ADM7154ACPZ-1.8-R7 [ADI]

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator;
ADM7154ACPZ-1.8-R7
型号: ADM7154ACPZ-1.8-R7
厂家: ADI    ADI
描述:

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator

光电二极管 输出元件 调节器
文件: 总24页 (文件大小:812K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
600 mA, Ultralow Noise,  
High PSRR, RF Linear Regulator  
ADM7154  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Input voltage range: 2.3 V to 5.5 V  
Maximum load current: 600 mA  
Low noise  
0.9 µV rms total integrated noise from 100 Hz to 100 kHz  
1.6 µV rms total integrated noise from 10 Hz to 100 kHz  
Noise spectral density: 1.5 nV/√Hz from 10 kHz to 1 MHz  
PSRR of 90 dB from 200 Hz to 200 kHz; 58 dB at 1 MHz,  
ADM7154  
V
= 3.8V  
V
= 3.3V  
OUT  
IN  
VIN  
VOUT  
C
C
OUT  
10µF  
IN  
10µF  
ON  
EN  
REF  
C
REF  
OFF  
1µF  
BYP REF_SENSE  
C
BYP  
1µF  
VREG  
GND  
C
REG  
V
OUT = 3.3 V, VIN = 3.8 V  
10µF  
Dropout voltage: 120 mV typical at VOUT = 3.3 V, IOUT = 600 mA  
Initial accuracy: 0.5%  
Accuracy over line, load, and temperature: −2.0% (minimum),  
+1.5% (maximum), from −40°C to +85°C  
Quiescent current, IGND = 4 mA at no load  
Low shutdown current: 0.2 μA  
Stable with a 10 µF ceramic output capacitor  
Adjustable and fixed output voltage options: 1.2 V, 1.8 V, 2.5 V,  
2.8 V, 3.0 V, 3.3 V (16 standard voltages between 1.2 V and  
3.3 V available)  
8-lead LFCSP and 8-lead SOIC packages  
Precision enable  
Figure 1. Regulated 3.3 V Output from 3.8 V Input  
10k  
NOISE FLOOR  
1.0µF  
3.3µF  
10µF  
1k  
100  
10  
33µF  
100µF  
330µF  
1000µF  
Supported by ADIsimPower tool  
1
APPLICATIONS  
0.1  
0.1  
Regulation to noise sensitive applications: PLLs, VCOs, and  
PLLs with integrated VCOs  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Communications and infrastructure  
Backhaul and microwave links  
Figure 2. Noise Spectral Density for Different Values of CBYP  
GENERAL DESCRIPTION  
The ADM7154 is a linear regulator that operates from 2.3 V to  
5.5 V and provides up to 600 mA of load current. Using an  
advanced proprietary architecture, it provides high power  
supply rejection and ultralow noise, achieving excellent line and  
load transient response with only a 10 µF ceramic output capacitor.  
The ADM7154 is available in 8-lead, 3 mm × 3 mm LFCSP and  
8-lead SOIC packages, making it not only a very compact  
solution, but also providing excellent thermal performance for  
applications requiring up to 600 mA of load current in a small,  
low profile footprint.  
There are 16 standard output voltages for the ADM7154. The  
following voltages are available in stock: 1.2 V, 1.8 V, 2.5 V, 2.8 V,  
3.0 V, and 3.3 V. Additional voltages are available by special  
order: 1.3 V, 1.5 V, 1.6 V, 2.0 V, 2.2 V, 2.6 V, 2.7 V, 2.9 V, 3.1 V,  
and 3.2 V.  
Table 1. Related Devices  
Input  
Voltage  
Output  
Fixed/  
Model  
Current Adj1  
Package  
ADM7150ACP 4.5 V to 16 V  
ADM7150ARD 4.5 V to 16 V  
ADM7151ACP 4.5 V to 16 V  
ADM7151ARD 4.5 V to 16 V  
ADM7155ACP 2.3 V to 5.5 V 600 mA  
ADM7155ARD 2.3 V to 5.5 V 600 mA  
800 mA  
800 mA  
800 mA  
800 mA  
Fixed  
Fixed  
Adj  
Adj  
Adj  
8-Lead LFCSP  
8-Lead SOIC  
8-Lead LFCSP  
8-Lead SOIC  
8-Lead LFCSP  
8-Lead SOIC  
The ADM7154 regulator typical output noise is 0.9 μV rms from  
100 Hz to 100 kHz for fixed output voltage options and  
1.5 nV/√Hz for noise spectral density from 10 kHz to 1 MHz.  
Adj  
1 Adj means adjustable.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarksandregisteredtrademarksare the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADM7154* PRODUCT PAGE QUICK LINKS  
Last Content Update: 11/29/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
Ultralow Noise, High Rejection Low Dropout Regulators  
EVALUATION KITS  
AD9375 Small Cell Radio Reference Design  
DESIGN RESOURCES  
ADM7154 Material Declaration  
PCN-PDN Information  
ADA4961 & AD9680 Analog Signal Chain Evaluation and  
AD9528 Converter Synchronization  
ADM7154 Evaluation Board  
Quality And Reliability  
Symbols and Footprints  
TX/RX channels, Frequency conversion from 1 100 MHz  
up to 400 MHz  
DISCUSSIONS  
View all ADM7154 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
ADM7154: 600 mA, Ultralow Noise, High PSRR, RF Linear  
Regulator Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-696: Evaluating the ADM7154 and ADM7155 Linear  
Regulators  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
TOOLS AND SIMULATIONS  
ADI Linear Regulator Design Tool and Parametric Search  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
• ADIsimPower™ Voltage Regulator Design Tool  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADM7154  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 15  
ADIsimPower Design Tool ....................................................... 15  
Capacitor Selection .................................................................... 15  
Undervoltage Lockout (UVLO) ............................................... 16  
Programmable Precision Enable .............................................. 17  
Start-Up Time ............................................................................. 17  
REF, BYP, and VREG Pins......................................................... 18  
Current-Limit and Thermal Overload Protection................. 18  
Thermal Considerations............................................................ 18  
PCB Layout Considerations.......................................................... 21  
Outline Dimensions ....................................................................... 22  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
8/2016—Rev. A to Rev. B  
Changes to Programmable Precision Enable Section and  
Figure 52 .......................................................................................... 17  
12/2014—Rev. 0 to Rev. A  
Changes to Figure 35 to Figure 40................................................ 12  
Changes to Figure 44...................................................................... 15  
10/2014—Revision 0: Initial Version  
Rev. B | Page 2 of 23  
 
Data Sheet  
ADM7154  
SPECIFICATIONS  
VIN = VOUT + 0.5 V or 2.3 V, whichever is greater; EN = VIN; ILOAD = 10 mA; CIN = COUT = CREG = 10 µF; CREF = CBYP = 1 µF; TA = 25°C for  
typical specifications; TJ = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
V
INPUT VOLTAGE RANGE  
LOAD CURRENT  
2.3  
5.5  
ILOAD  
600  
mA  
mA  
mA  
µA  
OPERATING SUPPLY CURRENT  
IGND  
ILOAD = 0 µA  
ILOAD = 600 mA  
EN = GND  
4.0  
6.5  
0.2  
7.0  
10  
2
SHUTDOWN CURRENT  
NOISE  
IIN_SD  
Output Noise  
OUTNOISE  
10 Hz to 100 kHz, VOUT = 1.2 V to 3.3 V  
100 Hz to 100 kHz, VOUT = 1.2 V to 3.3 V  
10 kHz to 1 MHz, VOUT = 1.2 V to 3.3 V  
200 Hz to 200 kHz, VIN = 3.8 V, VOUT = 3.3 V,  
1.6  
0.9  
1.5  
90  
µV rms  
µV rms  
nV/√Hz  
dB  
Noise Spectral Density  
OUTNSD  
PSRR  
POWER SUPPLY REJECTION RATIO  
I
LOAD = 400 mA  
1 MHz, VIN = 3.8 V, VOUT = 3.3 V, ILOAD = 400 mA  
200 Hz to 200 kHz, VIN = 2.3 V, VOUT = 1.8 V,  
58  
90  
dB  
dB  
I
LOAD = 400 mA  
1 MHz, VIN = 2.3 V, VOUT = 1.8 V, ILOAD = 400 mA  
VOUT = VREF  
ILOAD = 10 mA, TJ = +25°C  
1 mA < ILOAD < 600 mA, TJ = −40°C to +85°C  
1 mA < ILOAD < 600 mA  
63  
dB  
OUTPUT VOLTAGE ACCURACY  
Initial Accuracy  
VOUT  
−0.5  
−2.0  
−2.0  
+0.5  
+1.5  
+2.0  
%
%
%
REGULATION  
Line  
∆VOUT/∆VIN  
VIN = VOUT + 0.5 V or 2.3 V, whichever is greater,  
to 5.5 V  
IOUT = 1 mA to 600 mA  
−0.02  
+0.02 %/V  
Load1  
∆VOUT/∆IOUT  
ILIMIT  
0.3  
1.6  
%/A  
CURRENT-LIMIT THRESHOLD2  
VREF  
VOUT  
22  
960  
80  
mA  
mA  
mV  
mV  
700  
1200  
130  
210  
DROPOUT VOLTAGE 3  
VDROPOUT  
IOUT = 400 mA, VOUT = 3.3 V  
IOUT = 600 mA, VOUT = 3.3 V  
120  
PULL-DOWN RESISTANCE  
VOUT  
REG  
REF  
BYP  
VOUT_PULL  
VREG_PULL  
VREF_PULL  
VBYP_PULL  
EN = 0 V, VOUT = 1 V, VIN = 5.5 V  
EN = 0 V, VREG = 1 V, VIN = 5.5 V  
EN = 0 V, VREF = 1 V, VIN = 5.5 V  
EN = 0 V, VBYP = 1 V, VIN = 5.5 V  
550  
33  
620  
400  
Ω
kΩ  
Ω
Ω
START-UP TIME4  
VOUT  
VREG  
VREF  
tSTARTUP  
tREG_STARTUP  
tREF_STARTUP  
VOUT = 3.3 V  
VOUT = 3.3 V  
VOUT = 3.3 V  
1.2  
0.55  
0.44  
ms  
ms  
ms  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
TSSD  
TSSD_HYS  
TJ rising  
150  
15  
°C  
°C  
UNDERVOLTAGE THRESHOLDS  
Input Voltage  
Rising  
Falling  
Hysteresis  
UVLORISE  
UVLOFALL  
UVLOHYS  
2.29  
V
V
mV  
1.95  
200  
Rev. B | Page 3 of 23  
 
ADM7154  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
VREG THRESHOLDS5  
Rising  
Falling  
Hysteresis  
VREG_UVLORISE  
VREG_UVLOFALL  
VREG_UVLOHYS  
1.94  
V
V
mV  
1.60  
185  
PRECISION EN INPUT  
Logic High  
Logic Low  
Logic Hysteresis  
Leakage Current  
2.3 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
ENHIGH  
ENLOW  
ENHYS  
IEN_LKG  
1.13  
1.05  
1.22 1.31  
1.13 1.22  
90  
V
V
mV  
µA  
0.01  
1
1 Based on an endpoint calculation using 1 mA and 600 mA loads.  
2 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. Dropout applies only for output  
voltages above 2.3 V.  
4 Start-up time is defined as the time between the rising edge of VEN to VOUT, VREG, or VREF being at 90% of the nominal value.  
5 The output voltage is disabled until the VREG UVLO rise threshold is crossed. The VREG output is disabled until the input voltage UVLO rising threshold is crossed.  
Table 3. Input and Output Capacitors, Recommended Specifications  
Parameter  
MINIMUM CAPACITANCE  
Input1  
Regulator1  
Output1  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CIN  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
7.0  
7.0  
7.0  
0.1  
0.7  
µF  
µF  
µF  
µF  
µF  
CREG  
COUT  
CBYP  
CREF  
Bypass  
Reference  
CAPACITOR ESR  
CREG, COUT, CIN, CREF  
CBYP  
RESR  
RESR  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.001  
0.001  
0.2  
2.0  
Ω
Ω
1 The minimum input, regulator, and output capacitances must be greater than 7.0 μF over the full range of operating conditions. The full range of operating conditions  
in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are  
recommended; Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. B | Page 4 of 23  
Data Sheet  
ADM7154  
ABSOLUTE MAXIMUM RATINGS  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer PCB. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and PCB layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
PCB design is required. The value of θJA can vary, depending on  
PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. See JESD51-7 and JESD51-9 for detailed information on  
the board construction.  
Table 4.  
Parameter  
VIN to GND  
VREG to GND  
Rating  
−0.3 V to +7 V  
−0.3 V to VIN, or +4 V  
(whichever is less)  
VOUT to GND  
−0.3 V to VREG, or +4 V  
(whichever is less)  
BYP to VOUT  
EN to GND  
BYP to GND  
0.3 V  
−0.3 V to +7 V  
−0.3 V to VREG, or +4 V  
(whichever is less)  
ΨJB is the junction-to-board thermal characterization parameter  
REF to GND  
−0.3 V to VREG, or +4 V  
(whichever is less)  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer PCB. JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power  
flowing through multiple thermal paths rather than a single  
path as in thermal resistance, θJB. Therefore, ΨJB thermal paths  
include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful  
in real-world applications. Maximum junction temperature (TJ)  
is calculated from the PCB temperature (TB) and power  
dissipation (PD) using the formula  
REF_SENSE to GND  
Storage Temperature Range  
Junction Temperature  
−0.3 V to +4 V  
−65°C to +150°C  
150°C  
Operating Ambient Temperature  
Range  
−40°C to +125°C  
Soldering Conditions  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL DATA  
THERMAL RESISTANCE  
Absolute maximum ratings apply individually only, not in  
combination. The ADM7154 can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient temper-  
ature may need to be derated.  
θJA, θJC, and ΨJB are specified for the worst case conditions, that  
is, a device soldered in a circuit board for surface-mount  
packages.  
Table 5. Thermal Resistance  
Package Type  
8-Lead LFCSP  
8-Lead SOIC  
θJA  
θJC  
ΨJB  
Unit  
°C/W  
°C/W  
36.7  
36.9  
23.5  
27.1  
13.3  
18.6  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit provided  
that the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package (θJA).  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
following formula:  
TJ = TA + (PD × θJA)  
Rev. B | Page 5 of 23  
 
 
 
 
ADM7154  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VREG  
VOUT  
BYP  
1
2
3
4
8
7
6
5
VIN  
EN  
VREG 1  
VOUT 2  
BYP 3  
8
VIN  
ADM7154  
7
EN  
TOP VIEW  
ADM7154  
REF  
(Not to Scale)  
TOP VIEW  
6 REF  
GND  
REF_SENSE  
(Not to Scale)  
5 REF_SENSE  
GND 4  
NOTES  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES  
THERMAL PERFORMANCE, AND IT IS ELECTRICALLY  
CONNECTED TO GND INSIDE THE PACKAGE. CONNECT  
THE EP TO THE GROUND PLANE ON THE BOARD TO  
ENSURE PROPER OPERATION.  
NOTES  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES  
THERMAL PERFORMANCE, AND IT IS ELECTRICALLY  
CONNECTED TO GND INSIDE THE PACKAGE. CONNECT  
THE EP TO THE GROUND PLANE ON THE BOARD TO  
ENSURE PROPER OPERATION.  
Figure 3. 8-Lead LFCSP Pin Configuration  
Figure 4. 8-Lead SOIC Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VREG  
Regulated Input Supply Voltage to LDO Amplifier. Bypass VREG to GND with a 10 µF or greater  
capacitor.  
2
3
VOUT  
BYP  
Regulated Output Voltage. Bypass VOUT to GND with a 10 µF or greater capacitor.  
Low Noise Bypass Capacitor. Connect a 1 µF capacitor from the BYP pin to GND to reduce noise. Do not  
connect a load to ground.  
4
5
6
GND  
REF_SENSE  
REF  
Ground Connection.  
Reference Sense. Connect Pin 5 to the REF pin. Do not connect Pin 5 to VOUT or GND.  
Low Noise Reference Voltage Output. Bypass REF to GND with a 1 µF capacitor. Short REF_SENSE to REF  
for fixed output voltages. Do not connect a load to ground.  
7
8
EN  
Enable. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
Regulator Input Supply Voltage. Bypass VIN to GND with a 10 µF or greater capacitor.  
Exposed Pad. The exposed pad is located on the bottom of the package. The exposed pad enhances  
thermal performance, and it is electrically connected to GND inside the package. Connect the EP to the  
ground plane on the board to ensure proper operation.  
VIN  
EP  
Rev. B | Page 6 of 23  
 
Data Sheet  
ADM7154  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 0.5 V, or VIN = 2.3 V, whichever is greater; VEN = VIN; IOUT = 10 mA; CIN = COUT = CREG = 10 µF; CREF = CBYP = 1 µF; TA = 25°C,  
unless otherwise noted.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
V
V
V
V
V
V
= 2.3V  
= 2.4V  
= 2.6V  
= 3.0V  
= 4.0V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
–50  
–25  
0
25  
50  
75  
100  
125  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
TEMPERATURE (°C)  
V
IN  
Figure 5. Shutdown Current vs. Temperature at  
Various Input Voltages, VOUT = 1.8 V  
Figure 8. Output Voltage (VOUT) vs. Input Voltage (VIN) at Various Loads,  
VOUT = 3.3 V  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
10  
9
8
7
6
5
4
3
2
1
0
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 6. Output Voltage (VOUT) vs. Junction Temperature at Various Loads,  
OUT = 3.3 V  
Figure 9. Ground Current vs. Junction Temperature (TJ) at Various Loads,  
OUT = 3.3 V  
V
V
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
10  
9
8
7
6
5
4
3
2
1
0
1
10  
100  
1000  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 7. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 10. Ground Current vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. B | Page 7 of 23  
 
ADM7154  
Data Sheet  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
I
I
I
I
I
I
= 5mA  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
I
= 1mA  
LOAD  
LOAD  
I
I
I
I
I
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
2
1
0
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
3.1  
3.2  
3.3  
3.4  
3.5  
(V)  
3.6  
3.7  
3.8  
V
V
IN  
IN  
Figure 11. Ground Current vs. Input Voltage (VIN) at Various Loads,  
VOUT = 3.3 V  
Figure 14. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 3.3 V  
160  
140  
120  
100  
80  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
60  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
40  
1.790  
1.785  
1.780  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
20  
0
1
10  
100  
1000  
–40  
–5  
25  
85  
125  
I
(mA)  
JUNCTION TEMPERATURE (°C)  
LOAD  
Figure 12. Dropout Voltage vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 15. Output Voltage (VOUT) vs. Junction Temperature (TJ) at Various  
Loads, VOUT = 1.8 V  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
I
I
I
I
I
I
= 5mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
3.10  
3.05  
3.00  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
3.1  
3.2  
3.3  
3.4  
3.5  
(V)  
3.6  
3.7  
3.8  
1
10  
100  
1000  
V
I
(mA)  
LOAD  
IN  
Figure 13. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout,  
OUT = 3.3 V  
Figure 16. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 1.8 V  
V
Rev. B | Page 8 of 23  
Data Sheet  
ADM7154  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
8
7
6
5
4
3
2
1
0
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 17. Output Voltage (VOUT) vs. Input Voltage (VIN) at Various Loads,  
Figure 20. Ground Current vs. Input Voltage (VIN) at Different Loads,  
OUT = 1.8 V  
VOUT = 1.8 V  
V
10  
9
8
7
6
5
4
3
2
1
0
0
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 600mA  
LOAD  
LOAD  
LOAD  
LOAD  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
I
I
I
I
I
I
= 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
–40  
–5  
25  
85  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
JUNCTION TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 18. Ground Current vs. Junction Temperature (TJ) at Various Loads,  
OUT = 1.8 V  
Figure 21. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Loads, VOUT = 3.3 V, VIN = 4.1 V  
V
7
6
5
4
3
2
1
0
0
–20  
–40  
–60  
–80  
800mV  
600mV  
500mV  
400mV  
300mV  
250mV  
200mV  
150mV  
–100  
–120  
–140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
FREQUENCY (Hz)  
I
(mA)  
LOAD  
Figure 19. Ground Current vs. Load Current (ILOAD), VOUT = 1.8 V  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Headroom Voltages, VOUT = 3.3 V, 400 mA Load  
Rev. B | Page 9 of 23  
ADM7154  
Data Sheet  
0
–20  
–40  
–60  
–80  
0
–20  
10Hz  
100Hz  
1kHz  
100kHz  
1MHz  
10MHz  
10kHz  
–40  
–60  
–80  
10Hz  
–100  
–120  
–140  
–100  
–120  
–140  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.25  
0.35  
0.45  
0.55  
0.65  
0.75  
HEADROOM (V)  
HEADROOM (V)  
Figure 23. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage at  
Different Frequencies, VOUT = 3.3 V, 400 mA Load  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
Different Frequencies, VOUT = 1.8 V, 400 mA Load  
0
0
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 600mA  
1µF  
10µF  
100µF  
LOAD  
LOAD  
LOAD  
LOAD  
–20  
–40  
–20  
–40  
1000µF  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency, Different CBYP  
,
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Loads, VOUT = 1.8 V, VIN = 2.6 V  
VOUT = 3.3 V, 400 mA Load, 500 mV Headroom  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–20  
–40  
–60  
–80  
10Hz TO 100kHz  
100Hz TO 100kHz  
–100  
800mV  
600mV  
500mV  
400mV  
300mV  
–120  
250mV  
–140  
10  
100  
1000  
1
10  
100  
1k  
10k  
100k  
1M 10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 28. RMS Output Noise vs. Load Current  
Figure 25. Power Supply Rejection Ratio (PSRR) vs. Frequency at Various  
Headroom Voltages, VOUT = 1.8 V, 400 mA Load  
Rev. B | Page 10 of 23  
Data Sheet  
ADM7154  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
10k  
1k  
10Hz TO 100kHz  
100Hz TO 100kHz  
100  
10  
1
0
0.1  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
10M  
1M  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 29. RMS Output Noise vs. Output Voltage  
Figure 32. Output Noise Spectral Density, 0.1 Hz to 10 MHz, ILOAD = 100 mA  
1k  
100  
10  
10k  
I
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
1k  
100  
10  
1
1
0.1  
0.1  
0.1  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. Output Noise Spectral Density,  
10 Hz to 10 MHz, ILOAD = 100 mA  
Figure 33. Output Noise Spectral Density at Various Loads,  
0.1 Hz to 1 MHz  
10k  
1k  
1k  
100  
10  
I
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 200mA  
= 400mA  
= 600mA  
100  
10  
1
1
0.1  
0.1  
10  
0.1  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. Output Noise Spectral Density,  
0.1 Hz to 1 MHz, ILOAD = 10 mA  
Figure 34. Output Noise Spectral Density at Various Loads,  
10 Hz to 10 MHz  
Rev. B | Page 11 of 23  
ADM7154  
Data Sheet  
T
T
1
2
1
2
B
B
B
B
CH1 200mA Ω  
CH2 5mV  
M4.0µs  
W
T 10.2%  
A CH1  
212mA  
CH1 200mA Ω  
CH2 5mV  
M4µs A CH1  
T 10.6%  
532mA  
W
W
W
Figure 35. Load Transient Response, ILOAD = 10 mA to 510 mA,  
OUT = 3.3 V, VIN = 3.8 V, CH1 = IOUT, CH2 = VOUT  
Figure 38. Load Transient Response, ILOAD = 100 mA to 600 mA,  
OUT = 1.8 V, VIN = 2.3 V, CH1 = IOUT, CH2 = VOUT  
V
V
T
T
1
2
2
1
B
B
B
B
CH1 200mA Ω  
CH2 5mV  
M4.0µs  
W
T 10.2%  
A CH1  
212mA  
CH1 1V  
CH2 1mV  
M400ns  
T 10.4%  
A CH1  
4.38V  
W
W
W
Figure 36. Load Transient Response, ILOAD = 100 mA to 600 mA,  
OUT = 3.3 V, VIN = 3.8 V, CH1 = IOUT, CH2 = VOUT  
Figure 39. Line Transient Response, 1 V Input Step, ILOAD = 600 mA,  
OUT = 3.3 V, VIN = 3.9 V, CH1 = VIN, CH2 = VOUT  
V
V
T
T
1
2
1
2
B
B
B
B
CH1 200mA Ω  
CH2 5mV  
M4.0µs  
W
T 10.4%  
A CH1  
204mA  
CH1 1V  
CH2 1mV  
M400ns  
T 11.4%  
A CH1  
3.5V  
W
W
W
Figure 37. Load Transient Response, ILOAD = 10 mA to 510 mA,  
OUT = 1.8 V, VIN = 2.3 V, CH1 = IOUT, CH2 = VOUT  
Figure 40. Line Transient Response, 1 V Input Step, ILOAD = 600 mA,  
OUT = 1.8 V, VIN = 2.4 V, CH1 = VIN, CH2 = VOUT  
V
V
Rev. B | Page 12 of 23  
Data Sheet  
ADM7154  
3.5  
ENABLE (V  
)
EN  
1.2V  
1.8V  
3.3V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
Figure 41. VOUT Start-Up Time After VEN Rising, Different Output Voltages,  
IN = 5 V  
V
Rev. B | Page 13 of 23  
ADM7154  
Data Sheet  
THEORY OF OPERATION  
The ADM7154 is an ultralow noise, high power supply rejection  
ratio (PSRR) linear regulator targeting radio frequency (RF)  
applications. The input voltage range is 2.3 V to 5.5 V, and it can  
deliver up to 600 mA of load current. Typical shutdown current  
consumption is 0.2 µA at room temperature.  
By heavily filtering the reference voltage, the ADM7154 is able  
to achieve 1.5 nV/√Hz output typical from 10 kHz to 1 MHz.  
Because the error amplifier is always in unity gain, the output  
noise is independent of the output voltage.  
To maintain very high PSRR over a wide frequency range, the  
ADM7154 architecture uses an internal active ripple filter. This  
stage isolates the low output noise LDO from noise on the VIN  
pin. The result is that the PSRR of the ADM7154 is significantly  
higher over a wider frequency range than any single stage LDO.  
Optimized for use with 10 µF ceramic capacitors, the ADM7154  
provides excellent transient performance.  
ACTIVE  
RIPPLE  
FILTER  
VIN  
VOUT  
CURRENT-LIMIT,  
THERMAL  
The ADM7154 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. When EN is high,  
VOUT turns on, and when EN is low, VOUT turns off. For  
automatic startup, tie EN to VIN.  
VREG  
BYP  
PROTECT  
GND  
OTA  
REFERENCE  
VIN  
7V  
REF_SENSE  
REF  
VREG  
SHUTDOWN  
EN  
4V  
REF  
Figure 42. Simplified Internal Block Diagram  
REF_SENSE  
BYP  
4V  
Internally, the ADM7154 consists of a reference, an error  
amplifier, and a P-channel MOSFET pass transistor. Output  
current is delivered via the PMOS pass device, which is  
controlled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower  
than the reference voltage, the gate of the PMOS device is  
pulled lower, allowing more current to pass and increasing the  
output voltage. If the feedback voltage is higher than the  
reference voltage, the gate of the PMOS device is pulled higher,  
allowing less current to pass and decreasing the output voltage.  
4V  
VOUT  
EN  
7V  
4V  
4V  
4V  
4V  
4V  
7V  
GND  
Figure 43. Simplified ESD Protection Block Diagram  
The ESD protection devices are shown in the block diagram as  
Zener diodes (see Figure 43).  
Rev. B | Page 14 of 23  
 
 
Data Sheet  
ADM7154  
APPLICATIONS INFORMATION  
Input and VREG Capacitor  
ADIsimPOWER DESIGN TOOL  
Connecting a 10 µF capacitor from VIN to GND reduces the  
circuit sensitivity to PCB layout, especially when long input  
traces or high source impedance are encountered.  
The ADM7154 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs optimized for a specific design goal. The tools  
enable the user to generate a full schematic, bill of materials,  
and calculate performance within minutes. ADIsimPower can  
optimize designs for cost, area, efficiency, and device count,  
taking into consideration the operating conditions and  
limitations of the IC and all real external components. For more  
information about, and to obtain ADIsimPower design tools,  
visit www.analog.com/ADIsimPower.  
To maintain the best possible stability and PSRR performance,  
connect a 10 µF capacitor from VREG to GND. When more  
than 10 µF of output capacitance is required, increase the input  
and the VREG capacitors, CREG, to match it.  
REF Capacitor  
The REF capacitor, CREF, is necessary to stabilize the reference  
amplifier. Connect at least a 1 µF capacitor between REF and GND.  
CAPACITOR SELECTION  
BYP Capacitor  
Multilayer ceramic capacitors (MLCCs) combine small size, low  
ESR, low ESL, and wide operating temperature range, making  
them an ideal choice for bypass capacitors. They are not without  
faults, however. Depending on the dielectric material, the  
capacitance can vary dramatically with temperature, dc bias,  
and ac signal level. Therefore, selecting the proper capacitor  
results in the best circuit performance.  
The BYP capacitor, CBYP, is necessary to filter the reference  
buffer. A 1 µF capacitor is typically connected between BYP and  
GND. Capacitors as small as 0.1 µF can be used; however, the  
output noise voltage of the LDO increases as a result.  
In addition, the BYP capacitor value can be increased to reduce  
the noise below 1 kHz at the expense of increasing the start-up  
time of the LDO. Very large values of CBYP significantly reduce  
the noise below 10 Hz. Tantalum capacitors are recommended  
for capacitors larger than approximately 33 µF because solid  
tantalum capacitors are less prone to microphonic noise issues.  
A 1 μF ceramic capacitor in parallel with the larger tantalum  
capacitor is recommended to ensure good noise performance at  
higher frequencies.  
Output Capacitor  
The ADM7154 is designed for operation with ceramic  
capacitors but functions with most commonly used capacitors  
when care is taken with regard to the effective series resistance  
(ESR) value. The ESR of the output capacitor affects the stability  
of the LDO control loop. A minimum of 10 µF capacitance with  
an ESR of 0.2 Ω or less is recommended to ensure the stability  
of the ADM7154. Output capacitance also affects transient  
response to changes in load current. Using a larger value of  
output capacitance improves the transient response of the  
ADM7154 to large changes in load current. Figure 44 shows the  
transient responses for an output capacitance value of 10 µF.  
2.0  
10Hz TO 100kHz  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100Hz TO 100kHz  
T
1
2
1
10  
100  
1000  
C
(µF)  
BYP  
Figure 45. RMS Noise vs. CBYP  
B
B
CH1 200mA  
Ω
CH2 5mV  
M4µs A CH1  
10.2%  
212mA  
W
W
T
Figure 44. Output Transient Response, VOUT = 3.3 V, COUT = 10 µF,  
CH1 = Load Current, CH2 = VOUT  
Rev. B | Page 15 of 23  
 
 
 
 
ADM7154  
Data Sheet  
10k  
Use Equation 1 to determine the worst case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
NOISE FLOOR  
1.0µF  
3.3µF  
10µF  
33µF  
100µF  
330µF  
1000µF  
1k  
100  
10  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
BIAS is the effective capacitance at the operating voltage.  
(1)  
C
TEMPCO is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
In this example, the worst case temperature coefficient  
1
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 9.72 µF at 5 V, as shown in Figure 47.  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Substituting these values in Equation 1 yields  
Figure 46. Noise Spectral Density vs. Frequency at  
Different Capacitances (CBYP  
CEFF = 9.72 µF × (1 − 0.15) × (1 − 0.1) = 7.44 µF  
)
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Capacitor Properties  
Any good quality ceramic capacitors can be used with the  
ADM7154 if they meet the minimum capacitance and maxi-  
mum ESR requirements. Ceramic capacitors are manufactured  
with a variety of dielectrics, each with different behavior over  
temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R  
or X7R dielectrics with a voltage rating of 6.3 V to 50 V  
are recommended. However, Y5V and Z5U dielectrics are  
not recommended because of their poor temperature and dc  
bias characteristics.  
To guarantee the performance of the ADM7154, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The ADM7154 also incorporates an internal UVLO circuit to  
disable the output voltage when the input voltage is less than the  
minimum input voltage rating of the regulator. The upper and  
lower thresholds are internally fixed with about 200 mV of  
hysteresis.  
Figure 47 depicts the capacitance vs. dc bias voltage of a 1206,  
10 µF, 10 V, X5R capacitor. The voltage stability of a capacitor is  
strongly influenced by the capacitor size and voltage rating. In  
general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperature variation of the X5R  
dielectric is ~ 15% over the −40°C to +85°C temperature range  
and is not a function of package or voltage rating.  
12  
2.5  
+125°C  
+25°C  
–40°C  
2.0  
1.5  
1.0  
0.5  
0
10  
8
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
6
INPUT VOLTAGE (V)  
Figure 48. Typical UVLO Behavior at Different Temperatures, VOUT = 3.3 V  
4
Figure 48 shows the typical hysteresis of the UVLO function.  
This hysteresis prevents on/off oscillations that can occur when  
caused by noise on the input voltage as it passes through the  
threshold points.  
2
0
0
2
4
6
8
10  
DC BIAS VOLTAGE (V)  
Figure 47. Capacitance vs. DC Bias Voltage  
Rev. B | Page 16 of 23  
 
 
 
Data Sheet  
ADM7154  
The upper and lower thresholds are user programmable and can  
be set higher than the nominal 1.22 V threshold by using two  
resistors. The resistance values, REN1 and REN2, can be  
determined from  
PROGRAMMABLE PRECISION ENABLE  
The ADM7154 uses the EN pin to enable and disable the  
VOUT pin under normal operating conditions. As shown in  
Figure 49, when a rising voltage on EN crosses the upper threshold,  
nominally 1.22 V, V OUT turns on. When a falling voltage on EN  
crosses the lower threshold, nominally 1.13 V, V OUT turns off.  
The hysteresis of the EN threshold is approximately 90 mV.  
R
EN1 = REN2 × (VIN − 1.22 V)/1.22 V  
where:  
EN2 typically ranges from 10 kΩ to 100 kΩ.  
IN is the desired turn-on voltage.  
R
V
3.5  
+125°C  
+85°C  
+25°C  
The hysteresis voltage increases by the factor  
3.0  
–5°C  
–40°C  
(REN1 + REN2)/REN2  
2.5  
2.0  
1.5  
1.0  
0.5  
0
For the example shown in Figure 52, the EN threshold is 2.44 V  
with a hysteresis of 200 mV.  
ADM7154  
V
= 2.3V  
V
= 1.8V  
OUT  
IN  
VIN  
VOUT  
C
C
IN  
OUT  
10µF  
10µF  
R
EN1  
ON  
100kΩ  
EN  
REF  
C
REF  
1µF  
OFF  
R
EN2  
100kΩ  
BYP REF_SENSE  
C
BYP  
1µF  
1.0  
1.1  
1.2  
1.3  
VREG  
GND  
EN PIN VOLTAGE (V)  
C
10µF  
REG  
Figure 49. Typical VOUT Response to EN Pin Operation  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ENABLE (V  
)
EN  
Figure 52. Typical EN Pin Voltage Divider  
V
OUT  
Figure 52 shows the typical hysteresis of the EN pin. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
START-UP TIME  
The ADM7154 uses an internal soft start to limit the inrush current  
when the output is enabled. The start-up time for a 3.3 V output is  
approximately 1.2 ms from the time the EN active threshold is  
crossed to when the output reaches 90% of the final value.  
The rise time in seconds of the output voltage (10% to 90%) is  
approximately  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
TIME (ms)  
0.0012 × CBYP  
Figure 50. Typical VOUT Response to EN Pin Operation (VEN),  
OUT = 3.3 V, VIN = 5 V, CBYP = 1 µF  
where CBYP is in microfarads.  
V
3.5  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
3.0  
2.5  
2.0  
1.5  
1.0  
–40°C RISING  
+25°C RISING  
+125°C RISING  
–40°C FALLING  
+25°C FALLING  
+125°C FALLING  
ENABLE (V  
)
EN  
C
C
C
= 1µF  
= 3.3µF  
= 10µF  
BYP  
BYP  
BYP  
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TIME (ms)  
INPUT VOLTAGE (V)  
Figure 53. Typical Start-Up Behavior with CBYP = 1 µF to 10 µF  
Figure 51. Typical EN Threshold vs. Input Voltages (VIN) for Different  
Temperatures  
Rev. B | Page 17 of 23  
 
 
 
 
ADM7154  
Data Sheet  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Current-limit and thermal limit protections are intended to  
protect the device against accidental overload conditions. For  
reliable operation, device power dissipation must be externally  
limited so that the junction temperature does not exceed 150°C.  
THERMAL CONSIDERATIONS  
In applications with a low input to output voltage differential,  
the ADM7154 does not dissipate much heat. However, in  
applications with high ambient temperature and/or high input  
voltage, the heat dissipated in the package can become large  
enough that it causes the junction temperature of the die to  
exceed the maximum junction temperature of 150°C.  
ENABLE (V  
)
EN  
C
C
C
C
= 10µF  
= 33µF  
= 100µF  
= 330µF  
BYP  
BYP  
BYP  
BYP  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature decreases below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is important to guarantee reliable performance over all condi-  
tions. The junction temperature of the die is the sum of the  
ambient temperature of the environment and the temperature  
rise of the package due to the power dissipation, as shown in  
Equation 2.  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ms)  
Figure 54. Typical Start-Up Behavior with CBYP = 10 µF to 330 µF  
REF, BYP, AND VREG PINS  
REF, BYP, and VREG generate voltages internally (VREF, VBYP  
and VREG) that require external bypass capacitors for proper  
operation. Do not, under any circumstances, connect any loads  
to these pins, because doing so compromises the noise and  
PSRR performance of the ADM7154. Using larger values of  
,
To guarantee reliable operation, the junction temperature of the  
ADM7154 must not exceed 150°C. To ensure that the junction  
temperature stays below this maximum value, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds that are used and the  
amount of copper used to solder the package GND pin and  
exposed pad to the PCB.  
C
BYP, CREF, and CREG is acceptable but can increase the start-up  
time, as described in the Start-Up Time section.  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADM7154 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADM7154 is designed to current limit when the  
output load reaches 960 mA (typical). When the output load  
exceeds 960 mA, the output voltage is reduced to maintain a  
constant current limit.  
Table 7 shows typical θJA values of the 8-lead SOIC and 8-lead  
LFCSP packages for various PCB copper sizes.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C. Under extreme  
conditions (that is, high ambient temperature and/or high  
power dissipation), when the junction temperature starts to rise  
above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
135°C, the output is turned on again, and the output current is  
restored to the operating value.  
Table 8 shows the typical ΨJB values of the 8-lead SOIC and  
8-lead LFCSP.  
Table 7. Typical θJA Values  
θJA (°C/W)  
Copper Size (mm2)  
251  
8-Lead LFCSP  
165.1  
8-Lead SOIC  
165  
100  
500  
125.8  
68.1  
126.4  
69.8  
Consider the case where a hard short from VOUT to GND  
occurs. At first, the ADM7154 current limits, so that only  
960 mA is conducted into the short. If self heating of the  
junction is great enough to cause the temperature to rise above  
150°C, thermal shutdown activates, turning off the output and  
reducing the output current to zero. As the junction tempera-  
ture cools and drops below 135°C, the output turns on and  
conducts 900 mA into the short, again causing the junction  
temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation between  
900 mA and 0 mA that continues for as long as the short  
remains at the output.  
1000  
6400  
56.4  
42.1  
57.8  
43.6  
1 Device soldered to minimum size pin traces.  
Table 8. Typical ΨJB Values  
Package  
ΨJB (°C/W)  
8-Lead LFCSP  
8-Lead SOIC  
15.1  
17.9  
Rev. B | Page 18 of 23  
 
 
 
 
 
Data Sheet  
ADM7154  
160  
150  
140  
130  
120  
110  
100  
90  
The junction temperature of the ADM7154 is calculated from  
the following equation:  
TJ = TA + (PD × θJA)  
(2)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
IN and VOUT are the input and output voltages, respectively.  
)
(3)  
80  
2
6400mm  
V
70  
2
500mm  
2
I
I
LOAD is the load current.  
GND is the ground current.  
25mm  
60  
T
MAX  
J
50  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Power dissipation caused by ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
Figure 56. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 50°C  
155  
145  
135  
125  
115  
105  
95  
TJ = TA + (((VIN VOUT) × ILOAD) × θJA)  
(4)  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB to  
ensure that the junction temperature does not rise above 150°C.  
The heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins and  
exposed pad of the ADM7154. Adding thermal planes  
underneath the package also improves thermal performance.  
However, as shown in Table 7, a point of diminishing returns is  
eventually reached, beyond which an increase in the copper  
area does not yield significant reduction in the junction to  
ambient thermal resistance.  
85  
75  
65  
2
6400mm  
2
500mm  
2
25mm  
T
MAX  
J
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
TOTAL POWER DISSIPATION (W)  
Figure 55 to Figure 60 show junction temperature calculations  
for different ambient temperatures, power dissipation, and areas  
of PCB copper.  
Figure 57. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 85°C  
155  
145  
135  
125  
115  
105  
95  
155  
145  
135  
125  
115  
105  
95  
85  
75  
65  
85  
75  
65  
2
6400mm  
2
500mm  
55  
45  
35  
25  
2
6400mm  
2
25mm  
2
500mm  
T
MAX  
J
2
25mm  
T
MAX  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
TOTAL POWER DISSIPATION (W)  
J
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
Figure 58. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 25°C  
Figure 55. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP, TA = 25°C  
Rev. B | Page 19 of 23  
 
ADM7154  
Data Sheet  
160  
150  
140  
130  
120  
110  
100  
90  
Thermal Characterization Parameter (ΨJB)  
When board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction  
temperature rise (see Figure 61 and Figure 62). Maximum  
junction temperature (TJ) is calculated from the board  
temperature (TB) and power dissipation (PD) using the following  
formula:  
TJ = TB + (PD × ΨJB)  
(5)  
80  
2
The typical value of ΨJB is 15.1°C/W for the 8-lead LFCSP  
package and 17.9°C/W for the 8-lead SOIC package.  
6400mm  
70  
2
500mm  
2
25mm  
60  
160  
T
MAX  
J
50  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
140  
120  
100  
80  
Figure 59. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 50°C  
155  
145  
135  
125  
115  
105  
95  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0  
TOTAL POWER DISSIPATION (W)  
85  
75  
65  
2
6400mm  
Figure 61. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead LFCSP  
2
500mm  
2
25mm  
160  
140  
120  
100  
80  
T
MAX  
1.8  
J
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
2.0  
TOTAL POWER DISSIPATION (W)  
Figure 60. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 85°C  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
TOTAL POWER DISSIPATION (W)  
Figure 62. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC  
Rev. B | Page 20 of 23  
 
 
 
Data Sheet  
ADM7154  
PCB LAYOUT CONSIDERATIONS  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Place the bypass capacitors (CREG, CREF  
and CBYP) for VREG, VREF, and VBYP close to the respective pins  
(VREG, REF, and BYP) and GND. Use of an 0805, 0603, or  
0402 size capacitor achieves the smallest possible footprint  
solution on boards where area is limited.  
,
Figure 64. Example 8-Lead SOIC PCB Layout  
Figure 63. Example 8-Lead LFCSP PCB Layout  
Rev. B | Page 21 of 23  
 
ADM7154  
Data Sheet  
OUTLINE DIMENSIONS  
2.54  
2.44  
2.34  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
5
8
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
4
1
TOP VIEW  
PIN 1  
BOTTOM VIEW  
INDICATOR  
(R 0.20)  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.203 REF  
Figure 65. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-21)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
2.29  
0.356  
5
6.20  
6.00  
5.80  
8
4.00  
3.90  
3.80  
2.29  
0.457  
4
1
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 66. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-1)  
Dimensions shown in millimeters  
Rev. B | Page 22 of 23  
 
Data Sheet  
ADM7154  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage (V)  
Package Description  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
Evaluation Board  
Evaluation Board  
Package Option  
CP-8-21  
CP-8-21  
CP-8-21  
CP-8-21  
CP-8-21  
CP-8-21  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
Branding  
LQS  
LQT  
LQU  
LQ6  
ADM7154ACPZ-1.2-R7  
ADM7154ACPZ-1.8-R7  
ADM7154ACPZ-2.5-R7  
ADM7154ACPZ-2.8-R7  
ADM7154ACPZ-3.0-R7  
ADM7154ACPZ-3.3-R7  
ADM7154ARDZ-1.2-R7  
ADM7154ARDZ-1.8-R7  
ADM7154ARDZ-2.5-R7  
ADM7154ARDZ-2.8-R7  
ADM7154ARDZ-3.0-R7  
ADM7154ARDZ-3.3-R7  
ADM7154CP-3.3EVALZ  
ADM7154RD-1.8EVALZ  
1.2  
1.8  
2.5  
2.8  
3.0  
3.3  
1.2  
1.8  
2.5  
2.8  
3.0  
3.3  
LRF  
LQ7  
RD-8-1  
1 Z = RoHS Compliant Part.  
©2014–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12324-0-8/16(B)  
Rev. B | Page 23 of 23  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY