ADM485JR-REEL [ADI]

Meets EIA RS-485 standard; 符合EIA RS- 485标准
ADM485JR-REEL
型号: ADM485JR-REEL
厂家: ADI    ADI
描述:

Meets EIA RS-485 standard
符合EIA RS- 485标准

文件: 总16页 (文件大小:607K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 V Low Power  
EIA RS-485 Transceiver  
ADM485  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Meets EIA RS-485 standard  
5 Mbps data rate  
ADM485  
1
8
Single 5 V supply  
RO  
RE  
V
CC  
R
–7 V to +12 V bus common-mode range  
High speed, low power BiCMOS  
Thermal shutdown protection  
Short-circuit protection  
Driver propagation delay: 10 ns typical  
Receiver propagation delay: 15 ns typical  
High-Z outputs with power off  
Superior upgrade for LTC485  
2
3
4
7
6
5
B
DE  
DI  
A
GND  
D
Figure 1.  
APPLICATIONS  
Low power RS-485 systems  
DTE/DCE interface  
Packet switching  
Local area networks (LNAs)  
Data concentration  
Data multiplexers  
Integrated services digital network (ISDN)  
GENERAL DESCRIPTION  
The ADM485 is a differential line transceiver suitable for high  
speed bidirectional data communication on multipoint bus  
transmission lines. It is designed for balanced data transmission  
and complies with EIA standards RS-485 and RS-422. The part  
contains a differential line driver and a differential line receiver.  
Both the driver and the receiver can be enabled independently.  
When disabled, the outputs are three-stated.  
The receiver contains a fail-safe feature that results in a logic  
high output state if the inputs are unconnected (floating).  
The ADM485 is fabricated on BiCMOS, an advanced mixed  
technology process combining low power CMOS with fast  
switching bipolar technology. All inputs and outputs contain  
protection against ESD; all driver outputs feature high source  
and sink current capability. An epitaxial layer is used to guard  
against latch-up.  
The ADM485 operates from a single 5 V power supply.  
Excessive power dissipation caused by bus contention or by  
output shorting is prevented by a thermal shutdown circuit. If  
during fault conditions, a significant temperature increase is  
detected in the internal driver circuitry, this feature forces the  
driver output into a high impedance state.  
The ADM485 features extremely fast switching speeds. Minimal  
driver propagation delays permit transmission at data rates up  
to 5 Mbps while low skew minimizes EMI interference.  
The part is fully specified over the commercial and industrial  
temperature range and is available in 8-lead PDIP, 8-lead SOIC,  
and small footprint, 8-lead MSOP packages.  
Up to 32 transceivers can be connected simultaneously on a  
bus, but only one driver should be enabled at any time. It is  
important, therefore, that the remaining disabled drivers do not  
load the bus. To ensure this, the ADM485 driver features high  
output impedance when disabled and when powered down,  
which minimizes the loading effect when the transceiver is not  
being used. The high impedance driver output is maintained  
over the common-mode voltage range of −7 V to +12 V.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1993–2008 Analog Devices, Inc. All rights reserved.  
 
ADM485  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 10  
Switching Characteristics .............................................................. 11  
Applications Information.............................................................. 12  
Differential Data Transmission ................................................ 12  
Cable and Data Rate................................................................... 12  
Thermal Shutdown .................................................................... 12  
Propagation Delay...................................................................... 12  
Receiver Open Circuit, Fail-Safe.............................................. 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
04/08—Rev. E to Rev. F  
1/03—Rev. B to Rev. C.  
Updated Format..................................................................Universal  
Changes to Table 2............................................................................ 4  
Updated Outline Dimension......................................................... 13  
Changes to Ordering Guide .......................................................... 14  
Change to Specifications ..................................................................2  
Change to Ordering Guide...............................................................3  
12/02—Rev. A to Rev. B.  
Deleted Q-8 Package..........................................................Universal  
Edits to Features.................................................................................1  
Edits to General Description ...........................................................1  
Edits, additions to Specifications.....................................................2  
Edits, additions to Absolute Maximum Ratings............................3  
Additions to Ordering Guide...........................................................3  
TPCs Updated and Reformatted .....................................................5  
Addition of 8-Lead MSOP Package ................................................9  
Update to Outline Dimensions........................................................9  
10/03—Rev. D to Rev. E  
Changes to Timing Specifications.................................................. 2  
Updated Ordering Guide................................................................. 3  
7/03—Rev. C to Rev. D  
Changes to Absolute Maximum Ratings....................................... 3  
Changes to Ordering Guide ............................................................ 3  
Update to Outline Dimensions....................................................... 9  
Rev. F | Page 2 of 16  
 
ADM485  
SPECIFICATIONS  
VCC = 5 V 5ꢀ, all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DRIVER  
Differential Output Voltage, VOD  
5.0  
5.0  
5.0  
5.0  
0.2  
3
0.2  
250  
250  
0.8  
V
V
V
V
V
V
V
mA  
mA  
V
V
μA  
R = ∞, see Figure 20  
2.0  
1.5  
1.5  
VCC = 5 V, R = 50 Ω (RS-422), see Figure 20  
R = 27 Ω (RS-485), see Figure 20  
VTST = −7 V to +12 V, see Figure 21  
R = 27 Ω or 50 Ω, see Figure 20  
R = 27 Ω or 50 Ω, see Figure 20  
R = 27 Ω or 50 Ω  
VOD3  
Δ|VOD| for Complementary Output States  
Common-Mode Output Voltage, VOC  
Δ|VOD| for Complementary Output States  
Output Short-Circuit Current, VOUT = High  
Output Short-Circuit Current, VOUT = Low  
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Input Current (DE, DI)  
35  
35  
−7 V ≤ VO ≤ +12 V  
−7 V ≤ VO ≤ +12 V  
2.0  
1.0  
RECEIVER  
Differential Input Threshold Voltage, VTH  
Input Voltage Hysteresis, ΔVTH  
Input Resistance  
−0.2  
12  
+0.2  
V
−7 V ≤ VCM ≤ +12 V  
VCM = 0 V  
−7 V ≤ VCM ≤ +12 V  
VIN = 12 V  
70  
mV  
kΩ  
mA  
mA  
V
Input Current (A, B)  
1
–0.8  
0.8  
VIN = −7 V  
CMOS Input Logic Threshold Low, VINL  
CMOS Input Logic Threshold High, VINH  
Logic Enable Input Current (RE)  
CMOS Output Voltage Low, VOL  
CMOS Output Voltage High, VOH  
Short-Circuit Output Current  
Three-State Output Leakage Current  
POWER SUPPLY CURRENT  
2.0  
V
1
μA  
V
V
mA  
μA  
0.4  
IOUT = 4.0 mA  
IOUT = −4.0 mA  
VOUT = GND or VCC  
0.4 V ≤ VOUT ≤ 2.4 V  
4.0  
7
85  
1.0  
ICC, Outputs Enabled  
1.0  
0.6  
2.2  
1
mA  
mA  
Digital inputs = GND or VCC  
Digital inputs = GND or VCC  
ICC, Outputs Disabled  
Rev. F | Page 3 of 16  
 
ADM485  
TIMING SPECIFICATIONS  
VCC = 5 V 5ꢀ, all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Min Typ Max Unit Test Conditions/Comments  
DRIVER  
Propagation Delay Input to Output, tPLH, tPHL  
Driver Output to OUTPUT, tSKEW  
Driver Rise/Fall Time, tR, tF  
Driver Enable to Output Valid  
Driver Disable Timing  
Matched Enable Switching |tZH − tZL|  
Matched Disable Switching |tHZ − tLZ|  
RECEIVER  
2
10  
1
15  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 22  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 22  
RLDIFF = 54 Ω, CL1 = CL2 = 100 pF, see Figure 22  
RL = 110 Ω, CL = 50 pF, see Figure 23  
RL = 110 Ω, CL = 50 pF, see Figure 23  
RL = 110 Ω, CL = 50 pF, see Figure 231  
RL = 110 Ω, CL = 50 pF, see Figure 231  
8
15  
25  
25  
2
10  
10  
0
0
2
Propagation Delay Input to Output, tPLH, tPHL  
8
15  
30  
5
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 15 pF, see Figure 24  
CL = 15 pF, see Figure 24  
CL = 15 pF, RL = 1 kΩ, see Figure 25  
CL = 15 pF, RL = 1 kΩ, see Figure 25  
Skew |tPLH − tPHL  
|
Receiver Enable, tZH, tZL  
Receiver Disable, tHZ, tLZ  
Tx Pulse Width Distortion  
Rx Pulse Width Distortion  
5
5
1
1
1 Guaranteed by characterization.  
Rev. F | Page 4 of 16  
 
 
ADM485  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4. Transmitting  
Inputs  
Outputs  
Table 3.  
Parameter  
DE  
DI  
B
A
Rating  
1
1
0
1
0
X1  
0
1
Z2  
1
0
Z2  
VCC  
Inputs  
Driver Input (DI)  
Control Inputs (DE, RE)  
Receiver Inputs (A, B)  
Outputs  
−0.3 V to +7 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−9 V to +14 V  
1 X = don’t care.  
2 Z = high impedance.  
Table 5. Receiving  
Driver Outputs (A, B)  
Receiver Output  
−9 V to +14 V  
−0.5 V to VCC + 0.5 V  
900 mW  
206°C/W  
500 mW  
130°C/W  
450 mW  
170°C/W  
RE  
Input A − Input B  
Output RO  
0
0
0
1
≥ +0.2 V  
≤ −0.2 V  
Inputs open  
X1  
1
0
1
Z2  
Power Dissipation 8-Lead MSOP  
θJA, Thermal Impedance  
Power Dissipation 8-Lead PDIP  
θJA, Thermal Impedance  
Power Dissipation 8-Lead SOIC  
θJA, Thermal Impedance  
Operating Temperature Range  
Commercial Range (J Version)  
Industrial Range (A Version)  
Storage Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
1 X = don’t care.  
2 Z = high impedance.  
0°C to 70°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
215°C  
220°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. F | Page 5 of 16  
 
 
ADM485  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
CC  
B
ADM485  
TOP VIEW  
(Not to Scale)  
A
GND  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Function  
1
2
3
RO  
RE  
Receiver Output. When enabled, if A is greater than B by 200 mV, RO is high. If A is less than B by 200 mV, RO is low.  
Receiver Output Enable. A low level enables the receiver output, RO. A high level places it in a high impedance state.  
DE  
Driver Output Enable. A high level enables the driver differential outputs, A and B. A low level places it in a high  
impedance state.  
4
DI  
Driver Input. When the driver is enabled, a logic low on DI forces A low and B high, while a logic high on DI forces  
A high and B low.  
5
6
7
8
GND  
A
B
Ground Connection, 0 V.  
Noninverting Receiver Input A/Driver Output A.  
Inverting Receiver Input B/Driver Output B.  
Power Supply, 5 V 5ꢀ.  
VCC  
Rev. F | Page 6 of 16  
 
ADM485  
TYPICAL PERFORMANCE CHARACTERISTICS  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
I = 8mA  
0
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
–50  
–25  
0
25  
50  
75  
100  
125  
RECEIVER OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 6. Receiver Output Low Voltage vs. Temperature  
Figure 3. Output Current vs. Receiver Output Low Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
3.50  
3.75  
4.00  
4.25  
4.50  
4.75  
5.00  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE (V)  
RECEIVER OUTPUT HIGH VOLTAGE (V)  
Figure 4. Output Current vs. Receiver Output High Voltage  
Figure 7. Output Current vs. Driver Differential Output Voltage  
4.55  
2.15  
I = 8mA  
R
= 26.8  
L
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
2.10  
2.05  
2.00  
1.95  
1.90  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Receiver Output High Voltage vs. Temperature  
Figure 8. Driver Differential Output Voltage vs. Temperature  
Rev. F | Page 7 of 16  
 
ADM485  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
|
tPLH tPHL |  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–50  
–25  
0
25  
50  
75  
100  
125  
DRIVER OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 9. Output Current vs. Driver Output Low Voltage  
Figure 12. Receiver Skew vs. Temperature  
0
6
5
4
3
2
1
–10  
–20  
–30  
–40  
–50  
–60  
–70  
| tPHLA tPHLB  
|
|
–80  
–90  
–100  
–110  
–120  
| tPLHA tPLHB  
0
–50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–25  
0
25  
50  
75  
100  
125  
DRIVER OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. Output Current vs. Driver Output High Voltage  
Figure 13. Driver Skew vs. Temperature  
1.1  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
DRIVER ENABLED  
|
tPLH tPHL |  
DRIVER DISABLED  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Supply Current vs. Temperature  
Figure 14. Driver Pulse Width Distortion (PWD) vs. Temperature  
Rev. F | Page 8 of 16  
ADM485  
T
DI  
A
4
T
A
B
B
1,2  
3
1,2  
RO  
B
B
B
W
CH1 1.00VΩ  
CH3 5.00VΩ  
CH2 1.00VΩ  
CH4 2.00VΩ  
M10.00ns  
CH4  
2.76V  
W
B
B
W
B
CH1 1.00VΩ  
CH2 1.00VΩ  
M5.00ns  
CH3  
2.64V  
W
W
W
Figure 15. Unloaded Driver Differential Outputs  
Figure 18. Driver/Receiver Propagation Delays, High to Low  
A
A
B
B
1,2  
1,2  
B
B
W
CH1 1.00VΩ  
CH2 500mVΩ  
M5.00ns  
CH3  
2.74V  
W
CH1 500mVΩ  
CH2 500mVΩ  
M10.00ns  
CH4  
2.76V  
Figure 16. Loaded Driver Differential Outputs  
Figure 19. Driver Output at 30 Mbps  
DI  
A
T
4
B
RO  
1,2  
3
B
B
B
W
CH1 1.00VΩ  
CH3 5.00VΩ  
CH2 1.00VΩ  
CH4 2.00VΩ  
M10.0ns  
CH4  
400mV  
W
B
W
W
Figure 17. Driver/Receiver Propagation Delays, Low to High  
Rev. F | Page 9 of 16  
ADM485  
TEST CIRCUITS  
V
R
R
CC  
A
B
V
OD  
R
L
0V OR 3V  
DE IN  
S1  
S2  
DE  
V
OC  
C
V
OUT  
L
Figure 20. Driver Voltage Measurement  
Figure 23. Driver Enable/Disable  
375  
A
B
V
V
60Ω  
TST  
V
OD3  
OUT  
RE  
C
L
375Ω  
Figure 21. Driver Voltage Measurement  
Figure 24. Receiver Propagation Delay  
V
CC  
+1.5V  
A
B
C
C
S1  
L1  
L2  
R
L
S2  
R
–1.5V  
RE  
LDIFF  
C
V
OUT  
L
RE  
IN  
Figure 22. Driver Propagation Delay  
Figure 25. Receiver Enable/Disable  
Rev. F | Page 10 of 16  
 
 
 
 
ADM485  
SWITCHING CHARACTERISTICS  
3V  
1.5V  
tPLH  
1.5V  
0V  
B
tPHL  
A, B  
0V  
0V  
1/2V  
O
V
O
tPLH  
tPHL  
A
tSKEW  
= tPLH tPHL  
V
V
OH  
OL  
+V  
0V  
O
90% POINT  
90% POINT  
RO  
1.5V  
1.5V  
tSKEW  
= tPLH tPHL  
10% POINT  
10% POINT  
–V  
O
tR  
tF  
Figure 28. Receiver Propagation Delay  
Figure 26. Driver Propagation Delay, Rise/Fall Timing  
3V  
0V  
3V  
1.5V  
1.5V  
tZL  
RE  
DE  
1.5V  
tZL  
1.5V  
0V  
tLZ  
tLZ  
1.5V  
1.5V  
RO  
V
+ 0.5V  
– 0.5V  
2.3V  
2.3V  
OL  
A, B  
A, B  
OUTPUT LOW  
OUTPUT HIGH  
V
V
+ 0.5V  
OL  
OH  
V
OL  
V
OL  
tZH  
tHZ  
tZH  
tHZ  
V
V
OH  
OH  
– 0.5V  
V
RO  
0V  
OH  
0V  
Figure 27. Driver Enable/Disable Timing  
Figure 29. Receiver Enable/Disable Timing  
Rev. F | Page 11 of 16  
 
ADM485  
APPLICATIONS INFORMATION  
DIFFERENTIAL DATA TRANSMISSION  
RT  
RT  
Differential data transmission is used to reliably transmit data at  
high rates over long distances and through noisy environments.  
Differential transmission nullifies the effects of ground shifts  
and noise signals that appear as common-mode voltages on the  
line. There are two main standards approved by the EIA that  
specify the electrical characteristics of transceivers used in  
differential data transmission.  
D
D
R
R
The RS-422 standard specifies data rates up to 10 MBaud and  
line lengths up to 4000 ft. A single driver can drive a transmission  
line with up to 10 receivers.  
R
R
D
D
To cater to true multipoint communications, the RS-485  
standard was defined. This standard meets or exceeds all the  
requirements of RS-422 but also allows for up to 32 drivers and  
32 receivers to be connected to a single bus. An extended common-  
mode range of −7 V to +12 V is defined. The most significant  
difference between the RS-422 standard and the RS-485 standard is  
the fact that the drivers can be disabled, thereby allowing more  
than one (32 in fact) to be connected to a single line. Only one  
driver should be enabled at a time, but the RS-485 standard  
contains additional specifications to guarantee device safety in  
the event of line contention.  
Figure 30. Typical RS-485 Network  
As with any transmission line, it is important that reflections be  
minimized. This can be achieved by terminating the extreme ends  
of the line using resistors equal to the characteristic impedance of  
the line. Stub lengths of the main line should also be kept as  
short as possible. A properly terminated transmission line appears  
purely resistive to the driver.  
THERMAL SHUTDOWN  
The ADM485 contains thermal shutdown circuitry that protects  
the part from excessive power dissipation during fault conditions.  
Shorting the driver outputs to a low impedance source can result  
in high driver currents. The thermal sensing circuitry detects  
the increase in die temperature and disables the driver outputs.  
The thermal sensing circuitry is designed to disable the driver  
outputs when a die temperature of 150°C is reached. As the  
device cools, the drivers are re-enabled at 140°C.  
Table 7. Comparison of RS-422 and RS-485 Interface Standards  
Specification  
RS-422  
Differential  
4000 ft.  
2 V  
100 Ω  
4 kΩ min  
200 mV  
RS-485  
Differential  
4000 ft.  
1.5 V  
54 Ω  
12 kΩ min  
200 mV  
Transmission Type  
Maximum Cable Length  
Minimum Driver Output Voltage  
Driver Load Impedance  
Receiver Input Resistance  
Receiver Input Sensitivity  
Receiver Input Voltage Range  
No. of Drivers/Receivers per Line  
PROPAGATION DELAY  
The ADM485 features very low propagation delay, ensuring  
maximum baud rate operation. The driver is well balanced,  
ensuring distortion free transmission.  
−7 V to +7 V −7 V to +12 V  
1/10 32/32  
CABLE AND DATA RATE  
Another important specification is a measure of the skew  
between the complementary outputs. Excessive skew impairs  
the noise immunity of the system and increases the amount of  
electromagnetic interference (EMI).  
The transmission line of choice for RS-485 communications is  
a twisted pair. Twisted pair cable tends to cancel common-mode  
noise and causes cancellation of the magnetic fields generated  
by the current flowing through each wire, thereby reducing the  
effective inductance of the pair.  
RECEIVER OPEN CIRCUIT, FAIL-SAFE  
The receiver input includes a fail-safe feature that guarantees a  
logic high on the receiver when the inputs are open circuit or  
floating.  
The ADM485 is designed for bidirectional data communications  
on multipoint transmission lines. A typical application showing  
a multipoint transmission network is illustrated in Figure 30.  
An RS-485 transmission line can have as many as 32 transceivers  
on the bus. Only one driver can transmit at a particular time,  
but multiple receivers can be enabled simultaneously.  
Rev. F | Page 12 of 16  
 
 
ADM485  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 31. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 32. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. F | Page 13 of 16  
 
ADM485  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 33. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
ADM485AN  
ADM485ANZ1  
Temperature Range  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
Package Option  
N-8  
N-8  
R-8  
R-8  
Branding  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
ADM485AR  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead PDIP  
ADM485AR-REEL  
ADM485ARZ1  
ADM485ARZ-REEL1  
R-8  
R-8  
ADM485ARM  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
N-8  
M41  
M41  
M41  
M41#  
M41#  
M41#  
ADM485ARM-REEL  
ADM485ARM-REEL7  
ADM485ARMZ1  
ADM485ARMZ-REEL1  
ADM485ARMZ-REEL71  
ADM485JN  
ADM485JNZ1  
0°C to 70°C  
8-Lead PDIP  
N-8  
ADM485JR  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADM485JR-REEL  
ADM485JR-REEL7  
ADM485JRZ1  
ADM485JRZ-REEL1  
ADM485JRZ-REEL71  
1 Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.  
Rev. F | Page 14 of 16  
 
 
ADM485  
NOTES  
Rev. F | Page 15 of 16  
ADM485  
NOTES  
©1993–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00078-0-4/08(F)  
Rev. F | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY