ADM7150ACPZ-1.8-R7 [ADI]

800 mA, Ultra Low Noise/High PSRR LDO;
ADM7150ACPZ-1.8-R7
型号: ADM7150ACPZ-1.8-R7
厂家: ADI    ADI
描述:

800 mA, Ultra Low Noise/High PSRR LDO

光电二极管 输出元件 调节器
文件: 总25页 (文件大小:827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
800 mA Ultralow Noise,  
High PSRR, RF Linear Regulator  
ADM7150  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
ADM7150  
Input voltage range: 4.5 V to 16 V  
Maximum output current: 800 mA  
Low noise  
V
= 6.2V  
V
C
= 5.0V  
IN  
OUT  
VIN  
VOUT  
C
IN  
10µF  
OUT  
10µF  
ON  
1.0 µV rms total integrated noise from 100 Hz to 100 kHz  
1.6 µV rms total integrated noise from 10 Hz to 100 kHz  
Noise spectral density: 1.7 nV√Hz typical from 10 kHz to 1 MHz  
Power supply rejection ratio (PSRR) at 400 mA load  
>90 dB from 1 kHz to 100 kHz, VOUT = 5 V  
>60 dB at 1 MHz, VOUT = 5 V  
EN  
REF  
REF_SENSE  
GND  
C
REF  
1µF  
OFF  
BYP  
C
1µF  
BYP  
VREG  
C
REG  
10µF  
Figure 1. 5 V Output Circuit  
Dropout voltage: 0.6 V at VOUT = 5 V, 800 mA load  
Initial voltage accuracy: ±1%  
Voltage accuracy over line, load and temperature: ±±%  
Quiescent current (IGND): 4.3 mA at no load  
Low shutdown current: 0.1 µA  
Stable with a 10 µF ceramic output capacitor  
Fixed output voltage options: 1.8 V, ±.8 V, 3.0 V, 3.3 V, 4.5 V,  
4.8 V, and 5.0 V (16 outputs between 1.5 V and 5.0 V are  
available)  
Exposed pad 8-lead LFCSP and 8-lead SOIC packages  
APPLICATIONS  
Regulated power noise sensitive applications  
RF mixers, phase-locked loops (PLLs), voltage-controlled  
oscillators (VCOs), and PLLs with integrated VCOs  
Communications and infrastructure  
Cable digital-to-analog converter (DAC) drivers  
Backhaul and microwave links  
GENERAL DESCRIPTION  
The ADM7150 is a low dropout (LDO) linear regulator that  
operates from 4.5 V to 16 V and provides up to 800 mA of  
output current. Using an advanced proprietary architecture, it  
provides high power supply rejection (>90 dB from 1 kHz to 1 MHz),  
ultralow output noise (<1.7 nV√Hz), and achieves excellent line and  
load transient response with a 10 µF ceramic output capacitor.  
footprint. See the ADM7151 adjustable LDO to generate additional  
output voltages.  
100k  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
= 10µF  
= 100µF  
= 1mF  
10k  
1k  
100  
10  
1
The ADM7150 is available in 1.8 V, 2.8 V, 3.0 V, 3.3 V, 4.5 V,  
4.8 V, and 5.0 V fixed outputs. In addition, 16 fixed output  
voltages between 1.5 V and 5.0 V are available upon request.  
The ADM7150 regulator typical output noise is 1.0 µV rms  
from 100 Hz to 100 kHz for fixed output voltage options, and  
the noise spectral density is 1.7 nV/√Hz from 10 kHz to 1 MHz.  
The ADM7150 is available in 8-lead, 3 mm × 3 mm LFCSP and  
8-lead SOIC packages, making it not only a very compact solution  
but also providing excellent thermal performance for applications  
requiring up to 800 mA of output current in a small, low profile  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 2. Noise Spectral Density (NSD) vs. Frequency for Various CBYP  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 0±06±-9106, U.S.A.  
Tel: 781.3±9.4700  
Technical Support  
©±013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADM7150* PRODUCT PAGE QUICK LINKS  
Last Content Update: 11/29/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADM7150 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
AD-FMCOMMS6-EBZ Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
ADM7150 and ADM7151 Evaluation Board  
DISCUSSIONS  
View all ADM7150 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
ADM7150: 800 mA Ultralow Noise, High PSRR, RF Linear  
Regulator Data Sheet  
TOOLS AND SIMULATIONS  
ADI Linear Regulator Design Tool and Parametric Search  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
• ADIsimPower™ Voltage Regulator Design Tool  
REFERENCE DESIGNS  
DOCUMENT FEEDBACK  
CN0369  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Press  
Ultra-Low-Noise RF Low-Dropout Regulators Reduce  
Phase Noise in Wideband Communication Systems  
Solutions Bulletins & Brochures  
Ultralow Noise, High Rejection Low Dropout Regulators  
Technical Articles  
Replacing YIG-Tuned Oscillators with Silicon by Using an  
Ultrawideband PLL/VCO with Precise Phase Control  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADM7150  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 15  
Applications Information .............................................................. 16  
Capacitor Selection .................................................................... 16  
Enable (EN) and Undervoltage Lockout (UVLO)................. 17  
Start-Up Time ............................................................................. 18  
REF, BYP, and, VREG pins........................................................ 18  
Current-Limit and Thermal Overload Protection................. 19  
Thermal Considerations............................................................ 19  
Printed Circuit Board Layout Considerations........................ 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor Recommended Specifications... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
9/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADM7150  
SPECIFICATIONS  
VIN = VOUT + 1.2 V or VIN = 4.5 V, whichever is greater, VEN = VIN, IOUT = 10 mA, CIN = COUT = CREG = 10 µF, CREF = CBYP = 1 µF. TA = 25°C  
for typical specifications. TJ = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
4.5  
16  
IGND  
IOUT = 0 µA  
IOUT = 800 mA  
4.3  
8.6  
0.1  
1.6  
1.0  
1.7  
86  
54  
95  
62  
94  
62  
95  
68  
7.0  
12  
3
mA  
mA  
µA  
SHUTDOWN CURRENT  
OUTPUT NOISE  
IIN-SD  
VEN = 0 V  
OUTNOISE  
10 Hz to 100 kHz, independent of output voltage  
100 Hz to 100 kHz, independent of output voltage  
10 kHz to 1 MHz, independent of output voltage  
1 kHz to 100 kHz, VIN = 6.2 V, VOUT = 5 V at 800 mA  
1 MHz, VIN = 6.2 V, VOUT = 5 V at 800 mA  
1 kHz to 100 kHz, VIN = 6.2 V, VOUT = 5 V at 400 mA  
1 MHz, VIN = 6.2 V, VOUT = 5 V at 400 mA  
1 kHz to 100 kHz, VIN = 5 V, VOUT = 3.3 V at 800 mA  
1 MHz, VIN = 5 V, VOUT = 3.3 V at 800 mA  
1 kHz to 100 kHz, VIN = 5 V, VOUT = 3.3 V at 400 mA  
1 MHz, VIN = 5 V, VOUT = 3.3 V at 400 mA  
VOUT = VREF  
µV rms  
µV rms  
nV/√Hz  
dB  
NOISE SPECTRAL DENSITY  
NSD  
POWER SUPPLY REJECTION RATIO  
PSRR  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VOUT VOLTAGE ACCURACY  
Voltage Accuracy  
VOUT  
IOUT = 10 mA, TJ = 25°C  
1 mA < IOUT < 800 mA, over line, load and  
temperature  
−1  
−2  
+1  
+2  
%
%
VOUT REGULATION  
Line Regulation  
ΔVOUT/ΔVIN  
VIN = VOUT + 1.2 V or VOUT + 4.5 V, whichever is  
greater, to 16 V  
IOUT = 1 mA to 800 mA  
−0.01  
1.0  
+0.01 %/V  
Load Regulation1  
VOUT CURRENT-LIMIT THRESHOLD2  
DROPOUT VOLTAGE3  
ΔVOUT/ΔIOUT  
ILIMIT  
0.4  
1.2  
0.3  
0.6  
1.0  
1.6  
0.5  
1.0  
%/A  
A
VDROPOUT  
IOUT = 400 mA, VOUT = 5 V  
IOUT = 800 mA, VOUT = 5 V  
V
V
PULL-DOWN RESISTANCE  
VOUT Pull-Down Resistance  
VREG Pull-Down Resistance  
VREF Pull-Down Resistance  
VBYP Pull-Down Resistance  
START-UP TIME4  
VOUT-PULL  
VREG-PULL  
VREF-PULL  
VBYP-PULL  
VEN = 0 V, VOUT = 1 V  
VEN = 0 V, VREG = 1 V  
VEN = 0 V, VREF = 1 V  
VEN = 0 V, VBYP = 1 V  
VOUT = 5 V  
600  
34  
800  
500  
Ω
kΩ  
Ω
Ω
VOUT Start-Up Time  
VREG Start-Up Time  
VREF Start-Up Time  
tSTART-UP  
tREG-START-UP  
tREF-START-UP  
2.8  
1.0  
1.8  
ms  
ms  
ms  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
UNDERVOLTAGE THRESHOLDs  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
VREG5 UNDERVOLTAGE THRESHOLDS  
VREG Rise  
VREG Fall  
Hysteresis  
TSSD  
TSSD-HYS  
TJ rising  
155  
15  
°C  
°C  
UVLORISE  
UVLOFALL  
UVLOHYS  
4.49  
3.1  
V
V
mV  
3.85  
2.55  
240  
210  
VREGUVLORISE  
VREGUVLOFALL  
VREGUVLOHYS  
V
V
mV  
Rev. 0 | Page 3 of 24  
 
ADM7150  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
EN INPUT  
4.5 V ≤ VIN ≤ 16 V  
EN Input Logic High  
EN Input Logic Low  
EN Input Logic Hysteresis  
EN Input Leakage Current  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
3.2  
V
V
mV  
µA  
0.8  
1.0  
VIN = 5 V  
VEN = VIN or GND  
225  
0.1  
1 Based on an end-point calculation using 1 mA and 800 mA loads. See Figure 7, Figure 16, and Figure 22 for typical load regulation performance for loads less than 1 mA.  
2 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 5.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 5.0 V, or 4.5 V.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to achieve the nominal output voltage. Dropout applies only for  
output voltages above 4.5 V.  
4 Start-up time is defined as the time between the rising edge of VEN to VOUT, VREG, or VREF being at 90% of its nominal value.  
5 The output voltage is turned off until the VREG UVLO rise threshold is crossed. The VREG output is turned off until the input voltage UVLO rise threshold is crossed.  
INPUT AND OUTPUT CAPACITOR RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CAPACITANCE  
Minimum Input1  
TA = −40°C to +125°C  
CIN  
7.0  
7.0  
7.0  
0.1  
0.7  
µF  
µF  
µF  
µF  
µF  
Minimum Regulator1  
Minimum Output1  
Minimum Bypass  
Minimum Reference  
CAPACITOR Equivalent Series Resistance (ESR)  
CREG, COUT, CIN, CREF  
CBYP  
CREG  
COUT  
CBYP  
CREF  
RESR  
TA = −40°C to +125°C  
0.001  
0.001  
0.2  
2.0  
Ω
Ω
1 The minimum input, regulator, and output capacitance must be greater than 7.0 μF over the full range of operating conditions. The full range of operating conditions  
in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are  
recommended; however, Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. 0 | Page 4 of 24  
 
 
 
 
 
 
 
 
Data Sheet  
ADM7150  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Junction to ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction to ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. See JESD51-7 and JESD51-9 for detailed information  
on the board construction.  
Parameter  
VIN to GND  
VREG to GND  
Rating  
−0.3 V to +18 V  
−0.3 V to VIN, or +6 V  
(whichever is less)  
VOUT to GND  
−0.3 V to VREG, or +6 V  
(whichever is less)  
VOUT to BYP  
EN to GND  
0.3 V  
−0.3 V to +18 V  
BYP to GND  
−0.3 V to VREG, or +6 V  
(whichever is less)  
ΨJB is the junction to board thermal characterization parameter  
REF to GND  
−0.3 V to VREG, or +6 V  
(whichever is less)  
−0.3 V to +6 V  
−65°C to +150°C  
150°C  
with units of °C/W. ΨJB of the package is based on modeling and the  
calculation using a 4-layer board. The JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power  
flowing through multiple thermal paths rather than a single  
path as in thermal resistance (θJB). Therefore, ΨJB thermal paths  
include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful  
in real-world applications. Maximum junction temperature (TJ)  
is calculated from the board temperature (TB) and power  
dissipation (PD) using the formula  
REF_SENSE to GND  
Storage Temperature Range  
Junction Temperature  
Operating Ambient Temperature Range  
Soldering Conditions  
−40°C to +125°C  
JEDEC J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
TJ = TB + (PD × ΨJB)  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADM7150 can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient temperature  
may have to be derated.  
THERMAL RESISTANCE  
θJA, θJC, and ΨJB are specified for the worst-case conditions, that is,  
a device soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
8-Lead LFCSP  
8-Lead SOIC  
θJA  
θJC  
ΨJB  
Unit  
°C/W  
°C/W  
36.7  
36.9  
23.5  
27.1  
13.3  
18.6  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long as  
the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction to ambient thermal resistance of the  
package (θJA).  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
TJ = TA + (PD × θJA)  
Rev. 0 | Page 5 of 24  
 
 
 
 
ADM7150  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
EN  
ADM7150  
EN  
TOP VIEW  
ADM7150  
REF  
(Not to Scale)  
TOP VIEW  
REF  
(Not to Scale)  
GND  
REF_SENSE  
GND  
REF_SENSE  
NOTES  
NOTES  
1. EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.  
EXPOSED PAD ENHANCES THERMAL PERFORMANCE AND IS  
ELECTRICALLY CONNECTED TO GND INSIDE THE PACKAGE.  
CONNECT THE EXPOSED PAD TO THE GROUND PLANE ON  
THE BOARD TO ENSURE PROPER OPERATION.  
1. EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.  
EXPOSED PAD ENHANCES THERMAL PERFORMANCE AND IS  
ELECTRICALLY CONNECTED TO GND INSIDE THE PACKAGE.  
CONNECT THE EXPOSED PAD TO THE GROUND PLANE ON  
THE BOARD TO ENSURE PROPER OPERATION.  
Figure 3. 8-Lead LFCSP Pin Configuration  
Figure 4. 8-Lead SOIC Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VREG  
Regulated Input Supply to LDO Amplifier. Bypass VREG to GND with a 10 µF or greater capacitor. Do not connect  
a load to ground.  
2
3
4
5
6
VOUT  
BYP  
GND  
REF_SENSE  
REF  
Regulated Output Voltage. Bypass VOUT to GND with a 10 µF or greater capacitor.  
Low Noise Bypass Capacitor. Connect a 1 µF capacitor to GND to reduce noise. Do not connect a load to ground.  
Ground Connection.  
REF_SENSE must be connected to the REF pin for proper operation. Do not connect to VOUT or GND.  
Low Noise Reference Voltage Output. Bypass REF to GND with a 1 µF capacitor. Short REF_SENSE to REF for fixed  
output voltages. Do not connect a load to ground.  
7
8
EN  
Enable. Drive EN high to turn on the regulator and drive EN low to turn off the regulator. For automatic startup,  
connect EN to VIN.  
Regulator Input Supply. Bypass VIN to GND with a 10 µF or greater capacitor.  
VIN  
EPAD  
Exposed Pad on the Bottom of the Package. The exposed pad enhances thermal performance and is electrically  
connected to GND inside the package. Connect the exposed pad to the ground plane on the board to ensure  
proper operation.  
Rev. 0 | Page 6 of 24  
 
Data Sheet  
ADM7150  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 1.2 V, or VIN = 4.5 V, whichever is greater, VEN = VIN, IOUT = 10 mA, CIN = COUT = CREG = 10 µF, CREF = CBYP = 1 µF, TA = 25°C,  
unless otherwise noted.  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
V
V
V
V
V
= 6.2V  
= 6.5V  
= 7V  
= 10V  
= 16V  
IN  
IN  
IN  
IN  
IN  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
–0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
6
8
10  
12  
14  
16  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 5. Shutdown Current vs. Temperature at  
Various Input Voltages, VOUT = 5 V  
Figure 8. Output Voltage (VOUT) vs. Input Voltage (VIN), VOUT = 5 V  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
20  
LOAD = 1mA  
LOAD = 10mA  
18  
LOAD = 100mA  
16  
14  
12  
10  
8
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
LOAD = 1mA  
6
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
4
2
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 6. Output Voltage (VOUT) vs. Junction Temperature (TJ), VOUT = 5 V  
Figure 9. Ground Current vs. Junction Temperature (TJ), VOUT = 5 V  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 7. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 5 V  
Figure 10. Ground Current vs. Load Current (ILOAD), VOUT = 5 V  
Rev. 0 | Page 7 of 24  
 
 
ADM7150  
Data Sheet  
12  
10  
8
10  
9
8
7
6
5
4
3
2
1
0
6
4
LOAD = 1mA  
I
I
I
I
I
I
= 5mA  
GND  
GND  
GND  
GND  
GND  
GND  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 800mA  
2
0
4.6  
5
6
7
8
9
10  
V
11  
(V)  
12  
13  
14  
15  
16  
4.8  
5.0  
5.2  
5.4  
(V)  
5.6  
5.8  
6.0  
V
IN  
IN  
Figure 11. Ground Current vs. Input Voltage (VIN), VOUT = 5 V  
Figure 14. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 5 V  
700  
3.32  
3.31  
3.30  
3.29  
600  
500  
400  
300  
200  
100  
0
3.28  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
3.27  
LOAD = 800mA  
3.26  
1
10  
100  
1000  
–40  
–5  
25  
85  
125  
I
(mA)  
JUNCTION TEMPERATURE (°C)  
LOAD  
Figure 15. Output Voltage (VOUT) vs. Junction Temperature (TJ), VOUT = 3.3 V  
Figure 12. Dropout Voltage vs. Load Current (ILOAD), VOUT = 5 V  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
5.2  
5.0  
4.8  
4.6  
4.4  
V
V
V
V
V
V
= 5mA  
DROPOUT  
DROPOUT  
DROPOUT  
DROPOUT  
DROPOUT  
DROPOUT  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 800mA  
4.2  
4.0  
1
10  
100  
1000  
4.6  
4.8  
5.0  
5.2  
5.4  
(V)  
5.6  
5.8  
6.0  
I
(mA)  
V
LOAD  
IN  
Figure 16. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 13. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout, VOUT = 5 V  
Rev. 0 | Page 8 of 24  
 
Data Sheet  
ADM7150  
3.32  
3.31  
3.30  
3.29  
3.28  
10  
9
8
7
6
5
4
3
2
1
0
LOAD = 1mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
3.27  
3.26  
4
6
8
10  
(V)  
12  
14  
16  
4
6
8
10  
(V)  
12  
14  
16  
V
V
IN  
IN  
Figure 17. Output Voltage (VOUT) vs. Input Voltage (VIN), VOUT = 3.3 V  
Figure 20. Ground Current vs. Input Voltage (VIN), VOUT = 3.3 V  
10  
9
1.820  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
1.815  
8
LOAD = 200mA  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
LOAD = 400mA  
LOAD = 800mA  
7
6
5
4
LOAD = 1mA  
3
2
1
0
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 18. Ground Current vs. Junction Temperature (TJ), VOUT = 3.3 V  
Figure 21. Output Voltage (VOUT) vs. Junction Temperature (TJ), VOUT = 1.8 V  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 19. Ground Current vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 22. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 1.8 V  
Rev. 0 | Page 9 of 24  
 
ADM7150  
Data Sheet  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
10  
9
8
7
6
5
4
3
2
1
0
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
1.780  
4
4
6
8
10  
(V)  
12  
14  
16  
6
8
10  
(V)  
12  
14  
16  
V
V
IN  
IN  
Figure 26. Ground Current vs. Input Voltage (VIN), VOUT = 1.8 V  
Figure 23. Output Voltage (VOUT) vs. Input Voltage (VIN), VOUT = 1.8 V  
10  
9
0
LOAD = 800mA  
LOAD = 400mA  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
–20  
8
7
–40  
–60  
6
5
4
–80  
LOAD = 1mA  
3
2
1
0
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
–100  
–120  
–40  
–5  
25  
85  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
JUNCTION TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 24. Ground Current vs. Junction Temperature (TJ), VOUT =1.8 V  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency,  
OUT = 5 V, VIN = 6.2 V  
V
10  
9
8
7
6
5
4
3
2
1
0
0
400mV  
500mV  
600mV  
700mV  
800mV  
900mV  
1.0V  
1.1V  
1.2V  
1.3V  
1.4V  
1.5V  
–20  
–40  
–60  
–80  
–100  
–120  
1
10  
100  
1000  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
I
(mA)  
FREQUENCY (Hz)  
LOAD  
Figure 28. Power Supply Rejection Ratio (PSRR) vs. Frequency for Various  
Headroom Voltage, VOUT = 5 V, 400 mA Load  
Figure 25. Ground Current vs. Load Current (ILOAD), VOUT = 1.8 V  
Rev. 0 | Page 10 of 24  
Data Sheet  
ADM7150  
0
0
–20  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
LOAD = 800mA  
LOAD = 400mA  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
FREQUENCY (Hz)  
HEADROOM (V)  
Figure 29. Power Supply Rejection Ratio (PSRR) vs. Frequency,  
OUT = 3.3 V, VIN = 5 V  
Figure 32. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
400 mA Load, VOUT = 5 V  
V
0
0
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
LOAD = 800mA  
LOAD = 400mA  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
–20  
–20  
–40  
10MHz  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
FREQUENCY (Hz)  
HEADROOM (V)  
Figure 30. Power Supply Rejection Ratio (PSRR) vs. Frequency,  
Figure 33. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
800 mA Load, VOUT = 5 V  
VOUT = 1.8 V, VIN = 5 V  
0
–20  
0
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
–10  
–20  
–40  
–30  
–40  
–50  
–60  
–70  
–60  
–80  
–100  
–120  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1
10  
100  
1000  
HEADROOM (V)  
CAPACITANCE (µF)  
Figure 31. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
100 mA Load, VOUT = 5 V  
Figure 34. Power Supply Rejection Ratio (PSRR) vs. CBYP  
,
400 mA Load, 400 mV Headroom, VOUT = 5 V  
Rev. 0 | Page 11 of 24  
ADM7150  
Data Sheet  
–40  
10  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
–50  
–60  
–70  
–80  
1
–90  
–100  
–110  
–120  
1
0.1  
1k  
10  
100  
1000  
10k  
100k  
1M  
10M  
CAPACITANCE (µF)  
FREQUENCY (Hz)  
Figure 35. Power Supply Rejection Ratio (PSRR) vs. Capacitance (CBYP),  
400 mA Load, 1.2 V Headroom, VOUT = 5 V  
Figure 38. Output Noise Spectral Density,  
1 kHz to 10 MHz, ILOAD = 10 mA  
2.0  
1.8  
1.6  
1.4  
100k  
10k  
1k  
10Hz TO 100kHz  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
10  
1
10  
100  
1000  
0.1  
1
10  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 36. RMS Output Noise vs. Load Current (ILOAD), 10 Hz to 100 kHz  
Figure 39. Output Noise Spectral Density,  
0.1 Hz to 100 kHz, ILOAD = 10 mA  
2.0  
1.8  
1.6  
1.4  
1.2  
1k  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
100  
10  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
100Hz TO 100kHz  
0.1  
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 37. RMS Output Noise vs. Load Current (ILOAD), 100 Hz to 100 kHz  
Figure 40. Output Noise Spectral Density at Different Load Currents,  
1 kHz to 10 MHz  
Rev. 0 | Page 12 of 24  
Data Sheet  
ADM7150  
100k  
10k  
1k  
T
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 400mA  
LOAD = 800mA  
1
100  
10  
2
1
0.1  
0.1  
B
B
W
CH1 500mA Ω  
CH2 10mV  
M4µs  
A CH1  
200mA  
W
1
10  
100  
1k  
10k  
100k  
T
11.0%  
FREQUENCY (Hz)  
Figure 44. Load Transient Response, ILOAD = 10 mA to 800 mA,  
OUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
Figure 41. Output Noise Spectral Density at Different Load Currents,  
0.1 Hz to 100 kHz  
V
100k  
T
C
C
C
C
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
= 4.7µF  
= 10µF  
= 22µF  
= 47µF  
= 100µF  
= 470µF  
= 1mF  
10k  
1k  
100  
10  
1
1
2
B
B
W
CH1 200mA Ω  
CH2 10mV  
M2µs  
A CH1  
460mA  
W
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
T
11.0%  
FREQUENCY (Hz)  
Figure 45. Load Transient Response, ILOAD = 100 mA to 600 mA,  
OUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
Figure 42. Output Noise Spectral Density at Different CBYP  
,
V
Load Current = 10 mA  
T
T
1
2
1
2
B
B
W
B
B
W
CH1 50.0mA Ω  
CH2 2.0mV  
M4µs  
A CH1  
50.0mA  
CH1 500mA Ω  
CH2 20mV  
M20µs  
A CH1  
200mA  
W
W
T
10.0%  
T
10.40%  
Figure 46. Load Transient Response, ILOAD = 1 mA to100 mA,  
OUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
Figure 43. Load Transient Response, ILOAD = 1 mA to 800 mA,  
OUT = 5 V, VIN = 6.2 V, CH1 = IOUT, CH2 = VOUT  
V
V
Rev. 0 | Page 13 of 24  
ADM7150  
Data Sheet  
T
T
1
1
2
2
B
B
B
B
CH2 2.0mV Ω  
W
CH1 1.0V  
CH2 2.0mV Ω  
M10µs  
10.0%  
A CH1  
1.14V  
CH1 1.0V  
M10µs  
10.0%  
A CH3  
1.14V  
W
W
W
T
T
Figure 47. Line Transient Response, 2 V Input Step, ILOAD = 800 mA,  
OUT = 1.8 V, VIN = 4.5 V, CH1 = VIN, CH2 = VOUT  
Figure 49. Line Transient Response, 2 V Input Step, ILOAD = 800 mA,  
V
VOUT = 5 V, VIN = 6.2 V, CH1 = VIN, CH2 = VOUT  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
1
2
V
V
V
V
EN  
REG  
REF  
OUT  
–0.5  
B
B
W
CH1 1.0V  
CH2 2.0mV Ω  
M10µs  
10.0%  
A CH3  
1.14V  
W
0
1
2
3
4
5
6
7
8
9
10  
T
TIME (ms)  
Figure 50. VOUT, VREF, VREG Start-Up Time After VEN Rising, VOUT = 3.3 V, VIN = 5 V  
Figure 48. Line Transient Response, 2 V Input Step, ILOAD = 800 mA,  
OUT = 3.3 V, VIN = 4.5 V, CH1 = VIN, CH2 = VOUT  
V
Rev. 0 | Page 14 of 24  
Data Sheet  
ADM7150  
THEORY OF OPERATION  
The ADM7150 is an ultralow noise, high power supply rejection  
ratio (PSRR) linear regulator targeting radio frequency (RF)  
applications. The input voltage range is 4.5 V to 16 V, and it can  
deliver up to 800 mA of output current. Typical shutdown current  
consumption is 0.1 µA at room temperature.  
By heavily filtering the reference voltage, the ADM7150 is able  
to achieve 1.7 nV/√Hz output typical from 10 kHz to 1 MHz.  
Because the error amplifier is always in unity gain, the output  
noise is independent of the output voltage.  
To maintain very high PSRR over a wide frequency range, the  
ADM7150 architecture uses an internal active ripple filter. This  
stage isolates the low output noise LDO from noise on VIN.  
The result is that the PSRR of the ADM7150 is significantly  
higher over a wider frequency range than any single stage LDO.  
Optimized for use with 10 µF ceramic capacitors, the ADM7150  
provides excellent transient performance.  
ACTIVE  
RIPPLE  
FILTER  
VIN  
VOUT  
SHORT CIRCUIT,  
THERMAL  
The ADM7150 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. When EN is high, VOUT  
turns on, and when EN is low, VOUT turns off. For automatic  
startup, EN can be tied to VIN.  
VREG  
BYP  
PROTECT  
GND  
OTA  
REFERENCE  
E/A  
VIN  
18V  
REF_SENSE  
REF  
VREG  
SHUTDOWN  
EN  
6V  
REF  
Figure 51. Simplified Internal Block Diagram  
REF_SENSE  
BYP  
6V  
Internally, the ADM7150 consists of a reference, an error amplifier,  
and a P-channel MOSFET pass transistor. Output current is  
delivered via the PMOS pass device, which is controlled by the  
error amplifier. The error amplifier compares the reference  
voltage with the feedback voltage from the output and amplifies  
the difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
feedback voltage is higher than the reference voltage, the gate of  
the PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
6V  
OUT  
EN  
18V  
6V  
6V  
6V  
6V  
6V  
18V  
GND  
Figure 52. Simplified ESD Protection Block Diagram  
The ESD protection devices are shown in the block diagram as  
Zener diodes (see Figure 52).  
Rev. 0 | Page 15 of 24  
 
 
ADM7150  
Data Sheet  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
BYP Capacitor  
The BYP capacitor is necessary to filter the reference buffer. A  
1 µF capacitor is typically connected between BYP and GND.  
Capacitors as small as 0.1 µF can be used; however, the output  
noise voltage of the LDO increases as a result.  
Output Capacitor  
The ADM7150 is designed for operation with ceramic capacitors  
but functions with most commonly used capacitors as long as  
care is taken with regard to the effective series resistance (ESR)  
value. The ESR of the output capacitor affects the stability of the  
LDO control loop. A minimum of 10 µF capacitance with an  
ESR of 0.2 Ω or less is recommended to ensure the stability of the  
ADM7150. Output capacitance also affects transient response to  
changes in load current. Using a larger value of output capacitance  
improves the transient response of the ADM7150 to large changes  
in load current. Figure 53 shows the transient responses for an  
output capacitance value of 10 µF.  
In addition, the BYP capacitor value can be increased to reduce  
the noise below 1 kHz at the expense of increasing the start-up  
time of the LDO. Very large values of CBYP significantly reduce  
the noise below 10 Hz. Tantalum capacitors are recommended for  
capacitors larger than approximately 33 µF. A 1 μF ceramic  
capacitor in parallel with the larger tantalum capacitor is required  
to retain good noise performance at higher frequencies. Solid  
tantalum capacitors are less prone to microphonic noise issues.  
100k  
C
C
C
C
C
C
C
C
= 1µF  
T
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
BYP  
= 4.7µF  
= 10µF  
= 22µF  
= 47µF  
= 100µF  
= 470µF  
= 1mF  
10k  
1k  
100  
10  
1
1
2
B
B
W
CH1 500mA Ω  
CH2 10mV  
M4µs  
11.0%  
A CH1  
200mA  
W
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
T
FREQUENCY (Hz)  
Figure 53. Output Transient Response, VOUT = 5 V, COUT = 10 µF,  
CH1 = Load Current, CH2 = VOUT  
Figure 54. Noise Spectral Density vs. Frequency, CBYP = 1 µF to 1 mF  
10k  
1Hz  
3Hz  
Input and VREG Capacitor  
10Hz  
100Hz  
400Hz  
30Hz  
300Hz  
1kHz  
Connecting a 10 µF capacitor from VIN to GND reduces the  
circuit sensitivity to PCB layout, especially when long input  
traces or high source impedance are encountered.  
1k  
100  
10  
To maintain the best possible stability and PSRR performance,  
connect a 10 µF capacitor from VREG to GND. When more  
than 10 µF of output capacitance is required, increase the input  
and VREG capacitors to match it.  
REF Capacitor  
The REF capacitor is necessary to stabilize the reference amplifier.  
Connect at least a 1 µF capacitor between REF and GND.  
1
1
10  
100  
1000  
C
(µF)  
BYP  
Figure 55. Noise Spectral Density vs. Capacitance (CBYP) for  
Different Frequencies  
Rev. 0 | Page 16 of 24  
 
 
 
Data Sheet  
ADM7150  
Capacitor Properties  
Substituting these values in Equation 1 yields  
EFF = 9.72 µF × (1 − 0.15) × (1 − 0.1) = 7.44 µF  
Any good quality ceramic capacitors can be used with the  
ADM7150 as long as they meet the minimum capacitance  
and maximum ESR requirements. Ceramic capacitors are  
manufactured with a variety of dielectrics, each with different  
behavior over temperature and applied voltage. Capacitors must  
have a dielectric adequate to ensure the minimum capacitance  
over the necessary temperature range and dc bias conditions.  
X5R or X7R dielectrics with a voltage rating of 6.3 V to 50 V  
are recommended. However, Y5V and Z5U dielectrics are  
not recommended due to their poor temperature and dc bias  
characteristics.  
C
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADM7150, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
ENABLE (EN) AND UNDERVOLTAGE LOCKOUT  
(UVLO)  
The ADM7150 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 57,  
when a rising voltage on EN crosses the upper threshold, VOUT  
turns on. When a falling voltage on EN crosses the lower threshold,  
VOUT turns off. The hysteresis varies as a function of the input  
voltage. For example, the EN hysteresis is approximately 200 mV  
with an input voltage of 4.5 V.  
Figure 56 depicts the capacitance vs. dc bias voltage of a 1206,  
10 µF, 10 V, X5R capacitor. The voltage stability of a capacitor is  
strongly influenced by the capacitor size and voltage rating. In  
general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperature variation of the X5R  
dielectric is ~ 15% over the −40°C to +85°C temperature range  
and is not a function of package or voltage rating.  
12  
3.5  
3.0  
2.5  
10  
8
2.0  
VOUT_EN_FALL  
1.5  
6
VOUT_EN_RISE  
1.0  
4
0.5  
2
0
1.0  
1.1  
1.2  
1.3  
(V)  
1.4  
1.5  
1.6  
0
V
0
2
4
6
8
10  
EN  
DC BIAS VOLTAGE (V)  
Figure 57. Typical VOUT Response to EN Pin Operation, VOUT = 3.3 V, VIN = 5 V  
Figure 56. Capacitance vs. DC Bias Voltage  
3.2  
Use Equation 1 to determine the worst-case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
3.0  
2.8  
2.6  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
BIAS is the effective capacitance at the operating voltage.  
(1)  
–40°C  
2.4  
2.2  
2.0  
+125°C  
+25°C  
C
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
1.8  
1.6  
1.4  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 9.72 µF at 5 V, as shown in Figure 56.  
6
8
10  
12  
14  
16  
V
(V)  
IN  
Figure 58. Typical EN Rise Threshold vs. Input Voltage (VIN) for Various  
Temperatures  
Rev. 0 | Page 17 of 24  
 
 
ADM7150  
Data Sheet  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
START-UP TIME  
The ADM7150 uses an internal soft start to limit the inrush  
current when the output is enabled. The start-up time for a 5 V  
output is approximately 3 ms from the time the EN active threshold  
is crossed to when the output reaches 90% of its final value.  
–40°C  
The rise time of the output voltage (10% to 90%) is approximately  
0.0012 × CBYP seconds  
+25°C  
+125°C  
where CBYP is in microfarads.  
6
ENABLE  
C
C
C
= 1µF  
= 4.7µF  
= 10µF  
BYP  
BYP  
BYP  
5
4
3
2
1
0
1.0  
6
8
10  
12  
14  
16  
V
(V)  
IN  
Figure 59. Typical EN Fall Threshold vs. Input Voltage (VIN) for Various  
Temperatures  
The ADM7150 also incorporates an internal undervoltage  
lockout circuit to disable the output voltage when the input  
voltage is less than the minimum input voltage rating of the  
regulator. The upper and lower thresholds are internally fixed  
with about 300 mV of hysteresis.  
3.5  
0
0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020  
TIME (Seconds)  
3.0  
Figure 61. Typical Start-Up Behavior with CBYP = 1 µF to 10 µF  
2.5  
6
VOUT_VIN_FALL  
2.0  
5
4
3
2
1.5  
VOUT_VIN_RISE  
1.0  
0.5  
0
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
V
(V)  
1
0
ENABLE  
IN  
C
C
C
= 10µF  
= 47µF  
= 330µF  
BYP  
BYP  
BYP  
Figure 60. Typical UVLO Hysteresis, VOUT = 3.3 V  
0
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20  
TIME (Seconds)  
Figure 60 shows the typical hysteresis of the UVLO function.  
This hysteresis prevents on/off oscillations that can occur due to  
noise on the input voltage as it passes through the threshold  
points.  
Figure 62. Typical Start-Up Behavior with CBYP = 10 µF to 330 µF  
REF, BYP, AND, VREG PINS  
REF, BYP, and VREG are internally generated voltages that  
require external bypass capacitors for proper operation. Do not,  
under any circumstances, connect any loads to these pins because  
doing so compromises the noise and PSRR performance of the  
ADM7150. Using larger values of CBYP, CREF, and CREG is acceptable  
but can increase the start-up time as described in the Start-Up  
Time section.  
Rev. 0 | Page 18 of 24  
 
 
 
Data Sheet  
ADM7150  
between the junction and ambient air (θJA). The θJA number is  
dependent on the package assembly compounds that are used  
and the amount of copper used to solder the package GND pin  
and exposed pad to the PCB.  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADM7150 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADM7150 is designed to current-limit when the  
output load reaches 1.2 A (typical). When the output load  
exceeds 1.2 A, the output voltage is reduced to maintain a  
constant current limit.  
Table 6 shows typical θJA values of the 8-lead SOIC and 8-lead  
LFCSP packages for various PCB copper sizes.  
Table 7 shows the typical ΨJB values of the 8-lead SOIC and  
8-lead LFCSP.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 155°C (typical). Under  
extreme conditions (that is, high ambient temperature and/or  
high power dissipation) when the junction temperature starts to  
rise above 155°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
140°C, the output is turned on again, and output current is  
restored to its operating value.  
Table 6. Typical θJA Values  
θJA (°C/W)  
Copper Size (mm±)  
251  
8-Lead LFCSP  
165.1  
8-Lead SOIC  
165  
126.4  
69.8  
57.8  
43.6  
100  
125.8  
500  
68.1  
1000  
6400  
56.4  
42.1  
Consider the case where a hard short from VOUT to GND occurs.  
At first, the ADM7150 current limits, so that only 1.2 A is  
conducted into the short. If self heating of the junction is great  
enough to cause its temperature to rise above 155°C, thermal  
shutdown activates, turning off the output and reducing the  
output current to zero. As the junction temperature cools and  
drops below 140°C, the output turns on and conducts 1.2 A into  
the short, again causing the junction temperature to rise above  
155°C. This thermal oscillation between 140°C and 155°C  
causes a current oscillation between 1.2 A and 0 mA that  
continues as long as the short remains at the output.  
1 Device soldered to minimum size pin traces.  
Table 7. Typical ΨJB Values  
Package  
ΨJB (°C/W)  
8-Lead LFCSP  
8-Lead SOIC  
15.1  
17.9  
The junction temperature of the ADM7150 is calculated from  
the following equation:  
TJ = TA + (PD × θJA)  
(2)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
Current-limit and thermal limit protections are intended to  
protect the device against accidental overload conditions. For  
reliable operation, device power dissipation must be externally  
limited so that the junction temperature does not exceed 150°C.  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
IN and VOUT are the input and output voltages, respectively.  
)
(3)  
V
THERMAL CONSIDERATIONS  
ILOAD is the load current.  
In applications with low input to output voltage differential, the  
ADM7150 does not dissipate much heat. However, in applications  
with high ambient temperature and/or high input voltage, the  
heat dissipated in the package may become large enough that it  
causes the junction temperature of the die to exceed the maximum  
junction temperature of 150°C.  
IGND is the ground current.  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation simplifies  
to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
When the junction temperature exceeds 155°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature decreases below 140°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is important to guarantee reliable performance over all conditions.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
that the junction temperature does not rise above 150°C.  
The heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins and  
exposed pad of the ADM7150. Adding thermal planes under  
the package also improves thermal performance. However, as  
listed in Table 6, a point of diminishing returns is eventually  
reached, beyond which an increase in the copper area does not  
yield significant reduction in the junction to ambient thermal  
resistance.  
To guarantee reliable operation, the junction temperature of the  
ADM7150 must not exceed 150°C. To ensure that the junction  
temperature stays below this maximum value, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances  
Rev. 0 | Page 19 of 24  
 
 
 
 
ADM7150  
Data Sheet  
155  
145  
135  
125  
115  
102  
95  
Figure 63 to Figure 68 show junction temperature calculations for  
different ambient temperatures, power dissipation, and areas of  
PCB copper.  
155  
145  
135  
125  
115  
105  
95  
85  
75  
65  
55  
2
6400mm  
85  
2
45  
500mm  
75  
2
25mm  
35  
T
MAX  
65  
J
25  
55  
45  
35  
25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
2
6400mm  
2
500mm  
2
25mm  
Figure 66. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 25°C  
T
MAX  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
160  
150  
140  
130  
120  
110  
100  
90  
Figure 63. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 25°C  
160  
150  
140  
130  
120  
110  
100  
90  
80  
2
6400mm  
70  
2
500mm  
2
25mm  
60  
50  
T
MAX  
J
80  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
2
6400mm  
70  
2
500mm  
2
25mm  
60  
50  
Figure 67. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 50°C  
T
MAX  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
155  
145  
135  
125  
115  
105  
95  
Figure 64. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 50°C  
155  
145  
135  
125  
115  
105  
95  
85  
75  
65  
2
6400mm  
2
500mm  
2
25mm  
T
MAX  
1.8  
J
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
2.0  
85  
75  
65  
2
6400mm  
TOTAL POWER DISSIPATION (W)  
2
500mm  
2
25mm  
Figure 68. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 85°C  
T
MAX  
J
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
TOTAL POWER DISSIPATION (W)  
Figure 65. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 85°C  
Rev. 0 | Page 20 of 24  
 
 
Data Sheet  
ADM7150  
Thermal Characterization Parameter (ΨJB)  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
When board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction  
temperature rise (see Figure 69 and Figure 70). Maximum  
junction temperature (TJ) is calculated from the board temperature  
(TB) and power dissipation (PD) using the following formula:  
Place the input capacitor as close as possible to the VIN and GND  
pins. Place the output capacitor as close as possible to the VOUT  
and GND pins. Place the bypass capacitors for VREG, VREF, and  
V
BYP close to the respective pins and GND. Use of an 0805,  
0603, or 0402 size capacitor achieves the smallest possible  
footprint solution on boards where area is limited.  
TJ = TB + (PD × ΨJB)  
(5)  
The typical value of ΨJB is 15.1°C/W for the 8-lead LFCSP  
package and 17.9°C/W for the 8-lead SOIC package.  
160  
140  
120  
100  
80  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0  
TOTAL POWER DISSIPATION (W)  
Figure 69. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP  
Figure 71. Example 8-Lead LFCSP PCB Layout  
160  
140  
120  
100  
80  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
TOTAL POWER DISSIPATION (W)  
Figure 70. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC  
Figure 72. Example 8-Lead SOIC PCB Layout  
Rev. 0 | Page 21 of 24  
 
 
 
ADM7150  
Data Sheet  
OUTLINE DIMENSIONS  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
4
1
PIN 1  
TOP VIEW  
BOTTOM VIEW  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 73. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
3.098  
0.356  
5
6.20  
6.00  
5.80  
8
1
4.00  
3.90  
3.80  
2.41  
0.457  
4
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 74. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage  
Package Description  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
Package Option  
Branding  
LP3  
LNA  
LNL  
LNM  
LNB  
ADM7150ACPZ-1.8-R2  
ADM7150ACPZ-3.3-R2  
ADM7150ACPZ-4.5-R2  
ADM7150ACPZ-4.8-R2  
ADM7150ACPZ-5.0-R2  
1.8  
3.3  
4.5  
4.8  
5.0  
CP-8-11  
CP-8-11  
CP-8-11  
CP-8-11  
CP-8-11  
Rev. 0 | Page 22 of 24  
 
 
Data Sheet  
ADM7150  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage  
Package Description  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
Evaluation Board  
Package Option  
CP-8-11  
CP-8-11  
CP-8-11  
CP-8-11  
CP-8-11  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
Branding  
LP3  
LNA  
LNL  
LNM  
LNB  
ADM7150ACPZ-1.8-R7  
ADM7150ACPZ-3.3-R7  
ADM7150ACPZ-4.5-R7  
ADM7150ACPZ-4.8-R7  
ADM7150ACPZ-5.0-R7  
ADM7150ARDZ-1.8  
ADM7150ARDZ-2.8  
ADM7150ARDZ-3.0  
ADM7150ARDZ-3.3  
ADM7150ARDZ-5.0  
ADM7150ARDZ-3.0-R7  
ADM7150ARDZ-3.3-R7  
ADM7150ARDZ-5.0-R7  
ADM7150CP-EVALZ  
1.8  
3.3  
4.5  
4.8  
5.0  
1.8  
2.8  
3.0  
3.3  
5.0  
3.0  
3.3  
5.0  
5.0  
RD-8-2  
RD-8-2  
RD-8-2  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
ADM7150  
NOTES  
Data Sheet  
©±013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11043-0-9/13(0)  
Rev. 0 | Page 24 of 24  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY