ADM7150ARD [ADI]

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator;
ADM7150ARD
型号: ADM7150ARD
厂家: ADI    ADI
描述:

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator

文件: 总24页 (文件大小:739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
600 mA, Ultralow Noise,  
High PSRR, RF Linear Regulator  
ADM7155  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Input voltage range: 2.3 V to 5.5 V  
Output voltage range: 1.2 V to 3.4 V  
Maximum load current: 600 mA  
ADM7155  
V
= 3.5V  
V
= 3.0V  
IN  
OUT  
VIN  
VOUT  
C
C
OUT  
10µF  
IN  
10µF  
ON  
Low noise  
REF = 1.2V  
EN  
REF  
C
0.9 μV rms total integrated noise from 100 Hz to 100 kHz  
1.6 μV rms total integrated noise from 10 Hz to 100 kHz  
Noise spectral density: 1.5 nV/√Hz from 10 kHz to 1 MHz  
PSRR: >90 dB from 200 Hz to 200 kHz; 57 dB at 1 MHz  
Dropout voltage: 120 mV typical at VOUT = 3.3 V, IOUT = 600 mA  
Initial accuracy: 0.5ꢀ  
Accuracy over line, load, and temperature: −2.0ꢀ (minimum),  
+1.5ꢀ (maximum)  
Quiescent current, IGND = 4 mA at no load  
Low shutdown current: 0.2 ꢁA  
REF  
OFF  
1µF  
R1  
V
BYP  
BYP REF_SENSE  
V
= 1.2V × (R1 + R2)/R2  
OUT  
C
BYP  
1µF  
R2  
1k< R2 < 200kΩ  
V
REG  
VREG  
GND  
C
10µF  
REG  
Figure 1. Regulated 3.0 V Output from 3.5 V Input  
10k  
NOISE FLOOR  
1.0µF  
3.3µF  
10µF  
Stable with a 10 μF ceramic output capacitor  
8-lead LFCSP and 8-lead SOIC packages  
Precision enable  
1k  
100  
10  
33µF  
100µF  
330µF  
1000µF  
Supported by ADIsimPower tool  
APPLICATIONS  
Regulation to noise sensitive applications: PLLs, VCOs, and  
PLLs with integrated VCOs  
Communications and infrastructure  
Backhaul and microwave links  
1
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 2. Noise Spectral Density for Different Values of CBYP  
GENERAL DESCRIPTION  
The ADM7155 is an adjustable linear regulator that operates  
from 2.3 V to 5.5 V and provides up to 600 mA of load current.  
Output voltages from 1.2 V to 3.4 V are possible depending on  
the model. Using an advanced proprietary architecture, it  
provides high power supply rejection and ultralow noise,  
achieving excellent line and load transient response with only a  
10 μF ceramic output capacitor.  
The ADM7155 is available in 8-lead, 3 mm × 3 mm LFCSP and  
8-lead SOIC packages, making it not only a very compact  
solution but also providing excellent thermal performance for  
applications requiring up to 600 mA of load current in a small, low  
profile footprint.  
Table 1. Related Devices  
Input  
Voltage  
Output  
Model  
Current Fixed/Adj1 Package  
The ADM7155 is available in four models that optimize power  
dissipation and PSRR performance as a function of input and  
output voltage. See Table 9 and Table 10 for selection guides.  
ADM7150ACP 4.5 V to 16 V 800 mA Fixed  
ADM7150ARD 4.5 V to 16 V 800 mA Fixed  
ADM7151ACP 4.5 V to 16 V 800 mA Adj  
ADM7151ARD 4.5 V to 16 V 800 mA Adj  
ADM7154ACP 2.3 V to 5.5 V 600 mA Fixed  
ADM7154ARD 2.3 V to 5.5 V 600 mA Fixed  
8-Lead LFCSP  
8-Lead SOIC  
8-Lead LFCSP  
8-Lead SOIC  
8-Lead LFCSP  
8-Lead SOIC  
The ADM7155 regulator typical output noise is 0.9 ꢀV rms from  
100 Hz to 100 kHz for fixed output voltage options and 1.5 nV/√Hz  
for noise spectral density from 10 kHz to 1 MHz.  
1 Adj means adjustable.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADM7155  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 15  
ADIsimPower Design Tool ....................................................... 15  
Capacitor Selection .................................................................... 15  
Undervoltage Lockout (UVLO) ............................................... 16  
Programmable Precision Enable .............................................. 17  
Start-Up Time............................................................................. 17  
REF, BYP, and VREG Pins......................................................... 18  
Current-Limit and Thermal Overload Protection................. 18  
Thermal Considerations............................................................ 18  
Printed Circuit Board Layout Considerations............................ 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
8/2016—Rev. B to Rev. C  
Changes to Programmable Precision Enable Section and  
Figure 53 .......................................................................................... 17  
9/2015—Rev. A to Rev. B  
Changed 3.0 V to 2.4 V.................................................................. 14  
12/2014—Rev. 0 to Rev. A  
Changes to Figure 35 to Figure 40................................................ 12  
Changes to Figure 45...................................................................... 15  
10/2014—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
Data Sheet  
ADM7155  
SPECIFICATIONS  
VIN = VOUT_MAX + 0.5 V, EN = VIN; ILOAD = 10 mA; CIN = COUT = CREG = 10 μF; CREF = CBYP = 1 μF; TA = 25°C for typical specifications; TJ =  
−40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
V
INPUT VOLTAGE RANGE  
LOAD CURRENT  
2.3  
5.5  
ILOAD  
600  
mA  
mA  
mA  
μA  
OPERATING SUPPLY CURRENT  
IGND  
ILOAD = 0 μA  
ILOAD = 600 mA  
EN = GND  
4.0  
6.5  
0.2  
7.0  
10  
2
SHUTDOWN CURRENT  
NOISE  
IIN_SD  
Output Noise  
OUTNOISE  
10 Hz to 100 kHz, VOUT = 1.2 V to 3.4 V  
100 Hz to 100 kHz, VOUT = 1.2 V to 3.4 V  
10 kHz to 1 MHz, VOUT = 1.2 V to 3.4 V  
IOUT = 400 mA  
1 kHz to 100 kHz, VIN = 2.3 V  
1 MHz, VIN = 2.3 V  
1 kHz to 100 kHz, VIN = 2.9 V  
1 MHz, VIN = 2.9 V  
1 kHz to 100 kHz, VIN = 3.4 V  
1 MHz, VIN = 3.4 V  
1.6  
0.9  
1.5  
μV rms  
μV rms  
nV/√Hz  
Noise Spectral Density  
POWER SUPPLY REJECTION RATIO  
ADM7155-01  
OUTNSD  
PSRR  
92  
65  
94  
61  
94  
57  
94  
57  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ADM7155-02  
ADM7155-03  
ADM7155-04  
1 kHz to 100 kHz, VIN = 3.9 V  
1 MHz, VIN = 3.9 V  
OUTPUT VOLTAGE ACCURACY  
Initial Accuracy  
VOUT = VREF  
VOUT  
ILOAD = 10 mA, TJ = +25°C  
1 mA < ILOAD < 600 mA, TJ = −40°C to +85°C  
1 mA < ILOAD < 600 mA  
−0.5  
−2.0  
−2.0  
+0.5  
+1.5  
+2.0  
%
%
%
REGULATION  
Line  
∆VOUT/∆VIN  
∆VOUT/∆IOUT  
ILIMIT  
VIN = VOUT_MAX + 0.5 V to 5.5 V  
IOUT = 1 mA to 600 mA  
−0.02  
+0.02 %/V  
Load1  
0.3  
1.6  
%/A  
CURRENT-LIMIT THRESHOLD2  
VREF  
VOUT  
22  
960  
80  
mA  
mA  
mV  
mV  
700  
1200  
130  
210  
DROPOUT VOLTAGE3  
VDROPOUT  
IOUT = 400 mA, VOUT = 3.3 V  
IOUT = 600 mA, VOUT = 3.3 V  
120  
PULL-DOWN RESISTANCE  
VOUT  
REG  
REF  
BYP  
VOUT_PULL  
VREG_PULL  
VREF_PULL  
VBYP_PULL  
EN = 0 V, VOUT = 1 V, VIN = 5.5 V  
EN = 0 V, VREG = 1 V, VIN = 5.5 V  
EN = 0 V, VREF = 1 V, VIN = 5.5 V  
EN = 0 V, VBYP = 1 V, VIN = 5.5 V  
550  
33  
620  
400  
Ω
kΩ  
Ω
Ω
START-UP TIME4  
VOUT  
VREG  
VREF  
tSTARTUP  
tREG_STARTUP  
tREF_STARTUP  
VOUT = 3.3 V  
VOUT = 3.3 V  
VOUT = 3.3 V  
1.2  
0.55  
0.44  
ms  
ms  
ms  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
TSSD  
TSSD_HYS  
TJ rising  
150  
15  
°C  
°C  
UNDERVOLTAGE THRESHOLDS  
Input Voltage  
Rising  
Falling  
Hysteresis  
UVLORISE  
UVLOFALL  
UVLOHYS  
2.29  
V
V
mV  
1.95  
200  
Rev. C | Page 3 of 24  
 
ADM7155  
Data Sheet  
Parameter  
VREG THRESHOLDS5  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
Rising  
Falling  
Hysteresis  
VREG_UVLORISE  
VREG_UVLOFALL  
VREG_UVLOHYS  
1.94  
V
V
mV  
1.60  
185  
PRECISION EN INPUT  
Logic High  
Logic Low  
Logic Hysteresis  
Leakage Current  
2.3 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
1.13  
1.05  
1.22 1.31  
1.13 1.22  
90  
V
V
mV  
μA  
0.01  
1
1 Based on an endpoint calculation using 1 mA and 600 mA loads.  
2 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. Dropout applies only for output  
voltages above 2.3 V.  
4 Start-up time is defined as the time between the rising edge of VEN to VOUT, VREG, or VREF being at 90% of the nominal value.  
5 The output voltage is disabled until the VREG UVLO rise threshold is crossed. The VREG output is disabled until the input voltage UVLO rising threshold is crossed.  
Table 3. Input and Output Capacitors, Recommended Specifications  
Parameter  
MINIMUM CAPACITANCE  
Input1  
Regulator1  
Output1  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CIN  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
7.0  
7.0  
7.0  
0.1  
0.7  
μF  
μF  
μF  
μF  
μF  
CREG  
COUT  
CBYP  
CREF  
Bypass  
Reference  
CAPACITOR ESR  
CREG, COUT, CIN, CREF  
CBYP  
RESR  
RESR  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.001  
0.001  
0.2  
2.0  
Ω
Ω
1 The minimum input, regulator, and output capacitances must be greater than 7.0 ꢀF over the full range of operating conditions. The full range of operating conditions  
in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are  
recommended; Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. C | Page 4 of 24  
Data Sheet  
ADM7155  
ABSOLUTE MAXIMUM RATINGS  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer PCB. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and PCB layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
PCB design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. See JESD51-7 and JESD51-9 for detailed information on  
the board construction.  
Table 4.  
Parameter  
VIN to GND  
VREG to GND  
Rating  
−0.3 V to +7 V  
−0.3 V to VIN, or +4 V  
(whichever is less)  
VOUT to GND  
−0.3 V to VREG, or +4 V  
(whichever is less)  
BYP to VOUT  
EN to GND  
BYP to GND  
0.3 V  
−0.3 V to +7 V  
−0.3 V to VREG, or +4 V  
(whichever is less)  
Ψ
JB is the junction-to-board thermal characterization parameter  
REF to GND  
−0.3 V to VREG, or +4 V  
(whichever is less)  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer PCB. JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power  
flowing through multiple thermal paths rather than a single  
path as in thermal resistance, θJB. Therefore, ΨJB thermal paths  
include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful  
in real-world applications. Maximum junction temperature (TJ)  
is calculated from the PCB temperature (TB) and power  
dissipation (PD) using the formula  
REF_SENSE to GND  
Storage Temperature Range  
Junction Temperature  
−0.3 V to +4 V  
−65°C to +150°C  
150°C  
Operating Ambient Temperature  
Range  
−40°C to +125°C  
Soldering Conditions  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL DATA  
THERMAL RESISTANCE  
Absolute maximum ratings apply individually only, not in  
combination. The ADM7155 can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient temper-  
ature may need to be derated.  
θJA, θJC, and ΨJB are specified for the worst case conditions, that  
is, a device soldered in a circuit board for surface-mount  
packages.  
Table 5. Thermal Resistance  
Package Type  
8-Lead LFCSP  
8-Lead SOIC  
θJA  
θJC  
ΨJB  
Unit  
°C/W  
°C/W  
36.7  
36.9  
23.5  
27.1  
13.3  
18.6  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit provided  
that the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package (θJA).  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
following formula:  
TJ = TA + (PD × θJA)  
Rev. C | Page 5 of 24  
 
 
 
 
ADM7155  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
EN  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
ADM7155  
EN  
TOP VIEW  
ADM7155  
REF  
(Not to Scale)  
TOP VIEW  
REF  
(Not to Scale)  
GND  
REF_SENSE  
REF_SENSE  
GND  
NOTES  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES  
THERMAL PERFORMANCE, AND IT IS ELECTRICALLY  
CONNECTED TO GND INSIDE THE PACKAGE. CONNECT  
THE EP TO THE GROUND PLANE ON THE BOARD TO  
ENSURE PROPER OPERATION.  
NOTES  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES  
THERMAL PERFORMANCE, AND IT IS ELECTRICALLY  
CONNECTED TO GND INSIDE THE PACKAGE. CONNECT  
THE EP TO THE GROUND PLANE ON THE BOARD TO  
ENSURE PROPER OPERATION.  
Figure 4. 8-Lead SOIC Pin Configuration  
Figure 3. 8-Lead LFCSP Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VREG  
Regulated Input Supply Voltage to LDO Amplifier. Bypass VREG to GND with a 10 μF or greater  
capacitor.  
2
3
VOUT  
BYP  
Regulated Output Voltage. Bypass VOUT to GND with a 10 μF or greater capacitor.  
Low Noise Bypass Capacitor. Connect a 1 μF capacitor from the BYP pin to GND to reduce noise. Do not  
connect a load to ground.  
4
5
6
GND  
REF_SENSE  
REF  
Ground Connection.  
Reference Sense. Connect Pin 5 to the REF pin. Do not connect Pin 5 to VOUT or GND.  
Low Noise Reference Voltage Output. Bypass REF to GND with a 1 μF capacitor. Short REF_SENSE to REF  
for fixed output voltages. Do not connect a load to ground.  
7
8
EN  
Enable. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
Regulator Input Supply Voltage. Bypass VIN to GND with a 10 μF or greater capacitor.  
Exposed Pad. The exposed pad is located on the bottom of the package. The exposed pad enhances  
thermal performance, and it is electrically connected to GND inside the package. Connect the EP to the  
ground plane on the board to ensure proper operation.  
VIN  
EP  
Rev. C | Page 6 of 24  
 
Data Sheet  
ADM7155  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 0.5 V, or VIN = 2.3 V, whichever is greater; VEN = VIN; IOUT = 10 mA; CIN = COUT = CREG = 10 μF; CREF = CBYP = 1 μF; TA = 25°C,  
unless otherwise noted.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
V
V
V
V
V
V
= 2.3V  
= 2.4V  
= 2.6V  
= 3.0V  
= 4.0V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
–50  
–25  
0
25  
50  
75  
100  
125  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
TEMPERATURE (°C)  
V
IN  
Figure 5. Shutdown Current vs. Temperature at  
Various Input Voltages, VOUT = 1.8 V  
Figure 8. Output Voltage (VOUT) vs. Input Voltage (VIN) at Various Loads,  
VOUT = 3.3 V  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
10  
9
8
7
6
5
4
3
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
2
1
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 6. Output Voltage (VOUT) vs. Junction Temperature (TJ) at Various  
Loads, VOUT = 3.3 V  
Figure 9. Ground Current vs. Junction Temperature (TJ) at Various Loads,  
VOUT = 3.3 V  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 7. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 10. Ground Current vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. C | Page 7 of 24  
 
ADM7155  
Data Sheet  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
I
I
I
I
I
I
= 5mA  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
I
= 1mA  
LOAD  
LOAD  
I
I
I
I
I
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
2
1
0
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
3.1  
3.2  
3.3  
3.4  
3.5  
(V)  
3.6  
3.7  
3.8  
V
V
IN  
IN  
Figure 11. Ground Current vs. Input Voltage (VIN) at Various Loads,  
OUT = 3.3 V  
Figure 14. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 3.3 V  
V
160  
140  
120  
100  
80  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
60  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
1.18  
1.17  
1.16  
40  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
20  
0
–40  
–5  
25  
85  
125  
1
10  
100  
1000  
JUNCTION TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 15. Output Voltage (VOUT) vs. Junction Temperature (TJ) at Various  
Loads, VOUT = 1.2 V  
Figure 12. Dropout Voltage vs. Load Current (ILOAD), VOUT = 3.3 V  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
I
I
I
I
I
I
= 5mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
3.10  
3.05  
3.00  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
1
10  
100  
1000  
3.1  
3.2  
3.3  
3.4  
3.5  
(V)  
3.6  
3.7  
3.8  
I
(mA)  
V
LOAD  
IN  
Figure 16. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 1.2 V  
Figure 13. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout,  
VOUT = 3.3 V  
Rev. C | Page 8 of 24  
Data Sheet  
ADM7155  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
10  
9
8
7
6
5
4
3
2
1
0
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 17. Output Voltage (VOUT) vs. Input Voltage (VIN) at Various Loads,  
Figure 20. Ground Current vs. Input Voltage (VIN) at Different Loads,  
OUT = 1.2 V  
V
OUT = 1.2 V  
V
10  
9
8
7
6
5
4
3
2
1
0
0
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 600mA  
LOAD  
LOAD  
LOAD  
LOAD  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
–40  
–5  
25  
85  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
JUNCTION TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 18. Ground Current vs. Junction Temperature (TJ) at Various Loads,  
VOUT = 1.2 V  
Figure 21. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Loads, VOUT = 3.3 V, VIN = 4.1 V  
10  
9
8
7
6
5
4
3
2
1
0
0
–20  
–40  
–60  
–80  
800mV  
600mV  
500mV  
400mV  
300mV  
250mV  
200mV  
150mV  
–100  
–120  
–140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
FREQUENCY (Hz)  
I
(mA)  
LOAD  
Figure 19. Ground Current vs. Load Current (ILOAD), VOUT = 1.2 V  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Headroom Voltages, VOUT = 3.3 V, 400 mA Load  
Rev. C | Page 9 of 24  
ADM7155  
Data Sheet  
0
–20  
0
–20  
–40  
–60  
–80  
10Hz  
100Hz  
1kHz  
100kHz  
1MHz  
10MHz  
10kHz  
–40  
–60  
–80  
10Hz  
–100  
–120  
–140  
–100  
–120  
–140  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
HEADROOM (V)  
HEADROOM (V)  
Figure 23. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage at  
Different Frequencies, VOUT = 3.3 V, 400 mA Load  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
Different Frequencies, VOUT = 1.2 V, 400 mA Load  
0
0
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 600mA  
1µF  
10µF  
100µF  
LOAD  
LOAD  
LOAD  
LOAD  
–20  
–40  
–20  
–40  
1000µF  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency, Different CBYP  
,
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Loads, VOUT = 1.2 V, VIN = 2.4 V  
V
OUT = 3.3 V, 400 mA Load, 500 mV Headroom  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10Hz TO 100kHz  
100Hz TO 100kHz  
–20  
–40  
–60  
–80  
–100  
2.0V  
1.5V  
1.3V  
1.2V  
1.1V  
–120  
–140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1000  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 25. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Headroom Voltages, VOUT = 1.2 V, 400 mA Load  
Figure 28. RMS Output Noise vs. Load Current (ILOAD  
)
Rev. C | Page 10 of 24  
Data Sheet  
ADM7155  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
10k  
1k  
10Hz TO 100kHz  
100Hz TO 100kHz  
100  
10  
1
0
0.1  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
10M  
1M  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 29. RMS Output Noise vs. Output Voltage  
Figure 32. Output Noise Spectral Density, 0.1 Hz to 10 MHz, ILOAD = 100 mA  
1k  
100  
10  
10k  
I
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
1k  
100  
10  
1
1
0.1  
0.1  
0.1  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. Output Noise Spectral Density,  
10 Hz to 10 MHz, ILOAD = 100 mA  
Figure 33. Output Noise Spectral Density at Various Loads,  
0.1 Hz to 1 MHz  
10k  
1k  
1k  
100  
10  
I
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
100  
10  
1
1
0.1  
0.1  
0.1  
10  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. Output Noise Spectral Density at Various Loads,  
10 Hz to 10 MHz  
Figure 31. Output Noise Spectral Density,  
0.1 Hz to 1 MHz, ILOAD = 10 mA  
Rev. C | Page 11 of 24  
ADM7155  
Data Sheet  
T
T
1
2
1
2
B
B
CH1 200mA  
CH2 5mV  
M4µs  
A
CH1  
532mA  
B
B
W
W
W
CH1 200mA Ω  
CH2 5mV  
M4.0µs  
A
CH1  
212mA  
W
T
10.6%  
T
10.2%  
Figure 38. Load Transient Response, ILOAD = 100 mA to 600 mA,  
VOUT = 1.8 V, VIN = 2.3 V, CH1 = IOUT, CH2 = VOUT  
Figure 35. Load Transient Response, ILOAD = 10 mA to 510 mA,  
OUT = 3.3 V, VIN = 3.8 V, CH1 = IOUT, CH2 = VOUT  
V
T
T
1
2
2
1
B
B
B
B
W
CH1 200mA Ω  
CH2 5mV  
M4.0µs  
W
A
CH1  
212mA  
CH1 1V  
CH2 1mV  
M400ns  
10.4%  
A
CH1  
4.38V  
W
W
T
10.2%  
T
Figure 39. Line Transient Response, 1 V Input Step, ILOAD = 600 mA,  
VOUT = 3.3 V, VIN = 3.9 V, CH1 = VIN, CH2 = VOUT  
Figure 36. Load Transient Response, ILOAD = 100 mA to 600 mA,  
OUT = 3.3 V, VIN = 3.8 V, CH1 = IOUT, CH2 = VOUT  
V
T
T
1
2
2
B
B
B
B
W
CH1 1V  
CH2 1mV  
M400ns  
11.4%  
A
CH1  
3.5V  
CH1 200mA Ω  
CH2 5mV  
M4.0µs  
A
CH1  
204mA  
W
W
W
T
T
10.4%  
Figure 40. Line Transient Response, 1 V Input Step, ILOAD = 600 mA,  
VOUT = 1.8 V, VIN = 2.4 V, CH1 = VIN, CH2 = VOUT  
Figure 37. Load Transient Response, ILOAD = 10 mA to 510 mA,  
VOUT = 1.8 V, VIN = 2.3 V, CH1 = IOUT, CH2 = VOUT  
Rev. C | Page 12 of 24  
Data Sheet  
ADM7155  
3.5  
ENABLE (V  
)
EN  
1.2V  
1.8V  
3.3V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
Figure 41. VOUT Start-Up Time After VEN Rising, Different Output Voltages,  
VIN = 5 V  
Rev. C | Page 13 of 24  
ADM7155  
Data Sheet  
THEORY OF OPERATION  
The ADM7155 is an ultralow noise, high power supply rejection  
ratio (PSRR) linear regulator targeting radio frequency (RF)  
applications. The input voltage range is 2.3 V to 5.5 V, and it can  
deliver up to 600 mA of load current. Typical shutdown current  
consumption is 0.2 μA at room temperature.  
performance. The output voltage is determined by an external  
voltage divider according to the following equation:  
V
OUT = 1.2 V × (1 + R1/R2)  
ADM7155-04  
V
= 4.0V  
ON  
V
= 3.3V  
IN  
OUT  
VIN  
VOUT  
REF  
C
10µF  
C
OUT  
10µF  
Optimized for use with 10 μF ceramic capacitors, the ADM7155  
provides excellent transient performance.  
IN  
EN  
C
1µF  
REF  
OFF  
V
BYP  
BYP  
C
ACTIVE RIPPLE  
BYP  
1µF  
VIN  
VOUT  
GND  
R1  
FILTER  
V
= 1.2V × (1 + R1/R2)  
OUT  
ADM7155-01 V  
ADM7155-02 V  
= 2.1V  
= 2.6V  
REF_SENSE  
GND  
CURRENT-LIMIT,  
THERMAL  
PROTECT  
REG  
REG  
R2  
1k< R2 < 200kΩ  
VREG  
BYP  
V
ADM7155-03 V  
ADM7155-04 V  
= 3.2V  
= 3.6V  
REG  
REG  
REG  
VREG  
C
REG  
10µF  
OTA  
1.2V REFERENCE  
Figure 43. Typical Adjustable Output Voltage Application Schematic  
REF_SENSE  
REF  
The R2 value must be greater than 1 kΩ to prevent excessive  
loading of the reference voltage appearing on the REF pin. To  
minimize errors in the output voltage caused by the REF_SENSE  
pin input current, the R2 value must be less than 200 kΩ. For  
example, when R1 and R2 each equal 200 kΩ, the output  
voltage is 2.4 V. The output voltage error introduced by the  
REF_SENSE pin input current is 10 mV or 0.33%, assuming a  
maximum REF_SENSE pin input current of 100 nA at TJ =  
125°C.  
SHUTDOWN  
EN  
Figure 42. Simplified Internal Block Diagram  
Internally, the ADM7155 consists of a reference, an error  
amplifier, and a P-channel MOSFET pass transistor. Output  
current is delivered via the PMOS pass device, which is  
controlled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower  
than the reference voltage, the gate of the PMOS device is  
pulled lower, allowing more current to pass and increasing the  
output voltage. If the feedback voltage is higher than the  
reference voltage, the gate of the PMOS device is pulled higher,  
allowing less current to pass and decreasing the output voltage.  
The ADM7155 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. When EN is high,  
VOUT turns on, and when EN is low, VOUT turns off. For  
automatic startup, tie EN to VIN.  
VIN  
7V  
VREG  
By heavily filtering the reference voltage, the ADM7155 is able  
to achieve 1.5 nV/√Hz output typical from 10 kHz to 1 MHz.  
Because the error amplifier is always in unity gain, the output  
noise is independent of the output voltage.  
4V  
REF  
REF_SENSE  
BYP  
4V  
To maintain very high PSRR over a wide frequency range, the  
ADM7155 architecture uses an internal active ripple filter. This  
stage isolates the low output noise LDO from noise on the VIN  
pin. The result is that the PSRR of the ADM7155 is significantly  
higher over a wider frequency range than any single stage LDO.  
4V  
VOUT  
EN  
7V  
4V  
4V  
4V  
4V  
4V  
7V  
GND  
The ADM7155 output voltage can be adjusted between 1.2 V  
and 3.4 V and is available in four models that optimize the  
input voltage and output voltage ranges to keep power  
dissipation as low as possible without compromising PSRR  
Figure 44. Simplified ESD Protection Block Diagram  
The ESD protection devices are shown in the block diagram as  
Zener diodes (see Figure 44).  
Rev. C | Page 14 of 24  
 
 
Data Sheet  
ADM7155  
APPLICATIONS INFORMATION  
Input and VREG Capacitor  
ADIsimPOWER DESIGN TOOL  
Connecting a 10 μF capacitor from VIN to GND reduces the  
circuit sensitivity to PCB layout, especially when long input  
traces or high source impedance are encountered.  
The ADM7155 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs optimized for a specific design goal. The tools  
enable the user to generate a full schematic, bill of materials,  
and calculate performance within minutes. ADIsimPower can  
optimize designs for cost, area, efficiency, and device count,  
taking into consideration the operating conditions and  
limitations of the IC and all real external components. For more  
information about, and to obtain ADIsimPower design tools,  
visit www.analog.com/ADIsimPower.  
To maintain the best possible stability and PSRR performance,  
connect a 10 μF capacitor from VREG to GND. When more  
than 10 μF of output capacitance is required, increase the input  
and the VREG capacitors, CREG, to match it.  
REF Capacitor  
The REF capacitor, CREF, is necessary to stabilize the reference  
amplifier. Connect at least a 1 μF capacitor between REF and GND.  
CAPACITOR SELECTION  
BYP Capacitor  
Multilayer ceramic capacitors (MLCCs) combine small size, low  
ESR, low ESL, and wide operating temperature range, making  
them an ideal choice for bypass capacitors. They are not without  
faults, however. Depending on the dielectric material, the  
capacitance can vary dramatically with temperature, dc bias,  
and ac signal level. Therefore, selecting the proper capacitor  
results in the best circuit performance.  
The BYP capacitor, CBYP, is necessary to filter the reference  
buffer. A 1 μF capacitor is typically connected between BYP and  
GND. Capacitors as small as 0.1 μF can be used; however, the  
output noise voltage of the LDO increases as a result.  
In addition, the BYP capacitor value can be increased to reduce  
the noise below 1 kHz at the expense of increasing the start-up  
time of the LDO. Very large values of CBYP significantly reduce  
the noise below 10 Hz. Tantalum capacitors are recommended  
for capacitors larger than approximately 33 μF because solid  
tantalum capacitors are less prone to microphonic noise issues.  
A 1 ꢀF ceramic capacitor in parallel with the larger tantalum  
capacitor is recommended to ensure good noise performance at  
higher frequencies.  
Output Capacitor  
The ADM7155 is designed for operation with ceramic  
capacitors but functions with most commonly used capacitors  
when care is taken with regard to the effective series resistance  
(ESR) value. The ESR of the output capacitor affects the stability  
of the LDO control loop. A minimum of 10 μF capacitance with  
an ESR of 0.2 ꢁ or less is recommended to ensure the stability  
of the ADM7155. Output capacitance also affects transient  
response to changes in load current. Using a larger value of  
output capacitance improves the transient response of the  
ADM7155 to large changes in load current. Figure 45 shows the  
transient responses for an output capacitance value of 10 μF.  
2.0  
10Hz TO 100kHz  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100Hz TO 100kHz  
T
1
2
1
10  
100  
1000  
C
(µF)  
BYP  
Figure 46. RMS Noise vs. CBYP  
B
B
CH1 200mA  
CH2 5mV  
M4µs A CH1  
10.2%  
212mA  
W
W
T
Figure 45. Output Transient Response, VOUT = 3.3 V, COUT = 10 μF,  
CH1 = Load Current, CH2 = VOUT  
Rev. C | Page 15 of 24  
 
 
 
 
ADM7155  
Data Sheet  
10k  
Use Equation 1 to determine the worst case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
NOISE FLOOR  
1.0µF  
3.3µF  
10µF  
33µF  
100µF  
330µF  
1000µF  
1k  
100  
10  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
In this example, the worst case temperature coefficient  
1
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 9.72 μF at 5 V, as shown in Figure 48.  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Substituting these values in Equation 1 yields  
Figure 47. Noise Spectral Density vs. Frequency for  
Different Capacitances (CBYP  
CEFF = 9.72 μF × (1 − 0.15) × (1 − 0.1) = 7.44 μF  
)
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Capacitor Properties  
Any good quality ceramic capacitors can be used with the  
ADM7155 if they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are  
manufactured with a variety of dielectrics, each with different  
behavior over temperature and applied voltage. Capacitors must  
have a dielectric adequate to ensure the minimum capacitance  
over the necessary temperature range and dc bias conditions.  
X5R or X7R dielectrics with a voltage rating of 6.3 V to 50 V  
are recommended. However, Y5V and Z5U dielectrics are  
not recommended because of their poor temperature and dc  
bias characteristics.  
To guarantee the performance of the ADM7155, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The ADM7155 also incorporates an internal UVLO circuit to  
disable the output voltage when the input voltage is less than the  
minimum input voltage rating of the regulator. The upper and  
lower thresholds are internally fixed with about 200 mV of  
hysteresis.  
Figure 48 depicts the capacitance vs. dc bias voltage of a 1206,  
10 μF, 10 V, X5R capacitor. The voltage stability of a capacitor is  
strongly influenced by the capacitor size and voltage rating. In  
general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperature variation of the X5R  
dielectric is ~ 15% over the −40°C to +85°C temperature range  
and is not a function of package or voltage rating.  
12  
2.5  
+125°C  
+25°C  
–40°C  
2.0  
1.5  
1.0  
0.5  
0
10  
8
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
6
INPUT VOLTAGE (V)  
Figure 49. Typical UVLO Behavior at Different Temperatures, VOUT = 3.3 V  
4
Figure 49 shows the typical hysteresis of the UVLO function.  
This hysteresis prevents on/off oscillations that can occur when  
caused by noise on the input voltage as it passes through the  
threshold points.  
2
0
0
2
4
6
8
10  
DC BIAS VOLTAGE (V)  
Figure 48. Capacitance vs. DC Bias Voltage  
Rev. C | Page 16 of 24  
 
 
 
Data Sheet  
ADM7155  
The upper and lower thresholds are user programmable and can  
be set higher than the nominal 1.22 V threshold by using two  
resistors. The resistance values, REN1 and REN2, can be  
determined from  
PROGRAMMABLE PRECISION ENABLE  
The ADM7155 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 50,  
when a rising voltage on EN crosses the upper threshold,  
nominally 1.22 V, VOUT turns on. When a falling voltage on EN  
crosses the lower threshold, nominally 1.13 V, VOUT turns off.  
The hysteresis of the EN threshold is approximately 90 mV.  
R
EN1 = REN2 × (VIN − 1.22 V)/1.22 V  
where:  
EN2 typically ranges from 10 kΩ to 100 kΩ.  
IN is the desired turn-on voltage.  
R
V
3.5  
+125°C  
+85°C  
+25°C  
The hysteresis voltage increases by the factor  
3.0  
–5°C  
–40°C  
(REN1 + REN2)/REN2  
2.5  
2.0  
1.5  
1.0  
0.5  
0
For the example shown in Figure 53, the EN threshold is 2.44 V  
with a hysteresis of 200 mV.  
ADM7155  
V
= 3.5V  
V
= 3.0V  
OUT  
IN  
VIN  
VOUT  
C
C
OUT  
IN  
10µF  
10µF  
R
EN1  
ON  
100k  
REF = 1.2V  
EN  
REF  
C
REF  
OFF  
R
EN2  
1µF  
R1  
V
100kꢀ  
1.0  
1.1  
1.2  
1.3  
V
V
REF_SENSE  
= 1.2V × (R1 + R2)/R2  
BYP  
OUT  
BYP  
EN PIN VOLTAGE (V)  
C
BYP  
1µF  
R2  
1k< R2 < 200kΩ  
Figure 50. Typical VOUT Response to EN Pin Operation  
REG  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VREG  
ENABLE (V  
)
GND  
C
EN  
REG  
V
10µF  
OUT  
Figure 53. Typical EN Pin Voltage Divider  
Figure 53 shows the typical hysteresis of the EN pin. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
START-UP TIME  
The ADM7155 uses an internal soft start to limit the inrush  
current when the output is enabled. The start-up time for a 3.3 V  
output is approximately 1.2 ms from the time the EN active  
threshold is crossed to when the output reaches 90% of the  
final value.  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
TIME (ms)  
The rise time in seconds of the output voltage (10% to 90%) is  
approximately  
Figure 51. Typical VOUT Response to EN Pin Operation (VEN),  
VOUT = 3.3 V, VIN = 5 V, CBYP = 1 μF  
1.250  
0.0012 × CBYP  
where CBYP is in microfarads.  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
–40°C RISING  
+25°C RISING  
+125°C RISING  
–40°C FALLING  
+25°C FALLING  
+125°C FALLING  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
Figure 52. Typical EN Threshold vs. Input Voltages (VIN) for Different  
Temperatures  
Rev. C | Page 17 of 24  
 
 
 
 
ADM7155  
Data Sheet  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
135°C, the output is turned on again, and the output current is  
restored to the operating value.  
Consider the case where a hard short from VOUT to GND  
occurs. At first, the ADM7155 current limits, so that only  
960 mA is conducted into the short. If self heating of the  
junction is great enough to cause the temperature to rise above  
150°C, thermal shutdown activates, turning off the output and  
reducing the output current to zero. As the junction tempera-  
ture cools and drops below 135°C, the output turns on and  
conducts 900 mA into the short, again causing the junction  
temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation between  
900 mA and 0 mA that continues for as long as the short  
remains at the output.  
ENABLE (V  
)
EN  
C
C
C
= 1µF  
= 3.3µF  
= 10µF  
BYP  
BYP  
BYP  
0
0
5
10  
15  
20  
25  
30  
35  
40  
TIME (ms)  
Figure 54. Typical Start-Up Behavior with CBYP = 1 μF to 10 μF  
Current-limit and thermal limit protections are intended to  
protect the device against accidental overload conditions. For  
reliable operation, device power dissipation must be externally  
limited so that the junction temperature does not exceed 150°C.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
THERMAL CONSIDERATIONS  
In applications with a low input to output voltage differential,  
the ADM7155 does not dissipate much heat. However, in  
applications with high ambient temperature and/or high input  
voltage, the heat dissipated in the package may become large  
enough that it causes the junction temperature of the die to  
exceed the maximum junction temperature of 150°C.  
ENABLE (V  
)
EN  
C
C
C
C
= 10µF  
= 33µF  
= 100µF  
= 330µF  
BYP  
BYP  
BYP  
BYP  
0.5  
0
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature decreases below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ms)  
Figure 55. Typical Start-Up Behavior with CBYP = 10 μF to 330 μF  
REF, BYP, AND VREG PINS  
REF, BYP, and VREG generate voltages internally (VREF, VBYP  
and VREG) that require external bypass capacitors for proper  
operation. Do not, under any circumstances, connect any loads  
to these pins, because doing so compromises the noise and  
PSRR performance of the ADM7155. Using larger values of  
,
To guarantee reliable operation, the junction temperature of the  
ADM7155 must not exceed 150°C. To ensure that the junction  
temperature stays below this maximum value, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances  
between the junction and ambient air (θJA). The θJA number is  
dependent on the package assembly compounds that are used  
and the amount of copper used to solder the package GND pin  
and exposed pad to the PCB.  
C
BYP, CREF, and CREG is acceptable but can increase the start-up  
time, as described in the Start-Up Time section.  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADM7155 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADM7155 is designed to current limit when the  
output load reaches 960 mA (typical). When the output load  
exceeds 960 mA, the output voltage is reduced to maintain a  
constant current limit.  
Table 7 shows typical θJA values of the 8-lead SOIC and 8-lead  
LFCSP packages for various PCB copper sizes.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C. Under extreme  
conditions (that is, high ambient temperature and/or high  
power dissipation), when the junction temperature starts to rise  
above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
Table 8 shows the typical ΨJB values of the 8-lead SOIC and  
8-lead LFCSP.  
Rev. C | Page 18 of 24  
 
 
 
Data Sheet  
ADM7155  
155  
145  
135  
125  
115  
105  
95  
Table 7. Typical θJA Values  
θJA (°C/W)  
Copper Size (mm2)  
251  
8-Lead LFCSP  
165.1  
8-Lead SOIC  
165  
126.4  
69.8  
57.8  
43.6  
100  
500  
1000  
6400  
125.8  
68.1  
56.4  
42.1  
85  
75  
65  
1 Device soldered to minimum size pin traces.  
55  
2
6400mm  
2
45  
500mm  
Table 8. Typical ΨJB Values  
Package  
2
25mm  
35  
T
MAX  
J
ΨJB (°C/W)  
25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
8-Lead LFCSP  
8-Lead SOIC  
15.1  
17.9  
Figure 56. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 25°C  
The junction temperature of the ADM7155 is calculated from  
the following equation:  
160  
150  
140  
130  
120  
110  
100  
90  
TJ = TA + (PD × θJA)  
where:  
TA is the ambient temperature.  
(2)  
PD is the power dissipation in the die, given by  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
IN and VOUT are the input and output voltages, respectively.  
)
(3)  
V
80  
I
I
LOAD is the load current.  
GND is the ground current.  
2
6400mm  
70  
2
500mm  
2
25mm  
60  
50  
T
MAX  
Power dissipation caused by ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Figure 57. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 50°C  
TJ = TA + (((VIN VOUT) × ILOAD) × θJA)  
(4)  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB to  
ensure that the junction temperature does not rise above 150°C.  
155  
145  
135  
125  
115  
105  
95  
The heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins and  
exposed pad of the ADM7155. Adding thermal planes  
underneath the package also improves thermal performance.  
However, as shown in Table 7, a point of diminishing returns is  
eventually reached, beyond which an increase in the copper  
area does not yield significant reduction in the junction to  
ambient thermal resistance.  
85  
75  
65  
2
6400mm  
2
500mm  
2
25mm  
T
MAX  
J
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
TOTAL POWER DISSIPATION (W)  
Figure 56 to Figure 61 show junction temperature calculations  
for different ambient temperatures, power dissipation, and areas  
of PCB copper.  
Figure 58. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 85°C  
Rev. C | Page 19 of 24  
 
 
 
ADM7155  
Data Sheet  
155  
145  
135  
125  
115  
102  
95  
Thermal Characterization Parameter (ΨJB)  
When board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction  
temperature rise (see Figure 62 and Figure 63). Maximum  
junction temperature (TJ) is calculated from the board  
temperature (TB) and power dissipation (PD) using the following  
formula:  
85  
75  
TJ = TB + (PD × ΨJB)  
(5)  
65  
55  
The typical value of ΨJB is 15.1°C/W for the 8-lead LFCSP  
package and 17.9°C/W for the 8-lead SOIC package.  
2
6400mm  
2
45  
500mm  
2
25mm  
35  
160  
T
MAX  
J
25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
140  
120  
100  
80  
Figure 59. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 25°C  
160  
150  
140  
130  
120  
110  
100  
90  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0  
TOTAL POWER DISSIPATION (W)  
80  
2
Figure 62. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP  
6400mm  
70  
2
500mm  
2
25mm  
60  
50  
160  
140  
120  
100  
80  
T
MAX  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Figure 60. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 50°C  
155  
145  
135  
125  
115  
105  
95  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
TOTAL POWER DISSIPATION (W)  
85  
75  
65  
2
Figure 63. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC  
6400mm  
2
500mm  
2
25mm  
T
MAX  
1.8  
PSRR PERFORMANCE  
J
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
2.0  
The ADM7155 is available in four models that optimize power  
dissipation and PSRR performance as a function of input and  
output voltage. See Table 9 and Table 10 for selection guides.  
TOTAL POWER DISSIPATION (W)  
Figure 61. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 85°C  
Rev. C | Page 20 of 24  
 
 
 
Data Sheet  
ADM7155  
Table 9. Model Selection Guide for PSRR  
PSRR (dB) at 600 mA; VIN = VOUT  
_
MAX + 0.5 V  
PSRR (dB) at 400 mA; VIN = VOUT  
_
MAX + 0.5 V  
Model  
VOUT  
1.8  
2.3  
2.9  
3.4  
_
MAX (V)  
10 kHz  
100 kHz  
1 MHz  
60  
57  
51  
51  
10 kHz  
102  
101  
102  
102  
100 kHz  
1 MHz  
65  
61  
57  
57  
ADM7155-01  
ADM7155-02  
ADM7155-03  
ADM7155-04  
101  
101  
103  
103  
92  
94  
94  
94  
92  
93  
94  
94  
Table 10. Model Selection Guide for Input Voltage  
Model  
VOUT Range (V)  
Minimum VIN at 600 mA Load  
ADM7155-01  
ADM7155-02  
ADM7155-03  
ADM7155-04  
1.2 to 1.8  
1.2 to 2.3  
1.2 to 2.9  
1.2 to 3.4  
2.3 V  
2.9 V  
3.4 V  
3.9 V  
Rev. C | Page 21 of 24  
 
 
ADM7155  
Data Sheet  
PCB LAYOUT CONSIDERATIONS  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Place the bypass capacitors (CREG, CREF  
and CBYP) for VREG, VREF, and VBYP close to the respective pins  
(VREG, REF, and BYP) and GND. Use of an 0805, 0603, or  
0402 size capacitor achieves the smallest possible footprint  
solution on boards where area is limited.  
,
Figure 65. Example 8-Lead SOIC PCB Layout  
Figure 64. Example 8-Lead LFCSP PCB Layout  
Rev. C | Page 22 of 24  
 
Data Sheet  
ADM7155  
OUTLINE DIMENSIONS  
2.54  
2.44  
2.34  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
5
8
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
4
1
TOP VIEW  
PIN 1  
BOTTOM VIEW  
INDICATOR  
(R 0.20)  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.203 REF  
Figure 66. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-21)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
2.29  
0.356  
5
6.20  
6.00  
5.80  
8
4.00  
3.90  
3.80  
2.29  
0.457  
4
1
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 67. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-1)  
Dimensions shown in millimeters  
Rev. C | Page 23 of 24  
 
ADM7155  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range Output Voltage Range (V) Package Description Package Option Branding  
ADM7155ACPZ-01-R7  
ADM7155ACPZ-02-R7  
ADM7155ACPZ-03-R7  
ADM7155ACPZ-04-R7  
ADM7155ARDZ-01-R7  
ADM7155ARDZ-02-R7  
ADM7155ARDZ-03-R7  
ADM7155ARDZ-04-R7  
ADM7155CP-02-EVALZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
1.2 to 1.8  
1.2 to 2.4  
1.2 to 2.9  
1.2 to 3.4  
1.2 to 1.8  
1.2 to 2.4  
1.2 to 2.9  
1.2 to 3.4  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
Evaluation Board  
CP-8-21  
CP-8-21  
CP-8-21  
CP-8-21  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
LQ8  
LQ9  
LQA  
LQV  
1 Z = RoHS Compliant Part.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12325-0-8/16(C)  
Rev. C | Page 24 of 24  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY