ADM660AN [ADI]

CMOS Switched-Capacitor Voltage Converters; CMOS开关电容电压转换器
ADM660AN
型号: ADM660AN
厂家: ADI    ADI
描述:

CMOS Switched-Capacitor Voltage Converters
CMOS开关电容电压转换器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总8页 (文件大小:114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Switched-Capacitor  
Voltage Converters  
a
ADM660/ADM8660  
FEATURES  
TYP ICAL CIRCUIT CO NFIGURATIO NS  
ADM660: Inverts or Doubles Input Supply Voltage  
ADM8660: Inverts Input Supply Voltage  
100 m A Output Current  
+1.5V TO +7V  
INPUT  
Shutdow n Function (ADM8660)  
2.2 F or 10 F Capacitors  
0.3 V Drop at 30 m A Load  
+1.5 V to +7 V Supply  
Low Pow er CMOS: 600 A Quiescent Current  
Selectable Charge Pum p Frequency (25 kHz/ 120 kHz)  
Pin Com patible Upgrade for MAX660, MAX665, ICL7660  
Available in 16-Lead TSSOP Package  
V+  
OSC  
LV  
FC  
ADM660  
CAP+  
GND  
CAP–  
C1  
10µF  
INVERTED  
NEGATIVE  
OUTPUT  
OUT  
C2  
10µF  
APPLICATIONS  
Voltage Inverter Configuration (ADM660)  
Handheld Instrum ents  
Portable Com puters  
Rem ote Data Acquisition  
Op Am p Pow er Supplies  
+1.5V TO +7V  
INPUT  
FC  
V+  
ADM8660  
CAP+  
GND  
GENERAL D ESCRIP TIO N  
T he ADM660/ADM8660 is a charge-pump voltage converter  
that can be used to either invert the input supply voltage giving  
LV  
C1  
10µF  
INVERTED  
NEGATIVE  
OUTPUT  
OUT  
CAP–  
SD  
C2  
10µF  
SHUTDOWN  
CONTROL  
VOUT = –VIN or double it (ADM660 only) giving VOUT = 2 × VIN  
.
Input voltages ranging from +1.5 V to +7 V can be inverted into  
a negative –1.5 V to –7 V output supply. T his inverting scheme  
is ideal for generating a negative rail in single power supply  
systems. Only two small external capacitors are needed for the  
charge pump. Output currents up to 50 mA with greater than  
90% efficiency are achievable, while 100 mA achieves greater  
than 80% efficiency.  
Voltage Inverter Configuration with Shutdown (ADM8660)  
T he ADM660 is a pin compatible upgrade for the MAX660,  
MAX665, ICL7660 and LT C1046.  
T he ADM660/ADM8660 is available in 8-pin DIP and narrow-  
body SOIC. T he ADM660 is also available in a 16-lead T SSOP  
package.  
A Frequency Control (FC) input pin is used to select either  
25 kHz or 120 kHz charge-pump operation. T his is used to  
optimize capacitor size and quiescent current. With 25 kHz  
selected, a 10 µF external capacitor is suitable, while with  
120 kHz the capacitor may be reduced to 2.2 µF. T he oscillator  
frequency on the ADM660 can also be controlled with an exter-  
nal capacitor connected to the OSC input or by driving this in-  
put with an external clock. In applications where a higher supply  
voltage is desired it is possible to use the ADM660 to double  
the input voltage. With input voltages from 2.5 V to 7 V, output  
voltages from 5 V to 14 V are achievable with up to 100 mA  
output current.  
AD M660/AD M8660 O ptions  
O ption  
AD M660  
AD M8660  
Inverting Mode  
Doubling Mode  
External Oscillator  
Shutdown  
Y
Y
Y
N
Y
N
N
Y
Package Options  
SO-8  
N-8  
Y
Y
Y
Y
Y
N
T he ADM8660 features a low power shutdown (SD) pin in-  
stead of the external oscillator (OSC) pin. T his can be used to  
disable the device and reduce the quiescent current to 300 nA.  
RU-16  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
(V+ = +5 V, C1, C2 = 10 F,1 T = TMIN to TMAX unless otherwise  
A
ADM660/ADM8660–SPECIFICATIONS noted)  
P aram eter  
Min  
Typ Max  
Units  
Test Conditions/Com m ents  
Input Voltage, V+  
RL = 1 kΩ  
3.5  
1.5  
2.5  
7.0  
7.0  
7.0  
V
V
V
Inverting Mode, LV = Open  
Inverting Mode, LV = GND  
Doubling Mode, LV = OUT  
Supply Current  
No Load  
0.6  
2.5  
1
4.5  
mA  
mA  
FC = Open (ADM660), GND (ADM8660)  
FC = V+, LV = Open  
Output Current  
100  
mA  
Output Resistance  
9
15  
IL = 100 mA  
Charge-Pump Frequency  
OSC Input Current  
25  
120  
±5  
kHz  
kHz  
µA  
FC = Open (ADM660), GND (ADM8660)  
FC = V+  
FC = Open (ADM660), GND (ADM8660)  
FC = V+  
±25  
µA  
Power Efficiency (FC = Open)  
90  
90  
94  
93  
81.5  
99.96  
%
%
%
%
RL = 1 kConnected from V+ to OUT  
RL = 500 Connected from OUT to GND  
IL = 100 mA to GND  
Voltage Conversion Efficiency  
99  
No Load  
Shutdown Supply Current, ISHDN  
Shutdown Input Voltage, VSHDN  
0.3  
5
µA  
V
V
ADM8660, SHDN = V+  
SHDN High = Disabled  
SHDN Low = Enabled  
IL = 100 mA  
2.4  
0.8  
Shutdown Exit T ime  
500  
µs  
NOT ES  
1C1 and C2 are low ESR (<0.2 ) electrolytic capacitors. High ESR will degrade performance.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
(T A = +25°C unless otherwise noted)  
Lead T emperature Range (Soldering 10 sec) . . . . . . . . +300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >2000 V  
Input Voltage (V+ to GND, GND to OUT ) . . . . . . . . +7.5 V  
LV Input Voltage . . . . . . . . . . (OUT – 0.3 V) to (V+, +0.3 V)  
FC and OSC Input Voltage  
. . . . . . . . . . . (OUT – 0.3 V) or (V+, –6 V) to (V+, +0.3 V)  
OUT , V+ Output Current (Continuous) . . . . . . . . . . . 120 mA  
Output Short Circuit Duration to GND . . . . . . . . . . . 10 secs  
Power Dissipation, N-8 . . . . . . . . . . . . . . . . . . . . . . . 625 mW  
(Derate 8.3 mW/°C above +50°C)  
*T his is a stress rating only; functional operation of the device at these or any other  
conditions above those indicated in the operation section of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods  
may affect device reliability.  
O RD ERING GUID E  
θ
JA, T hermal Impedance . . . . . . . . . . . . . . . . . . . . 120°C/W  
Tem perature  
Range  
P ackage  
O ptions*  
Power Dissipation R-8 . . . . . . . . . . . . . . . . . . . . . . . . 450 mW  
(Derate 6 mW/°C above +50°C)  
Model  
θ
JA, T hermal Impedance . . . . . . . . . . . . . . . . . . . . 170°C/W  
ADM660AN  
ADM660AR  
ADM660ARU  
ADM8660AN  
ADM8660AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-8  
Power Dissipation RU-16 . . . . . . . . . . . . . . . . . . . . . 500 mW  
(Derate 6 mW/°C above +50°C)  
θ
Operating T emperature Range  
Industrial (A Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . –65°C to +150°C  
SO-8  
RU-16  
N-8  
JA, T hermal Impedance . . . . . . . . . . . . . . . . . . . . 158°C/W  
SO-8  
*N = Plastic DIP; RU = T hin Shrink Small Outline; SO = Small Outline.  
–2–  
REV. A  
ADM660/ADM8660  
P IN FUNCTIO N D ESCRIP TIO NS  
Inverter Configuration  
Function  
D oubler Configuration (AD M660 O nly)  
Mnem onic  
Mnem onic  
Function  
Frequency Control Input for Internal Oscillator  
and Charge Pump. With FC = Open, fCP  
25 kHz; with FC = V+, fCP = 120 kHz.  
FC  
Frequency Control Input for Internal Oscillator  
and Charge Pump. With FC = Open (ADM660)  
or connected to GND (ADM8660), fCP = 25 kHz;  
with FC = V+, fCP = 120 kHz  
FC  
=
CAP+  
GND  
CAP–  
OUT  
LV  
Positive Charge-Pump Capacitor T erminal.  
Positive Input Supply.  
CAP+  
GND  
CAP–  
OUT  
LV  
Positive Charge-Pump Capacitor T erminal.  
Power Supply Ground.  
Negative Charge-Pump Capacitor T erminal.  
Ground.  
Negative Charge-Pump Capacitor T erminal.  
Output, Negative Voltage.  
Low Voltage Operation Input. Connect to OUT .  
Must be left unconnected in this mode.  
Doubled Positive Output.  
Low Voltage Operation Input. Connect to GND  
when input voltage is less than 3.5 V. Above  
3.5 V, LV may be connected to G N D or left  
unconnected.  
OSC  
V+  
OSC  
ADM660: Oscillator Control Input. OSC is  
connected to an internal 15 pF capacitor. An  
external capacitor may be connected to slow the  
oscillator. An external oscillator may also be  
used to overdrive OSC. T he charge-pump  
frequency is equal to 1/2 the oscillator frequency.  
SD  
V+  
ADM8660: Shutdown Control Input. T his in-  
put, when high, is used to disable the charge  
pump thereby reducing the power consumption.  
Positive Power Supply Input.  
P IN CO NNECTIO NS  
8-Lead  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V+  
FC  
CAP+  
GND  
FC  
CAP+  
GND  
ADM660  
TOP VIEW  
(Not to Scale)  
ADM8660  
TOP VIEW  
(Not to Scale)  
SD  
OSC  
LV  
LV  
CAP–  
CAP–  
OUT  
OUT  
16-Lead  
1
2
3
4
5
16  
15  
14  
13  
12  
NC  
NC  
FC  
NC  
NC  
V+  
ADM660  
RU-16  
TOP VIEW  
(Not to Scale)  
CAP+  
GND  
CAP–  
NC  
OSC  
LV  
6
7
8
11 OUT  
NC  
NC  
10  
9
NC  
NC = NO CONNECT  
REV. A  
–3–  
ADM660/ADM8660–Typical Performance Characteristics  
3
2.5  
2
100  
90  
80  
70  
60  
50  
40  
30  
IL = 10mA  
VOLTAGE DOUBLER  
LV = OUT  
IL = 1mA  
1.5  
1
IL = 50mA  
IL = 80mA  
LV = GND  
0.5  
0
LV = OPEN  
1.5  
3.5  
5.5  
7.5  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE – Volts  
CHARGE-PUMP FREQUENCY – Hz  
Figure 4. Efficiency vs. Charge-Pum p Frequency  
Figure 1. Power Supply Current vs. Voltage  
100  
80  
60  
40  
20  
0
3.5  
3
–3  
EFFICIENCY  
–3.4  
2.5  
–3.8  
–4.2  
2
LV = GND  
VOLTAGE DOUBLER  
1.5  
V
OUT  
1
–4.6  
–5  
0.5  
LV = GND  
VOLTAGE INVERTER  
100  
CHARGE-PUMP FREQUENCY – kHz  
0
1
10  
1000  
0
20  
40  
60  
80  
100  
LOAD CURRENT – mA  
Figure 5. Power Supply Current vs. Charge-Pum p  
Frequency  
Figure 2. Output Voltage and Efficiency vs. Load Current  
1.6  
120  
V+ = +6.5V  
100  
V+ = +5.5V  
V+ = +4.5V  
1.2  
V+ = +3.5V  
80  
V+ = +3.5V  
V+ = +2.5V  
V+ = +4.5V  
0.8  
0.4  
0
60  
V+ = +1.5V  
V+ = +2.5V  
V+ = +1.5V  
V+ = +5.5V  
40  
20  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
LOAD CURRENT – mA  
LOAD CURRENT – mA  
Figure 6. Power Efficiency vs. Load Current  
Figure 3. Output Voltage Drop vs. Load Current  
REV. A  
–4–  
ADM660/ADM8660  
35  
30  
25  
20  
15  
10  
5
5
4.5  
4
LOAD = 10mA  
LOAD = 1mA  
3.5  
3
LOAD = 50mA  
2.5  
2
LV = GND  
FC = OPEN  
C1, C2 = 10µF  
LOAD = 80mA  
1.5  
1
0.5  
0
0
–40  
1
10  
100  
1000  
–20  
0
20  
40  
60  
80  
CHARGE-PUMP FREQUENCY – kHz  
TEMPERATURE – °C  
Figure 10. Charge-Pum p Frequency vs. Tem perature  
Figure 7. Output Voltage vs. Charge-Pum p Frequency  
1k  
30  
25  
20  
15  
10  
5
FC = V+  
LV = GND  
100  
FC = OPEN  
LV = GND  
10  
1
0.1  
0
1.5  
1
10  
100  
1k  
2.5  
3.5  
4.5  
5.5  
6.5  
CAPACITANCE – pF  
SUPPLY VOLTAGE – Volts  
Figure 11. Charge-Pum p Frequency vs. External  
Capacitance  
Figure 8. Output Source Resistance vs. Supply Voltage  
30  
140  
LV = GND  
120  
LV = GND  
LV = OPEN  
100  
20  
LV = OPEN  
80  
FC = OPEN  
OSC = OPEN  
C1, C2 = 10µF  
60  
FC = V+  
OSC = OPEN  
C1, C2 = 2.2µF  
10  
40  
20  
0
1.5  
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
2.5  
3.5  
4.5  
5.5  
6.5  
SUPPLY VOLTAGE – Volts  
SUPPLY VOLTAGE – Volts  
Figure 9. Charge-Pum p Frequency vs. Supply Voltage  
Figure 12. Charge-Pum p Frequency vs. Supply Voltage  
REV. A  
–5–  
ADM660/ADM8660  
160  
140  
120  
100  
60  
50  
40  
30  
20  
10  
0
80  
V+ = +1.5V  
LV = GND  
60  
40  
20  
0
FC = V+  
C1, C2 = 2.2µF  
V+ = +3V  
V+ = +5V  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 13. Charge-Pum p Frequency vs. Tem perature  
Figure 14. Output Resistance vs. Tem perature  
GENERAL INFO RMATIO N  
Switched Capacitor Theor y of O per ation  
T he ADM660/ADM8660 is a switched capacitor voltage con-  
verter that can be used to invert the input supply voltage. T he  
ADM660 can also be used in a voltage doubling mode. T he  
voltage conversion task is achieved using a switched capacitor  
technique using two external charge storage capacitors. An on-  
board oscillator and switching network transfers charge between  
the charge storage capacitors. T he basic principle behind the  
voltage conversion scheme is illustrated in Figures 15 and 16.  
As already described, the charge pump on the ADM660/  
ADM8660 uses a switched capacitor technique in order to  
invert or double the input supply voltage. Basic switched  
capacitor theory is discussed below.  
A switched capacitor building block is illustrated in Figure 17.  
With the switch in position A, capacitor C1 will charge to volt-  
age V1. T he total charge stored on C1 is q1 = C1V1. T he  
switch is then flipped to position B discharging C1 to voltage  
V2. T he charge remaining on C1 is q2 = C1V2. T he charge  
transferred to the output V2 is, therefore, the difference be-  
tween q1 and q2, so q = q1–q2 = C1 (V1–V2).  
S1  
CAP+  
S3  
V+  
C1  
S2  
S4  
OUT = –V+  
CAP–  
C2  
A
B
Φ2  
V1  
Φ1  
V2  
÷ 2  
OSCILLATOR  
R
C2  
L
C1  
Figure 15. Voltage Inversion Principle  
S1  
CAP+  
S3  
Figure 17. Switched Capacitor Building Block  
V+  
V
= 2V+  
OUT  
C1  
C2  
S2  
As the switch is toggled between A and B at a frequency f, the  
charge transfer per unit time or current is  
S4  
V+  
CAP–  
Φ2  
Φ1  
I = f (q) = f (C1)(V1 V 2)  
÷ 2  
OSCILLATOR  
T herefore  
I = (V1 V 2)/(1 /fC1) = (V1 V 2)/(REQ  
where REQ = 1/fC1  
)
Figure 16. Voltage Doubling Principle  
Figure 15 shows the voltage inverting configuration, while Figure  
16 shows the configuration for voltage doubling. An oscillator  
generating antiphase signals φ1 and φ2 controls switches S1, S2  
and S3, S4. During φ1, switches S1 and S2 are closed charging  
C1 up to the voltage at V+. During φ2, S1 and S2 open and S3  
and S4 close. With the voltage inverter configuration during φ2,  
the positive terminal of C1 is connected to GND via S3 and the  
negative terminal of C1 connects to VOUT via S4. T he net result  
is voltage inversion at VOUT wrt GND. Charge on C1 is trans-  
ferred to C2 during φ2. Capacitor C2 maintains this voltage  
during φ1. T he charge transfer efficiency depends on the on-  
resistance of the switches, the frequency at which they are being  
switched and also on the equivalent series resistance (ESR) of  
the external capacitors. T he reason for this is explained in the  
following section. For maximum efficiency, capacitors with low  
ESR are, therefore, recommended.  
T he switched capacitor may, therefore, be replaced by an  
equivalent resistance whose value is dependent on both the  
capacitor size and the switching frequency. T his explains why  
lower capacitor values may be used with higher switching fre-  
quencies. It should be remembered that as the switching fre-  
quency is increased the power consumption will increase due to  
some charge being lost at each switching cycle. As a result, at high  
frequencies the power efficiency starts decreasing. Other losses  
include the resistance of the internal switches and the equivalent  
series resistance (ESR) of the charge storage capacitors.  
R
EQ  
V1  
V2  
R
C2  
L
R
= 1/fC1  
EQ  
T he voltage doubling configuration reverses some of the con-  
nections but the same principle applies.  
Figure 18. Switched Capacitor Equivalent Circuit  
–6–  
REV. A  
ADM660/ADM8660  
Inver ting Negative Voltage Gener ator  
Table II. AD M8660 Charge-P um p Frequency Selection  
Figures 19 and 20 show the ADM660/ADM8660 configured to  
generate a negative output voltage. Input supply voltages from  
1.5 V up to 7 V are allowable. For supply voltage less than 3 V,  
LV must be connected to GND. T his bypasses the internal  
regulator circuitry and gives best performance in low voltage  
applications. With supply voltages greater than 3 V, LV may  
be either connected to GND or left open. Leaving it open facili-  
tates direct substitution for the ICL7660.  
FC  
O SC  
Charge P um p  
C1, C2  
GND  
V+  
Open  
Open  
25 kHz  
120 kHz  
See T ypical Characteristics  
Ext CLK Frequency/2  
10 µF  
2.2 µF  
GND or V+ Ext Cap  
GND Ext CLK  
+1.5V TO +7V  
INPUT  
+1.5V TO +7V  
INPUT  
CLK OSC  
ADM660  
ADM8660  
CMOS GATE  
V+  
FC  
FC  
V+  
OSC  
LV  
ADM660  
OSC  
LV  
CAP+  
GND  
CAP+  
GND  
C1  
C1  
10µF  
INVERTED  
NEGATIVE  
OUTPUT  
INVERTED  
NEGATIVE  
OUTPUT  
CAP–  
OUT  
OUT  
CAP–  
C2  
10µF  
C2  
Figure 21. ADM660/ADM8660 External Oscillator  
Figure 19. ADM660 Voltage Inverter Configuration  
Voltage D oubling Configur ation  
+1.5V TO +7V  
INPUT  
Figure 22 shows the ADM660 configured to generate increased  
output voltages. As in the inverting mode, only two external ca-  
pacitors are required. T he doubling function is achieved by re-  
versing some connections to the device. T he input voltage is  
applied to the GND pin and V+ is used as the output. Input  
voltages from 2.5 V to 7 V are allowable. In this configuration,  
pins LV, OUT must be connected to GND.  
V+  
FC  
ADM8660  
CAP+  
GND  
LV  
C1  
10µF  
INVERTED  
NEGATIVE  
OUTPUT  
OUT  
CAP–  
SD  
C2  
10µF  
SHUTDOWN  
CONTROL  
T he unloaded output voltage in this configuration is 2 (VIN).  
Output resistance and ripple are similar to the voltage inverting  
configuration.  
Figure 20. ADM8660 Voltage Inverter Configuration  
O SCILLATO R FREQ UENCY  
Note that the AD M8660 cannot be used in the voltage  
doubling configur ation.  
T he internal charge-pump frequency may be selected to be  
either 25 kHz or 120 kHz using the Frequency Control (FC)  
input. With FC unconnected (ADM660) or connected to GND  
(ADM8660), the internal charge pump runs at 25 kHz while, if  
FC is connected to V+, the frequency is increased by a factor of  
five. Increasing the frequency allows smaller capacitors to be  
used for equivalent performance or, if the capacitor size is un-  
changed, it results in lower output impedance and ripple.  
DOUBLED  
POSITIVE  
OUTPUT  
V+  
FC  
ADM660  
OSC  
CAP+  
10µF  
+2.5V  
TO +7V  
INPUT  
10µF  
LV  
GND  
OUT  
CAP–  
If a charge-pump frequency other than the two fixed values is  
desired, this is made possible by the OSC input, which can ei-  
ther have a capacitor connected to it or be overdriven by an  
external clock. Please refer to the T ypical Performance Charac-  
teristics, which shows the variation in charge-pump frequency  
versus capacitor size. T he charge-pump frequency is one-half  
the oscillator frequency applied to the OSC pin.  
Figure 22. Voltage Doubler Configuration  
Shutdown Input  
T he ADM8660 contains a shutdown input that can be used to  
disable the device and hence reduce the power consumption. A  
logic high level on the SD input shuts the device down reducing  
the quiescent current to 0.3 µA. During shutdown the output  
voltage goes to 0 V. Therefore, ground referenced loads are  
not powered during this state. When exiting shutdown it takes  
several cycles (approximately 500 µs) for the charge pump to  
reach its final value. If the shutdown function is not being used,  
then SD should be hardwired to GND.  
If an external clock is used to overdrive the oscillator, its levels  
should swing to within 100 mV of V+ and GND. A CMOS  
driver is, therefore, suitable. When OSC is overdriven, FC has  
no effect but LV must be grounded.  
Note th at over dr ivin g is per m itted on ly in th e voltage  
in ver ter configur ation.  
Capacitor Selection  
T he optimum capacitor value selection depends the charge-  
pump frequency. With 25 kHz selected, 10 µF capacitors are  
recommended, while with 120 kHz selected, 2.2 µF capacitors  
may be used. Other frequencies allow other capacitor values to  
be used. For maximum efficiency in all cases, it is recommended  
that capacitors with low ESR are used for the charge pump.  
Low ESR capacitors give both the lowest output resistance and  
lowest ripple voltage. High output resistance degrades the overall  
power efficiency and causes voltage drops, especially at high  
Table I. AD M660 Charge-P um p Frequency Selection  
FC  
O SC  
Charge P um p  
C1, C2  
Open  
V+  
Open  
Open  
25 kHz  
120 kHz  
10 µF  
2.2 µF  
Open or V+ Ext Cap  
See T ypical Characteristics  
Ext CLK Frequency/2  
Open  
Ext CLK  
REV. A  
–7–  
ADM660/ADM8660  
output current levels. T he ADM660/ADM8660 is tested using  
low ESR, 10 µF, capacitors for both C1 and C2. Smaller values  
of C1 increase the output resistance, while increasing C1 will re-  
duce the output resistance. T he output resistance is also de-  
pendent on the internal switches on resistance as well as the  
capacitors ESR so the effect of increasing C1 becomes negligible  
past a certain point.  
Bypass Capacitor  
T he ac impedance of the ADM660/ADM8660 may be reduced  
by using a bypass capacitor on the input supply. T his capacitor  
should be connected between the input supply and GND. It  
will provide instantaneous current surges as required. Suitable  
capacitors of 0.1 µF or greater may be used.  
O UTLINE D IMENSIO NS  
Figure 23 shows how the output resistance varies with oscillator  
frequency for three different capacitor values. At low oscillator  
frequencies, the output impedance is dominated by the 1/fC  
term. T his explains why the output impedance is higher for  
smaller capacitance values. At high oscillator frequencies, the  
1/fC term becomes insignificant and the output impedance is  
dominated by the internal switches on resistance. From an out-  
put impedance viewpoint, therefore, there is no benefit to be  
gained from using excessively large capacitors.  
D imensions shown in inches and (mm).  
8-Lead P lastic D IP  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
4
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
500  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
C1 = C2 = 2.2µF  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
400  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
300  
C1 = C2 = 1µF  
200  
C1 = C2 = 10µF  
100  
8-Lead Narrow-Body SO IC  
(SO -8)  
0.1968 (5.00)  
0.1890 (4.80)  
0
0.1  
1
10  
100  
OSCILLATOR FREQUENCY – kHz  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
Figure 23. Output Im pedance vs. Oscillator Frequency  
Capacitor C2  
T he output capacitor size C2 affects the output ripple. Increas-  
ing the capacitor size reduces the peak-peak ripple. T he ESR  
affects both the output impedance and the output ripple.  
Reducing the ESR reduces the output impedance and ripple.  
For convenience it is recommended that both C1 and C2 be the  
same value.  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
Table III. Capacitor Selection  
Charge-P um p  
Frequency  
Capacitor  
C1, C2  
16-Lead TSSO P  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
25 kHz  
120 kHz  
10 µF  
2.2 µF  
16  
9
P ower Efficiency and O scillator Fr equency Tr adeoff  
While higher switching frequencies allow smaller capacitors to  
be used for equivalent performance, or improved performance  
with the same capacitors, there is a tradeoff to be considered. As  
the oscillator frequency is increased, the quiescent current in-  
creases. T his happens as a result of a finite charge being lost at  
each switching cycle. T he charge loss per unit cycle at very high  
frequencies can be significant, thereby reducing the power effi-  
ciency. Since the power efficiency is also degraded at low oscil-  
lator frequencies, due to an increase in output impedance, this  
means that there is an optimum frequency band for maximum  
power transfer. Please refer to the T ypical Performance Charac-  
teristics section.  
1
8
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
–8–  
REV. A  

相关型号:

ADM660ANZ

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660AR

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660AR-REEL

IC SWITCHED CAPACITOR CONVERTER, 120 kHz SWITCHING FREQ-MAX, PDSO8, MS-012AA, SOIC-8, Switching Regulator or Controller
ADI

ADM660ARU

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660ARU

SWITCHED CAPACITOR CONVERTER, 120 kHz SWITCHING FREQ-MAX, PDSO16, MO-153AB, TSSOP-16
ROCHESTER

ADM660ARU-REEL

SWITCHED CAPACITOR CONVERTER, 120 kHz SWITCHING FREQ-MAX, PDSO16, MO-153AB, TSSOP-16
ROCHESTER

ADM660ARU-REEL7

CMOS Switched-Capacitor Voltage Converter
ADI

ADM660ARUZ

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660ARUZ-REEL

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660ARUZ-REEL7

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660ARZ

CMOS Switched-Capacitor Voltage Converters
ADI

ADM660ARZ-REEL

CMOS Switched-Capacitor Voltage Converters
ADI