (ADM40±3F)  
VCC = 15 V, VSENSE = 150 mV (ADM40±3H), TA = 25°C  
0.8  
0.8  
0.8  
1.2  
1.2  
1.2  
V
DYNAMIC CHARACTERISTICS  
Bandwidth, BW  
1.8  
1.±  
1.6  
600  
20  
50  
100  
±1.0 ±2.0  
MHz VSENSE = 100 mV, VCC = 12 V, VRS+ = 12 V, CLOAD = 5 pF (ADM40±3T)  
MHz VSENSE = 100 mV, VCC = 12 V, VRS+ = 12 V, CLOAD = 5 pF (ADM40±3F)  
MHz VSENSE = 100 mV, VCC = 12 V, VRS+ = 12 V, CLOAD = 5 pF (ADM40±3H)  
kHz  
V/V  
V/V  
V/V  
%
VSENSE = 6.25 mV,3 VCC = 12 V, VRS+ = 12 V, CLOAD = 5 pF (ADM40±3T/F/H)  
Gain, AV  
ADM40±3T  
ADM40±3F  
ADM40±3H  
Gain Accuracy  
VSENSE = 10 mV to 150 mV, VCC = 12 V, VRS+ = 12 V,  
TA = +25°C (ADM40±3T/F)  
±2.0  
%
%
%
VSENSE = 10 mV to 150 mV, VCC = 12 V, VRS+ = 12 V,  
TA = −40°C to +125°C (ADM40±3T/F)  
VSENSE = 10 mV to 100 mV, VCC = 12 V, VRS+ = 12 V,  
TA = +25°C (ADM40±3H)  
VSENSE = 10 mV to 100 mV, VCC = 12 V, VRS+ = 12 V,  
TA = −40°C to +125°C (ADM40±3H)  
±1.0 ±1.5  
±3.0  
OUT SettlingTime to 1% of Final Value  
400  
800  
12  
±8  
85  
90  
5
ns  
ns  
kΩ  
dB  
dB  
dB  
μs  
μs  
VSENSE = 6.25 mV to 100 mV, VCC = 12 V, VRS+ = 12 V, CLOAD = 5 pF  
VSENSE = 100 mV to 6.25 mV, VCC = 12 V, VRS+ = 12 V, CLOAD = 5 pF  
Output Resistance, ROUT  
Power Supply Rejection Ratio, PSRR  
VSENSE = 60 mV, VCC = 3 V to 28 V (ADM40±3T)  
VSENSE = 24 mV, VCC = 3 V to 28 V (ADM40±3F)  
VSENSE = 12 mV, VCC = 3 V to 28 V (ADM40±3H)  
CLOAD = 5 pF, VSENSE = 100 mV  
Power-Up Time4  
Saturation Recovery Time5  
5
CLOAD = 5 pF, VCC = 12 V, VRS+ = 12 V  
1 100% production tested at TA = 25°C. Specifications over temperature limit are guaranteed by design.  
2 The sum of the gain and offset errors is the total OUT voltage error.  
3 6.25 mV = 1/16th of 100 mV full-scale sense voltage.  
4 Output settles to within 1% of final value.  
5 When overdriven, this device does not experience phase reversal.  
Rev. A | Page 3 of 12  
 
 
 
 
ADM4073  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
THERMAL CHARACTERISTICS  
Rating  
VCC to GND  
RS+, RS− to GND  
OUT to GND  
OUT Short-Circuit to GND  
Differential Input Voltage (VRS+ − VRS−  
Current into Any Pin  
Storage Temperature Range  
Operating Temperature Range  
−0.3 V to +30 V  
−0.3 V to +30 V  
−0.3 V to (VCC + 0.3 V)  
Continuous  
±5 V  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3. Thermal Resistance  
Package Type  
θJA  
Unit  
)
6-Lead SOT-23  
169.5  
°C/W  
±20 mA  
−65°C to +125°C  
−40°C to +125°C  
300°C  
ESD CAUTION  
Lead Temperature, Soldering (10 sec)  
Junction Temperature  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 4 of 12  
 
ADM4073  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
6
5
4
OUT  
RS–  
RS+  
TOP VIEW  
(Not to Scale)  
GND  
V
CC  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
GND  
GND  
VCC  
RS+  
RS−  
Description  
1
2
3
4
5
6
Chip Ground Pin.  
Chip Ground Pin.  
Chip Power Supply. Requires a 0.1 μF capacitor to ground.  
Power-Side Connection to the External Sense Resistor.  
Load-Side Connection to the External Sense Resistor.  
OUT  
Voltage Output. VOUT is proportional to VSENSE. Output impedance is approximately 12 kΩ.  
Rev. A | Page 5 of 12  
 
ADM4073  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.60  
0.45  
0.43  
0.41  
0.39  
0.37  
0.35  
V
= 6.25mV  
V
= 6.25mV  
SENSE  
SENSE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
ADM4073H  
ADM4073H  
ADM4073T  
ADM4073F  
ADM4073F  
ADM4073T  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
SUPPLY VOLTAGE (V)  
V
(V)  
RS+  
Figure 4. Supply Current vs. Supply Voltage (VSENSE = 6.25 mV)  
Figure 7. Supply Current vs. RS+ Voltage (VSENSE = 6.25 mV)  
1.5  
V
= 100mV  
SENSE  
V
= 100mV  
SENSE  
1.5  
1.3  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
ADM4073H  
ADM4073H  
ADM4073F  
1.1  
0.9  
0.7  
0.5  
ADM4073F  
ADM4073T  
25  
ADM4073T  
20  
0
5
10  
15  
20  
30  
0
5
10  
15  
25  
30  
V
(V)  
RS+  
SUPPLY VOLTAGE (V)  
Figure 8. Supply Current vs. RS+ Voltage (VSENSE = 100 mV)  
Figure 5. Supply Current vs. Supply Voltage (VSENSE = 100 mV)  
0.7  
1.0  
0.8  
V
V
= 0mV  
V
= 100mV  
SENSE  
= 28V  
SENSE  
CC  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
ADM4073F  
ADM4073H  
0.4  
ADM4073T  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
30  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 6. Supply Current vs. Temperature  
Figure 9. Total Output Error vs. Supply Voltage (VSENSE = 100 mV)  
Rev. A | Page 6 of 12  
 
ADM4073  
1.0  
0.8  
2.0  
1.5  
V
= 6.25mV  
SENSE  
0.6  
1.0  
0.4  
ADM4073F  
ADM4073T  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
ADM4073H  
15  
0
5
10  
20  
25  
30  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. Total Output Error vs. Supply Voltage (VSENSE = 6.25 mV)  
Figure 13. Gain Accuracy vs. Temperature  
1.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ADM4073F  
0.5  
ADM4073H  
ADM4073H  
0
ADM4073T  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
ADM4073F  
ADM4073T  
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 11. Total Output Error vs. Common-Mode Voltage  
Figure 14. Output High Voltage (VCC − VOH) vs. Temperature  
70  
0.10  
ADM4073F  
0.08  
0.06  
60  
V
V
= 28V  
= 12V  
CC  
CC  
50  
40  
0.04  
0.02  
0
ADM4073T  
30  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
20  
ADM4073H  
10  
0
0.1  
1
10  
100  
1000  
10000  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
FREQUENCY (kHz)  
Figure 15. PSRR vs. Frequency  
Figure 12. Total Output Error vs. Temperature  
Rev. A | Page ± of 12  
ADM4073  
45  
40  
35  
30  
25  
20  
15  
10  
5
ADM4073H  
ADM4073F  
100mV  
95mV  
10V  
V
SENSE  
ADM4073T  
2.5mV/DIV  
OUT  
9.5V  
250mV/DIV  
0
0.1  
1µs/DIV  
1
10  
100  
1000  
10000  
FREQUENCY (kHz)  
Figure 19. ADM4073H Small Signal Transient Response  
Figure 16. Small Signal Gain vs. Frequency  
100mV  
100mV  
6.25mV  
2V  
V
V
SENSE  
45mV/DIV  
SENSE  
95mV  
2V  
2.5mV/DIV  
OUT  
50mV/DIV  
OUT  
0.9V/DIV  
1.9V  
0.120V  
1µs/DIV  
1µs/DIV  
Figure 17. ADM4073T Small Signal Transient Response  
Figure 20. ADM4073T Large Signal Transient Response  
100mV  
95mV  
5V  
100mV  
6.25mV  
5V  
V
V
SENSE  
45mV/DIV  
SENSE  
2.5mV/DIV  
OUT  
125mV/DIV  
OUT  
2.35V/DIV  
4.75V  
0.3V  
1µs/DIV  
1µs/DIV  
Figure 18. ADM4073F Small Signal Transient Response  
Figure 21. ADM4073F Large Signal Transient Response  
Rev. A | Page 8 of 12  
ADM4073  
V
= 0V TO 4V  
CC  
100mV  
6.25mV  
10V  
4V  
0V  
2V  
0V  
V
V
CC  
2V/DIV  
SENSE  
45mV/DIV  
OUT  
OUT  
1V/DIV  
0.6V  
4.7V/DIV  
1µs/DIV  
1µs/DIV  
Figure 22. ADM4073H Large Signal Transient Response  
Figure 24. ADM4073T Start-Up Delay  
V
= 3V  
CC  
250mV  
50mV  
V
SENSE  
100mV/DIV  
V
OH  
OUT  
600mV/DIV  
1V  
1µs/DIV  
Figure 23. ADM4073T Overdrive Response  
Rev. A | Page 9 of 12  
ADM4073  
THEORY OF OPERATION  
The current from the source flows through RSENSE, which gen-  
erates a voltage drop, VSENSE, across the RS+ and RS− terminals  
of the sense amplifier. The Input Stage Amplifier A1 regulates  
its inputs to be equal, thereby shunting a current proportional  
to VSENSE/RG1 to the output current mirror. This current is then  
multiplied by a gain factor of b in the output stage current mir-  
ror and flows through RGD to generate VOUT. Therefore, VOUT is  
related to VSENSE by the ratio of RG1 to RGD and the current gain  
of b.  
To measure lower currents accurately, use as large a sense  
resistor as possible to utilize the higher end of the sense voltage  
range. This reduces the effects of the offset voltage errors in the  
internal amplifier.  
When currents are very large, it is important to take the I2R  
power losses across the sense resistor into account. If the sense  
resistors rated power dissipation is not sufficient, its value can  
drift, giving an inaccurate output voltage or it could fail alto-  
gether. This, in turn, causes the voltage across the RS+ and RS−  
pins to exceed the absolute maximum ratings.  
V
OUT = AV × VSENSE  
where:  
AV = RGD/RG1 × b  
If the monitored supply rail has a large amplitude high  
frequency component, choose a sense resistor with low  
inductance.  
Av is equal to different voltages depending upon the model of  
the device.  
R
SENSE  
INPUT  
COPPER PCB TRACE  
OUTPUT  
20 V/V for ADM4073T.  
50 V/V for ADM4073F.  
100 V/V for ADM4073H.  
RS+  
CC  
RS–  
3V TO 28V  
0.1µF  
V
I
LOAD  
OUT  
R
V
SENSE  
2V TO 28V  
OUT  
ADM4073  
RS–  
RS+  
GND  
I
V
RG1  
CC  
3V TO 28V  
0.1µF  
R
R
G2  
G1  
Figure 26. Using PCB Trace for Current Sensing  
AV  
OUTPUT (OUT)  
The output stage of the ADM4073 is a current source driving a  
pull-down resistance. To ensure optimum accuracy, care must  
be taken not to load this output externally. To minimize output  
errors, ensure OUT is connected to a high impedance input  
stage. If this is not possible, output buffering is recommended.  
ADM4073  
OUT  
CURRENT  
MIRROR  
V
OUT  
R
= 12k  
GD  
I
RGD  
The percent error introduced by output loading is determined  
with the following formula:  
GND  
Figure 25. Functional Block Diagram  
% Error =100  
(
1RLOAD  
/
(
ROUT _ INT + RLOAD
))  
RSENSE  
where:  
R
R
LOAD is the external load applied to OUT.  
OUT_INT is the internal output resistance (12 kΩ).  
The ADM4073 has the ability to sense a wide variety of currents  
by selecting a particular sense resistor. Select a suitable output  
voltage for full-scale current, such as 10 V for 10 A. Then, select  
a gain model that gives the most efficient use of the sense volt-  
age range (150 mV max).  
In the example above, using the ADM4073H (gain of 100) gives  
an output voltage of 10 V when the sense voltage is 100 mV.  
Use the following equation to determine what value of sense  
resistor gives 100 mV with 10 A flowing through it:  
R
R
SENSE = 100 mV/10 A  
SENSE = 10 mΩ  
V
OUT = (ILOAD × RSENSE) × AV  
Rev. A | Page 10 of 12  
 
ADM4073  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
4°  
0°  
0.60  
0.45  
0.30  
0.50  
0.30  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 27. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADM40±3TWRJZ-REEL±1  
ADM40±3FWRJZ-REEL±1  
ADM40±3HWRJZ-REEL±1  
ADM40±3WFWRJZ-RL±1, 2  
Gain  
Temperature Range  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Package Description  
6-Lead SOT-23  
Package Option  
Branding  
M2E  
20  
RJ-6  
RJ-6  
RJ-6  
RJ-6  
50  
6-Lead SOT-23  
M2C  
100  
50  
6-Lead SOT-23  
M2D  
6-Lead SOT-23  
M2C  
1 Z = RoHS Compliant Part.  
2 Automotive Grade.  
Rev. A | Page 11 of 12  
 
 
ADM4073  
NOTES  
©2006–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05131-0-10/08(A)  
Rev. A | Page 12 of 12  
 

相关型号:

ADM4168E

15 kV ESD Protected Dual RS-422 Transceiver
ADI

ADM4168EBRUZ

15 kV ESD Protected Dual RS-422 Transceiver
ADI

ADM4168EBRUZ-RL7

15 kV ESD Protected Dual RS-422 Transceiver
ADI

ADM4210

Hot Swap Controller in 6-Lead TSOT Package
ADI

ADM4210-1AUJZ-RL7

Hot Swap Controller in 6-Lead TSOT Package
ADI

ADM4210-2AUJZ-RL7

Hot Swap Controller in 6-Lead TSOT Package
ADI

ADM45FDC-100M

SMD/SMT 电感器(线圈)
TDK

ADM483

5 V Low Power, Slew-Rate Limited RS-485/RS-422 Transceiver
ADI

ADM483AR

5 V Low Power, Slew-Rate Limited RS-485/RS-422 Transceiver
ADI

ADM483AR-REEL

5 V Low Power, Slew-Rate Limited RS-485/RS-422 Transceiver
ADI

ADM483AR-REEL7

5 V Low Power, Slew-Rate Limited RS-485/RS-422 Transceiver
ADI

ADM483ARZ

5V Low Power, Slew-Rate Limited
ADI