ADM7154 [ADI]

High PSRR, RF Linear Regulator;
ADM7154
型号: ADM7154
厂家: ADI    ADI
描述:

High PSRR, RF Linear Regulator

文件: 总24页 (文件大小:1184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.2 A, Ultralow Noise,  
High PSRR, RF Linear Regulator  
ADP7157  
Data Sheet  
FEATURES  
Input voltage range: 2.3 V to 5.5 V  
Adjustable output voltage range (VOUT): 1.2 V to 3.3 V  
Maximum load current: 1.2 A  
Low noise  
0.9 µV rms typical output noise from 100 Hz to 100 kHz  
1.6 µV rms typical output noise from 10 Hz to 100 kHz  
Noise spectral density: 1.7 nV/√Hz from 10 kHz to 1 MHz  
Power supply rejection ratio (PSRR)  
82 dB from 1 kHz to 100 kHz  
TYPICAL APPLICATION CIRCUIT  
ADP7157  
V
= 3.8V  
V
= 3.3V  
IN  
OUT  
VIN  
VOUT  
VOUT_SENSE  
REF  
C
10µF  
C
OUT  
10µF  
IN  
ON  
OFF  
EN  
C
REF  
1µF  
R1  
BYP  
C
BYP  
1µF  
V
= 1.2V × (R1 + R2)/R2  
OUT  
REF_SENSE  
R2  
1kΩ < R2 < 200kΩ  
VREG  
C
REG  
1µF  
55 dB at 1 MHz  
GND  
Dropout voltage: 120 mV typical at IOUT = 1.2 A, VOUT = 3.3 V  
Initial accuracy: 0.6% at ILOAD = 10 mA  
Accuracy over line, load, and temperature: 1.5%  
Figure 1. Regulated 3.3 V Output from a 3.8 V Input  
Operating supply current (IGND  
4.0 mA typical at 0 µA  
)
7.0 mA typical at 1.2 A  
Low shutdown current: 0.2 μA typical  
Stable with a 10 µF ceramic output capacitor  
10-lead, 3 mm × 3 mm LFCSP and 8-lead SOIC packages  
Precision enable  
Table 1. Related Devices  
Input  
Output  
Current  
Fixed/  
Adjustable  
Supported by ADIsimPower tool  
Model  
Voltage  
Package  
APPLICATIONS  
2.3 V to  
5.5 V  
2 A  
Fixed  
10-lead LFCSP/  
8-lead SOIC  
ADP7159,  
ADP7158  
ADP7156  
Regulation to noise sensitive applications: phase-locked  
loops (PLLs), voltage controlled oscillators (VCOs), and  
PLLs with integrated VCOs  
2.3 V to  
5.5 V  
1.2 A  
Fixed/  
Adjustable  
10-lead LFCSP/  
8-lead SOIC  
ADM7150, 4.5 V to  
ADM7151 16 V  
ADM7154, 2.3 V to  
800 mA  
600 mA  
200 mA  
Fixed/  
Adjustable  
Fixed/  
Adjustable  
8-lead LFCSP/  
8-lead SOIC  
8-lead LFCSP/  
8-lead SOIC  
6-lead LFCSP/  
5-lead TSOT  
Communications and infrastructure  
Backhaul and microwave links  
ADM7155  
5.5 V  
GENERAL DESCRIPTION  
ADM7160  
2.2 V to  
5.5 V  
Fixed  
The ADP7157 is an adjustable linear regulator that operates from  
2.3 V to 5.5 V and provides up to 1.2 A of output current. Output  
voltages from 1.2 V to 3.3 V are possible depending on the model.  
Using an advanced proprietary architecture, the device provides  
high power supply rejection and ultralow noise, achieving excellent  
line and load transient response with only a 10 µF ceramic  
output capacitor.  
1k  
100  
10  
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
C
C
C
= 10µF  
= 100µF  
= 1000µF  
The ADP7157 is available in four models that optimize power  
dissipation and PSRR performance as a function of the input  
and output voltage. See Table 9 and Table 10 for selection guides.  
1
The typical output noise the ADP7157 regulator is 0.9 μV rms from  
100 Hz to 100 kHz and 1.7 nV/√Hz for noise spectral density from  
10 kHz to 1 MHz. The ADP7157 is available in 10-lead, 3 mm ×  
3 mm LFCSP and 8-lead SOIC packages, making it not only a  
very compact solution, but also providing excellent thermal  
performance for applications requiring up to 1.2 A of output  
current in a small, low profile footprint.  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 2. Noise Spectral Density at Different Values of CBYP, VOUT = 3.3 V  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP7157* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Press  
• Analog Devices’ Low Dropout Regulators Enable Cleaner  
and Faster Communications  
Evaluation Kits  
• ADP7157 Evaluation Board  
Design Resources  
• ADP7157 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
• ADP7157: 1.2 A, Ultralow Noise, High PSRR, RF Linear  
Regulator Data Sheet  
User Guides  
Discussions  
View all ADP7157 EngineerZone Discussions  
• UG-810: Evaluating the ADP7157 Ultralow Noise, 1.2 A,  
Adjustable Output, RF Linear Regulator  
Tools and Simulations  
• ADI Linear Regulator Design Tool and Parametric Search  
Sample and Buy  
Visit the product page to see pricing options  
• ADIsimPower™ Voltage Regulator Design Tool  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADP7157  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ADIsimPower Design Tool ....................................................... 14  
Capacitor Selection .................................................................... 14  
Undervoltage Lockout (UVLO) ............................................... 15  
Programmable Precision Enable .............................................. 16  
Start-Up Time ............................................................................. 17  
REF, BYP, and VREG Pins......................................................... 17  
Current-Limit and Thermal Shutdown................................... 17  
Thermal Considerations............................................................ 17  
PSRR Performance..................................................................... 20  
PCB Layout Considerations.......................................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 13  
Applications Information .............................................................. 14  
REVISION HISTORY  
5/2016—Rev. 0 to Rev. A  
Added Note 2 to Table 2; Renumbered Sequentially ................... 4  
Change to Figure 4 ........................................................................... 6  
Change to Programmable Precision Enable Section ................. 16  
3/2016—Revision 0: Initial Version  
Rev. A | Page 2 of 23  
 
Data Sheet  
ADP7157  
SPECIFICATIONS  
VIN = VOUT_MAX1 + 0.5 V; VEN = VIN; ILOAD = 10 mA; CIN = COUT = 10 µF; CREG = CREF = CBYP = 1 µF; TA = 25°C for typical specifications;  
TA = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ  
Max  
5.5  
1.2  
8.0  
12.0  
4
Unit  
V
INPUT VOLTAGE RANGE  
LOAD CURRENT  
2.3  
ILOAD  
A
OPERATING SUPPLY CURRENT  
IGND  
ILOAD = 0 µA  
ILOAD = 1.2 A  
4.0  
7.0  
0.2  
mA  
mA  
µA  
SHUTDOWN CURRENT  
NOISE2  
IIN-SD  
EN = ground  
VOUT = 1.2 V to 3.3 V  
Output Noise  
OUTNOISE  
10 Hz to 100 kHz  
100 Hz to 100 kHz  
10 kHz to 1 MHz  
1.6  
0.9  
1.7  
µV rms  
µV rms  
nV/√Hz  
Noise Spectral Density  
POWER SUPPLY REJECTION RATIO2  
ADP7157-01  
OUTNSD  
PSRR  
ILOAD = 1.2 A  
1 kHz to 100 kHz, VIN = 2.3 V, VOUT = 1.8 V  
1 MHz, VIN = 2.3 V, VOUT = 1.8 V  
1 kHz to 100 kHz, VIN = 2.8 V, VOUT = 2.3 V  
1 MHz, VIN = 2.8 V, VOUT = 2.3 V  
1 kHz to 100 kHz, VIN = 3.4 V, VOUT = 2.9 V  
1 MHz, VIN = 3.4 V, VOUT = 2.9 V  
1 kHz to 100 kHz, VIN = 3.8 V, VOUT = 3.3 V  
1 MHz, VIN = 3.8 V, VOUT = 3.3 V  
70  
52  
72  
53  
75  
55  
82  
55  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
ADP7157-02  
ADP7157-03  
ADP7157-04  
OUTPUT VOLTAGE ACCURACY  
Output Voltage3  
Initial Accuracy  
VOUT  
VOUT  
1.2  
3.3  
V
ILOAD = 10 mA, TA = 25°C  
10 mA < ILOAD < 1.2 A, TA = 25°C  
10 mA < ILOAD < 1.2 A, TA = −40°C to +125°C  
−0.6  
−1.0  
−1.5  
+0.6  
+1.0  
+1.5  
%
%
%
REGULATION  
Line  
∆VOUT/∆VIN  
∆VOUT/∆IOUT  
ILIMIT  
VIN = VOUT_MAX + 0.5 V to 5.5 V  
IOUT = 10 mA to 1.2 A  
−0.1  
+0.1  
0.3  
%/V  
%/A  
Load4  
CURRENT-LIMIT THRESHOLD5  
REF  
VOUT  
DROPOUT VOLTAGE6  
22  
1.8  
60  
mA  
A
1.4  
2.4  
80  
170  
VDROPOUT  
IOUT = 600 mA, VOUT = 3.3 V  
IOUT = 1.2 A, VOUT = 3.3 V  
EN = 0 V, VIN = 5.5 V  
VOUT = 1 V  
VREG = 1 V  
VREF = 1 V  
mV  
mV  
120  
PULL-DOWN RESISTANCE  
VOUT  
VREG  
REF  
VOUT-PULL  
VREG-PULL  
VREF-PULL  
VBYP-PULL  
650  
31  
850  
650  
Ω
kΩ  
Ω
BYP  
VBYP = 1 V  
Ω
START-UP TIME2, 7  
VOUT  
VREG  
REF  
VOUT = 3.3 V  
tSTART-UP  
tREG-START-UP  
tREF-START-UP  
1.2  
0.6  
0.5  
ms  
ms  
ms  
THERMAL SHUTDOWN2  
Threshold  
Hysteresis  
TSSD  
TSSD-HYS  
TJ rising  
150  
15  
°C  
°C  
Rev. A | Page 3 of 23  
 
 
ADP7157  
Data Sheet  
Parameter  
UNDERVOLTAGE THRESHOLDS  
Input Voltage  
Rising  
Falling  
Hysteresis  
VREG THRESHOLDS8  
Rising  
Symbol  
Test Conditions/Comments  
Min  
1.95  
1.60  
Typ  
Max  
Unit  
UVLORISE  
UVLOFALL  
UVLOHYS  
2.22 2.29  
2.02  
200  
V
V
mV  
VREGUVLORISE  
VREGUVLOFALL  
VREGUVLOHYS  
1.94  
V
V
mV  
Falling  
Hysteresis  
185  
EN INPUT PRECISION  
EN Input  
2.3 V ≤ VIN ≤ 5.5 V  
Logic High  
Logic Low  
Logic Hysteresis  
LEAKAGE CURRENT  
REF_SENSE  
EN  
ENHIGH  
ENLOW  
ENHYS  
1.13  
1.05  
1.22 1.31  
1.13 1.22  
90  
V
V
mV  
IREF_SENSE_LKG  
IEN_LKG  
10  
nA  
µA  
EN = VIN or ground  
0.01  
1
1 VOUT_MAX is the maximum output voltage of each version of the ADP7157.  
2 Guaranteed by characterization, but not production tested.  
3 This output voltage specification is for ADP7157-04 version. Table 10 provides a guide for selecting one of the four versions of the ADP7157 based on voltage range.  
4 This specification is based on an endpoint calculation using 10 mA and 1.2 A loads.  
5 Current-limit threshold is the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V output voltage  
is the current that causes the output voltage to drop to 90% of 3.0 V or 2.7 V.  
6 Dropout voltage is the input to output voltage differential when the input voltage is set to the nominal output voltage. Dropout applies only for output voltages  
above 2.3 V.  
7 Start-up time is the time from the rising edge of VEN to VOUT, VREG, or VREF being at 90% of its nominal value.  
8 The output voltage is disabled until the VREG UVLO rise threshold is crossed. The VREG output is disabled until the input voltage UVLO rising threshold is crossed.  
Table 3. Input and Output Capacitors, Recommended Specifications  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
MINIMUM CAPACITANCE  
TA = −40°C to +125°C  
Input1  
CIN  
10.0  
1.0  
10.0  
1.0  
µF  
µF  
µF  
µF  
µF  
Regulator1  
Output1  
Bypass  
Reference  
CREG  
COUT  
CBYP  
CREF  
RESR  
1.0  
CAPACITOR EFFECTIVE SERIES RESISTANCE (ESR)  
TA = −40°C to +125°C  
CREG, COUT, CIN, CREF  
CBYP  
0.001  
0.001  
0.2  
2.0  
Ω
Ω
1 The minimum input, regulator, and output capacitances must be greater than 7.0 μF over the full range of operating conditions. The full range of operating conditions  
in the application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are  
recommended, and Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. A | Page 4 of 23  
Data Sheet  
ADP7157  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
The maximum TJ is calculated from the TA and the PD using the  
following formula:  
Parameter  
Rating  
TJ = TA + (PD × θJA)  
VIN to Ground  
VREG to Ground  
−0.3 V to +7 V  
−0.3 V to VIN or +4 V  
(whichever is less)  
The junction to ambient thermal resistance (θJA) of the package  
is based on modeling and calculation using a 4-layer board. The  
junction to ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The θJA value may vary, depending on  
PCB material, layout, and environmental conditions. The specified  
VOUT to Ground  
−0.3 V to VREG or +4 V  
(whichever is less)  
VOUT_SENSE to Ground  
−0.3 V to VREG or +4 V  
(whichever is less)  
VOUT to VOUT_SENSE  
BYP to VOUT  
0.3 V  
0.3 V  
θ
JA values are based on a 4-layer, 4 in. × 3 in. circuit board. See  
EN to Ground  
−0.3 V to +7 V  
the JESD51-7 standard and the JESD51-9 standard for detailed  
information on the board construction.  
BYP to Ground  
−0.3 V to VREG or +4 V  
(whichever is less)  
Ψ
JB is the junction to board thermal characterization parameter  
REF to Ground  
−0.3 V to VREG or +4 V  
(whichever is less)  
−0.3 V to +4 V  
−65°C to +150°C  
−40°C to +125°C  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power  
flowing through multiple thermal paths rather than a single  
path as in thermal resistance, θJB. Therefore, ΨJB thermal paths  
include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful  
in real-world applications. Use the board temperature (TB) and  
power dissipation (PD) to calculate the maximum junction  
temperature (TJ) by  
REF_SENSE to Ground  
Storage Temperature Range  
Operational Junction Temperature  
Range  
Soldering Conditions  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
THERMAL DATA  
See the JESD51-8 standard and the JESD51-12 standard for  
more detailed information about ΨJB.  
Absolute maximum ratings apply individually only, not in  
combination. The ADP7157 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
need to be derated.  
THERMAL RESISTANCE  
θJA, θJC, and ΨJB are specified for the worst case conditions, that  
is, a device soldered in a circuit board for surface-mount  
packages.  
Table 5. Thermal Resistance  
Package Type  
10-Lead LFCSP  
8-Lead SOIC  
θJA  
θJC  
ΨJB  
Unit  
°C/W  
°C/W  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long as  
the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction to ambient thermal resistance of the  
package (θJA).  
53.8  
50.4  
15.6  
42.3  
29.1  
30.1  
ESD CAUTION  
Rev. A | Page 5 of 23  
 
 
 
 
ADP7157  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VOUT  
1
2
3
10 VIN  
1
8
VIN  
VOUT  
VOUT_SENSE  
BYP  
2
3
4
ADP7157  
7
6
5
VREG  
REF  
9
8
VIN  
VOUT  
TOP VIEW  
ADP7157  
(Not to Scale)  
VREG  
VOUT_SENSE  
TOP VIEW  
REF_SENSE  
EN  
(Not to Scale)  
BYP 4  
EN  
7
6
REF  
NOTES  
5
REF_SENSE  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES  
THERMAL PERFORMANCE, AND IT IS ELECTRICALLY  
CONNECTED TO GROUND INSIDE THE PACKAGE.  
CONNECT THE EP TO THE GROUND PLANE ON THE  
BOARD TO ENSURE PROPER OPERATION.  
NOTES  
1. THE EXPOSED PAD IS LOCATED ON THE BOTTOM OF  
THE PACKAGE. THE EXPOSED PAD ENHANCES  
THERMAL PERFORMANCE, AND IT IS ELECTRICALLY  
CONNECTED TO GROUND INSIDE THE PACKAGE.  
CONNECT THE EP TO THE GROUND PLANE ON THE  
BOARD TO ENSURE PROPER OPERATION.  
Figure 3. 10-Lead LFCSP Pin Configuration  
Figure 4. 8-Lead SOIC Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
LFCSP SOIC  
Mnemonic  
Description  
Regulated Output Voltage. Bypass VOUT to ground with a 10 μF or greater capacitor.  
1, 2  
3
1
2
VOUT  
VOUT_SENSE Output Sense. VOUT_SENSE is internally connected to VOUT with a 10 Ω resistor. Connect VOUT_SENSE  
as close to the load as possible.  
4
5
6
3
4
5
BYP  
Low Noise Bypass Capacitor. Connect a 1 μF or greater capacitor from the BYP pin to ground to  
reduce noise. Do not connect a load to this pin.  
Enable. Drive EN high to turn on the regulator, and drive EN low to turn off the regulator. For  
automatic startup, connect EN to VIN.  
EN  
REF_SENSE  
Reference Sense. This pin sets the output voltage with an external resistor divider.  
VOUT = VREF × (R1 + R2)/R2, where VREF = 1.2 V. Connect REF_SENSE to the REF pin. Do not connect  
REF_SENSE to VOUT or ground.  
7
6
7
8
REF  
Low Noise Reference Voltage Output. Bypass REF to ground with a 1 μF or greater capacitor. Short  
REF_SENSE to REF for fixed output voltages. Do not connect a load to this pin.  
Regulated Input Supply Voltage to the LDO Amplifier. Bypass VREG to ground with a 1 μF or greater  
capacitor.  
8
VREG  
9, 10  
VIN  
EP  
Regulator Input Supply Voltage. Bypass VIN to ground with a 10 μF or greater capacitor.  
Exposed Pad. The exposed pad is located on the bottom of the package. The exposed pad enhances  
thermal performance, and it is electrically connected to ground inside the package. Connect the  
exposed pad to the ground plane on the board to ensure proper operation.  
Rev. A | Page 6 of 23  
 
Data Sheet  
ADP7157  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 0.5 V or 2.3 V, whichever is greater; VEN = VIN; VOUT = 3.3 V; ILOAD = 10 mA; CIN = COUT = 10 µF; CREG = CREF = CBYP = 1 µF;  
TA = 25°C, unless otherwise noted.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
5.5V  
5.0V  
4.0V  
3.0V  
2.5V  
100  
2.3V  
40  
–40  
–20  
0
20  
60  
80  
120  
140  
3.8  
4.0  
4.2  
4.4  
4.6  
V
4.8  
(V)  
5.0  
5.2  
5.4  
5.6  
TEMPERATURE (°C)  
IN  
Figure 5. Shutdown Current (IIN-SD) vs. Temperature  
at Various Input Voltages (VIN), VOUT =1.8 V  
Figure 8. Output Voltage (VOUT) vs. Input Voltage (VIN  
at Various Loads, VOUT = 3.3 V  
)
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
14  
13  
12  
11  
10  
9
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
8
7
6
5
4
3
2
1
0
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Output Voltage (VOUT) vs. Temperature  
at Various Loads, VOUT = 3.3 V  
Figure 9. Ground Current (IGND) vs. Temperature  
at Various Loads, VOUT = 3.3 V  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0.1m  
1m  
10m  
100m  
(A)  
1
10  
0.1m  
1m  
10m  
I
100m  
(A)  
1
10  
I
LOAD  
LOAD  
Figure 7. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 10. Ground Current (IGND) vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. A | Page 7 of 23  
 
ADP7157  
Data Sheet  
14  
13  
12  
11  
10  
9
14  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
13  
12  
11  
10  
9
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
8
8
7
7
6
6
5
5
4
4
3
3
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
2
2
1
1
0
3.1  
0
3.8  
3.2  
3.3  
3.4  
3.5  
(V)  
3.6  
3.7  
3.8  
4.0  
4.2  
4.4  
4.6  
V
4.8  
(V)  
5.0  
5.2  
5.4  
5.6  
V
IN  
IN  
Figure 11. Ground Current (IGND) vs. Input Voltage (VIN  
at Various Loads, VOUT = 3.3 V  
)
Figure 14. Ground Current (IGND) vs. Input Voltage (VIN) in Dropout,  
OUT = 3.3 V  
V
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
10m  
100m  
1
10  
TEMPERATURE (°C)  
I
(A)  
LOAD  
Figure 12. Dropout Voltage (VDROPOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 15. Output Voltage (VOUT) vs. Temperature  
at Various Loads, VOUT = 1.2 V  
3.40  
1.25  
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
3.0  
3.1  
3.2  
3.3  
3.4  
(V)  
3.5  
3.6  
3.7  
3.8  
0.1m  
1m  
10m  
100m  
(A)  
1
10  
V
I
IN  
LOAD  
Figure 13. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout,  
OUT = 3.3 V  
Figure 16. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 1.2 V  
V
Rev. A | Page 8 of 23  
Data Sheet  
ADP7157  
1.25  
14  
13  
12  
11  
10  
9
I
I
I
I
I
= 0mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
= 10mA  
= 100mA  
= 600mA  
= 1200mA  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
I
= 1200mA  
LOAD  
8
I
= 600mA  
= 100mA  
LOAD  
7
6
I
LOAD  
5
4
I
= 10mA  
LOAD  
3
I
= 0mA  
LOAD  
2
1
0
2.3  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7  
5
5.3 5.6  
V
V
(V)  
IN  
IN  
Figure 17. Output Voltage (VOUT) vs. Input Voltage (VIN  
at Various Loads, VOUT = 1.2 V  
)
Figure 20. Ground Current (IGND) vs. Input Voltage (VIN  
at Various Loads, VOUT = 1.2 V  
)
14  
13  
12  
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
I
= 1200mA  
LOAD  
8
7
I
= 600mA  
= 100mA  
LOAD  
6
I
5
LOAD  
4
I
= 10mA  
3
LOAD  
I
= 0mA  
LOAD  
2
1
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 18. Ground Current (IGND) vs. Temperature  
at Various Loads, VOUT = 1.2 V  
Figure 21. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Loads, VOUT = 3.3 V  
14  
0
900mV  
13  
12  
11  
10  
9
800mV  
–10  
700mV  
600mV  
500mV  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
8
7
6
5
4
3
2
1
0
0.1m  
1m  
10m  
100m  
(A)  
1
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
I
FREQUENCY (Hz)  
LOAD  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Headroom Voltages, VOUT = 3.3 V, 1.2 A Load  
Figure 19. Ground Current (IGND) vs. Load Current (ILOAD), VOUT = 1.2 V  
Rev. A | Page 9 of 23  
ADP7157  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10Hz  
10Hz  
100Hz  
1kHz  
100Hz  
1kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10kHz  
100kHz  
1MHz  
10MHz  
10kHz  
100kHz  
1MHz  
10MHz  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
HEADROOM (V)  
HEADROOM (V)  
Figure 23. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage  
at Various Frequencies, VOUT = 3.3 V, 1.2 A Load  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage  
at Various Frequencies, VOUT = 1.2 V, 1.2 A Load  
0
0
I
I
I
I
= 10mA  
1µF  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
10µF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
100µF  
1000µF  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Loads, VOUT = 1.2 V  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Different CBYP Values, VOUT = 3.3 V, VIN = 4.0 V, 1.2 A Load  
0
2.5  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
2.0  
1.5  
1.0  
0.5  
0
10Hz TO 100kHz  
100Hz TO 100kHz  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10m  
100m  
1
10  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 25. Power Supply Rejection Ratio (PSRR) vs. Frequency  
at Various Headroom Voltages, VOUT = 1.2 V, 1.2 A Load  
Figure 28. RMS Output Noise vs. Load Current (ILOAD)  
Rev. A | Page 10 of 23  
Data Sheet  
ADP7157  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1k  
100  
10  
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
10Hz TO 100kHz  
100Hz TO 100kHz  
1
0.1  
10  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 29. RMS Output Noise vs. Output Voltage  
Figure 32. Output Noise Spectral Density vs. Frequency  
at Various Loads, 10 Hz to 10 MHz  
1k  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
= 10µF  
= 100µF  
SLEW RATE = 2.5A/µs  
= 1000µF  
100  
10  
1
I
OUT  
1
2
V
OUT  
0.1  
10  
B
CH1 500mA B CH2 5.00mV  
M4.00µs A CH1  
21.10%  
700mA  
W
W
100  
1k  
10k  
100k  
1M  
10M  
T
FREQUENCY (Hz)  
Figure 30. Noise Spectral Density vs. Frequency at Various Values of CBYP  
Figure 33. Load Transient Response, ILOAD = 100 mA to 1.2 A,  
VOUT = 3.3 V, VIN = 4.0 V, Channel 1 = IOUT, Channel 2 = VOUT  
100k  
I
I
I
I
= 10mA  
LOAD  
LOAD  
LOAD  
LOAD  
= 100mA  
= 600mA  
= 1200mA  
SLEW RATE = 1.5A/µs  
10k  
1k  
I
OUT  
1
2
100  
10  
V
OUT  
1
0.1  
0.1  
B
B
W
CH1 500mA  
CH2 5.00mV  
M4.00µs A CH1  
690mA  
W
1
10  
100  
1k  
10k  
100k  
1M  
T
22.60%  
FREQUENCY (Hz)  
Figure 31. Output Noise Spectral Density vs. Frequency  
at Various Loads, 0.1 Hz to 1 MHz  
Figure 34. Load Transient Response, ILOAD = 100 mA to 1.2 A, VOUT = 3.3 V,  
VIN = 4.0 V, COUT = 22 μF, Channel 1 = IOUT, Channel 2 = VOUT  
Rev. A | Page 11 of 23  
ADP7157  
Data Sheet  
SLEW RATE = 2.5A/µs  
SLEW RATE = 1V/µs  
V
IN  
1
2
1
2
V
OUT  
B
B
B
B
CH1 500mA  
CH2 5.00mV  
M4.00µs A CH1  
W
740mA  
W
CH1 1.00V  
CH2 2.00mV  
M10.0µs A CH1  
W
3.00V  
W
T
21.30%  
T
21.80%  
Figure 35. Load Transient Response, ILOAD = 100 mA to 1.2 A,  
VOUT = 1.8 V, VIN = 2.5 V, Channel 1 = IOUT, Channel 2 = VOUT  
Figure 38. Line Transient Response, 1 V Input Step, ILOAD = 1.2 A,  
VOUT = 1.8 V, VIN = 2.5 V, Channel 1 = VIN, Channel 2 = VOUT  
3.5  
EN  
3.3V  
SLEW RATE = 2.4A/µs  
2.5V  
1.8V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
OUT  
1
2
V
OUT  
B
B
W
CH1 500mA  
CH2 5.00mV  
M4.00µs A CH1  
740mA  
W
–2  
–1  
0
1
2
3
4
5
6
7
8
T
20.70%  
TIME (ms)  
Figure 36. Load Transient Response, ILOAD = 100 mA to 1.2 A, VOUT = 1.8 V,  
VIN = 2.5 V, COUT = 22 μF, Channel 1 = IOUT, Channel 2 = VOUT  
Figure 39. VOUT Start-Up Time After VEN Rising  
at Various Output Voltages, VIN = 5.0 V, CBYP = 1 ꢀF  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SLEW RATE = 1V/µs  
V
IN  
V
OUT  
2
1
EN  
1µF  
4.7µF  
10µF  
B
B
W
CH1 1.00V  
CH2 5.00mV  
M10.0µs A CH1  
4.34V  
W
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
T
21.10%  
TIME (ms)  
Figure 37. Line Transient Response, 1 V Input Step, ILOAD = 1.2 A,  
VOUT = 3.3 V, VIN = 3.8 V, Channel 1 = VIN, Channel 2 = VOUT  
Figure 40. VOUT Start-Up Time Behavior at Various Values of CBYP  
,
VOUT = 3.3 V  
Rev. A | Page 12 of 23  
Data Sheet  
ADP7157  
THEORY OF OPERATION  
The ADP7157 is an ultralow noise, high PSRR linear regulator  
targeting radio frequency (RF) applications. The input voltage  
range is 2.3 V to 5.5 V, and the device delivers up to a 1.2 A load  
current. The typical shut-down current consumption is 0.2 μA  
at room temperature.  
ADP7157  
V
= 3.8V  
V
= 3.3V  
IN  
OUT  
VIN  
VOUT  
C
10µF  
C
OUT  
10µF  
IN  
VOUT_SENSE  
REF  
ON  
OFF  
EN  
C
REF  
1µF  
R1  
OUT  
Optimized for use with 10 μF ceramic capacitors, the ADP7157  
provides excellent transient performance.  
BYP  
C
BYP  
1µF  
V
= 1.2V × (R1 + R2)/R2  
REF_SENSE  
R2  
1k< R2 < 200kΩ  
VREG  
C
VIN  
VOUT  
REG  
1µF  
VOUT_SENSE  
CURRENT-LIMIT,  
THERMAL  
PROTECT  
GND  
INTERNAL  
VREG  
BYP  
REGULATOR  
GND  
Figure 42. Typical Adjustable Output Voltage Application Schematic  
OTA  
REFERENCE  
The R2 value must be greater than 1 kΩ to prevent excessive  
loading of the reference voltage appearing on the REF pin. To  
minimize errors in the output voltage caused by the REF_  
SENSE pin input current, the R2 value must be less than 200 kΩ.  
For example, when R1 and R2 each equal 100 kΩ, the output  
voltage is 2.4 V. The output voltage error introduced by the  
REF_SENSE pin input current is 10 mV or 0.33%, assuming a  
maximum REF_SENSE pin input current of 100 nA at TA = 125°C.  
REF_SENSE  
REF  
EN  
SHUTDOWN  
Figure 41. Simplified Internal Block Diagram  
Internally, the ADP7157 consists of a reference, an error amplifier,  
and a P-channel MOSFET pass transistor. The output current is  
delivered via the PMOS pass device, which is controlled by the  
error amplifier. The error amplifier compares the reference voltage  
with the feedback voltage from the output and amplifies the  
difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device pulls lower, allowing more  
current to pass and increasing the output voltage. If the feedback  
voltage is higher than the reference voltage, the gate of the  
PMOS device pulls higher, allowing less current to pass and  
decreasing the output voltage.  
The ADP7157 uses the EN pin to enable and disable the VOUT pin  
under normal operating conditions. When EN is high, VOUT  
turns on, and when EN is low, VOUT turns off. For automatic  
startup, tie EN to VIN.  
VIN  
7V  
VREG  
4V  
REF  
By heavily filtering the reference voltage, the ADP7157 achieves  
1.7 nV/√Hz output typical from 10 kHz to 1 MHz. Because the  
error amplifier is always in unity gain, the output noise is  
independent of the output voltage.  
REF_SENSE  
4V  
BYP  
4V  
VOUT  
4V  
The ADP7157 output voltage can be adjusted between 1.2 V and  
3.3 V and is available in four models that optimize the input voltage  
and output voltage ranges to keep power dissipation as low as  
possible without compromising PSRR performance. The output  
voltage is determined by an external voltage divider according  
to the following equation:  
VOUT_SENSE  
EN  
4V  
7V  
4V  
4V  
4V  
4V  
4V  
7V  
GND  
Figure 43. Simplified ESD Protection Block Diagram  
VOUT = 1.2 V × (1 + R1/R2)  
The ESD protection devices are shown in the block diagram as  
Zener diodes (see Figure 43).  
Rev. A | Page 13 of 23  
 
 
ADP7157  
Data Sheet  
APPLICATIONS INFORMATION  
Input and VREG Capacitor  
ADIsimPOWER DESIGN TOOL  
Connecting a 10 µF or greater capacitor from VIN to ground  
reduces the circuit sensitivity to PCB layout, especially when  
long input traces or high source impedance are encountered.  
The ADP7157 is supported by the ADIsimPowerdesign tool set.  
ADIsimPower is a collection of tools that produces complete  
power designs optimized for a specific design goal. The tools  
enable the user to generate a full schematic, bill of materials,  
and calculate performance within minutes. ADIsimPower can  
optimize designs for cost, area, efficiency, and device count,  
taking into consideration the operating conditions and limitations  
of the IC and all real external components. For more information  
about, and to obtain ADIsimPower design tools, visit  
www.analog.com/ADIsimPower.  
To maintain the best possible stability and PSRR performance,  
connect a 1 µF or greater capacitor from VREG to ground.  
REF Capacitor  
The REF capacitor, CREF, is necessary to stabilize the reference  
amplifier. Connect a 1 µF or greater capacitor between REF and  
ground  
BYP Capacitor  
CAPACITOR SELECTION  
The BYP capacitor, CBYP, is necessary to filter the reference  
buffer. A 1 µF capacitor is typically connected between BYP and  
ground. Capacitors as small as 0.1 µF can be used; however, the  
output noise voltage of the LDO increases as a result.  
Multilayer ceramic capacitors (MLCCs) combine small size, low  
ESR, low effective series inductance (ESL), and wide operating  
temperature range, making them an ideal choice for bypass  
capacitors. They are not without faults, however. Depending on  
the dielectric material, the capacit-ance can vary dramatically  
with temperature, dc bias, and ac signal level. Therefore, selecting  
the proper capacitor results in the best circuit performance.  
In addition, the BYP capacitor value can be increased to reduce  
the noise below 1 kHz at the expense of increasing the start-up  
time of the LDO. Very large values of CBYP significantly reduce  
the noise below 10 Hz. Tantalum capacitors are recommended  
for capacitors larger than approximately 33 µF because solid  
tantalum capacitors are less prone to microphonic noise issues.  
A 1 μF ceramic capacitor in parallel with the larger tantalum  
capacitor is recommended to ensure good noise performance at  
higher frequencies.  
Output Capacitor  
The ADP7157 is designed for operation with ceramic capacitors  
but functions with most commonly used capacitors when care  
is taken with regard to the ESR value. The ESR of the output  
capacitor affects the stability of the LDO control loop. A minimum  
of 10 µF capacitance with an ESR of 0.2 Ω or less is recommended  
to ensure the stability of the ADP7157. Output capacitance also  
affects transient response to changes in load current. Using a  
larger value of output capacitance improves the transient  
response of the ADP7157 to large changes in load current.  
Figure 44 shows the transient responses for an output  
capacitance value of 10 µF.  
2.0  
1.8  
1.6  
10Hz TO 100kHz  
1.4  
1.2  
1.0  
100Hz TO 100kHz  
0.8  
SLEW RATE = 2.5A/µs  
0.6  
0.4  
0.2  
0
I
OUT  
1
10  
100  
1000  
C
(µF)  
BYP  
V
OUT  
Figure 45. RMS Output Noise vs. Bypass Capacitance (CBYP  
)
B
B
W
CH1 500mA  
CH2 5.00mV  
M4.00µs A CH1  
700mA  
W
T
21.10%  
Figure 44. Output Transient Response, VOUT = 3.3 V, COUT = 10 µF,  
Channel 1 = Load Current, Channel 2 = VOUT  
Rev. A | Page 14 of 23  
 
 
 
 
Data Sheet  
ADP7157  
1k  
Use Equation 1 to determine the worst case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
C
C
C
C
= 1µF  
BYP  
BYP  
BYP  
BYP  
= 10µF  
= 100µF  
= 1000µF  
100  
10  
1
C
EFF = CBIAS × (1 − Tempco × (1 − TOL)  
where:  
BIAS is the effective capacitance at the operating voltage.  
(1)  
C
Tempco is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
In this example, the worst case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
0.1  
10  
C
BIAS is 9.72 µF at 5 V, as shown in Figure 47.  
Substituting these values in Equation 1 yields  
EFF = 9.72 µF × (1 − 0.15) × (1 − 0.1) = 7.44 µF  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 46. Noise Spectral Density vs. Frequency at Various CBYP Values  
C
Capacitor Properties  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temperature  
and tolerance at the chosen output voltage.  
Any good quality ceramic capacitors can be used with the  
ADP7157 if they meet the minimum capacitance and maximum  
ESR requirements. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior over temperature  
and applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R dielectrics  
with a voltage rating of 6.3 V to 50 V are recommended. However,  
Y5V and Z5U dielectrics are not recommended because of their  
poor temperature and dc bias characteristics.  
To guarantee the performance of the ADP7157, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The ADP7157 also incorporates an internal UVLO circuit to  
disable the output voltage when the input voltage is less than the  
minimum input voltage rating of the regulator. The upper and  
lower thresholds are internally fixed with about 200 mV of  
hysteresis.  
Figure 47 depicts the capacitance vs. dc bias voltage of a 1206,  
10 µF, 10 V, X5R capacitor. The voltage stability of a capacitor is  
strongly influenced by the capacitor size and voltage rating. In  
general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperature variation of the X5R  
dielectric is ~ 15% over the −40°C to +85°C temperature range  
and is not a function of package or voltage rating.  
12  
2.5  
+125°C  
+25°C  
–40°C  
2.0  
1.5  
1.0  
0.5  
0
10  
8
6
1.9  
2.0  
2.1  
V
2.2  
2.3  
4
(V)  
IN  
Figure 48. Typical UVLO Behavior at Various Temperatures, VOUT = 3.3 V  
2
Figure 48 shows the typical hysteresis of the UVLO function.  
This hysteresis prevents on/off oscillations that can occur when  
caused by noise on the input voltage as it passes through the  
threshold points.  
0
0
2
4
6
8
10  
DC BIAS VOLTAGE (V)  
Figure 47. Capacitance vs. DC Bias Voltage  
Rev. A | Page 15 of 23  
 
 
 
ADP7157  
Data Sheet  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
PROGRAMMABLE PRECISION ENABLE  
The ADP7157 uses the EN pin to enable and disable the VOUT pin  
under normal operating conditions. As shown in Figure 49, when a  
rising voltage on EN crosses the upper threshold, nominally 1.22 V,  
RISING  
V
OUT turns on. When a falling voltage on EN crosses the lower  
threshold, nominally 1.13 V, VOUT turns off. The hysteresis of  
the EN threshold is approximately 90 mV.  
The ADP7157 includes the discharge resistor on each VOUT,  
VREG, VREF, and BYP pin. These resistors are turned on when  
the device is disabled, helping to quickly discharge the associated  
capacitor.  
FALLING  
4.0  
3.5  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
–40°C  
–5°C  
INPUT VOLTAGE (V)  
+25°C  
3.0  
+85°C  
+125°C  
Figure 51. Typical EN Threshold vs. Input Voltages (VIN) for Different  
Temperatures  
2.5  
2.0  
1.5  
1.0  
0.5  
0
The upper and lower thresholds are user programmable and can be  
set higher than the nominal 1.22 V threshold by using two resistors.  
The resistance values, REN1 and REN2, can be determined from  
R
EN1 = REN2 × (VEN − 1.22 V)/1.22 V  
where:  
EN2 typically ranges from 10 kΩ to 100 kΩ.  
EN is the desired turn-on voltage.  
R
V
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
The hysteresis voltage increases by the factor  
EN PIN VOLTAGE (V)  
(REN1 + REN2)/REN2  
Figure 49. Typical VOUT Response to EN Pin Operation  
For the example shown in Figure 52, the EN threshold is 2.44 V  
with a hysteresis of 200 mV.  
3.5  
EN  
OUT  
V
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ADP7157  
V
= 3.8V  
V
= 3.3V  
IN  
OUT  
VIN  
VOUT  
VOUT_SENSE  
REF  
C
C
OUT  
10µF  
IN  
10µF  
R
EN1  
100kΩ  
ON  
OFF  
EN  
C
REF  
1µF  
R
EN2  
100kΩ  
R1  
BYP  
C
BYP  
1µF  
V
= 1.2V × (R1 + R2)/R2  
OUT  
REF_SENSE  
R2  
1kΩ < R2 < 200kΩ  
VREG  
C
REG  
1µF  
GND  
–2  
–1  
0
1
2
3
4
5
6
7
8
Figure 52. Typical EN Pin Voltage Divider  
TIME (ms)  
Figure 50. Typical VOUT Response to EN Pin Operation (VEN),  
OUT = 3.3 V, VIN = 5 V, CBYP = 1 µF  
Figure 52 shows the typical hysteresis of the EN pin. This  
hysteresis prevents on/off oscillations that can occur due to  
noise on the EN pin as it passes through the threshold points.  
V
Rev. A | Page 16 of 23  
 
 
 
Data Sheet  
ADP7157  
START-UP TIME  
CURRENT-LIMIT AND THERMAL SHUTDOWN  
The ADP7157 uses an internal soft start to limit the inrush  
current when the output is enabled. The start-up time for a  
3.3 V output is approximately 1.2 ms from the time the EN  
active threshold is crossed to when the output reaches 90% of  
its final value.  
The ADP7157 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP7157 is designed to current limit when the  
output load reaches 1.8 A (typical). When the output load  
exceeds 1.8 A, the output voltage is reduced to maintain a  
constant current limit.  
The rise time in seconds of the output voltage (10% to 90%) is  
approximately 0.0012 × CBYP, where CBYP is in microfarads.  
When the ADP7157 junction temperature exceeds 150°C, the  
thermal shutdown circuit turns off the output voltage, reducing  
the output current to zero. Extreme junction temperature can  
be the result of high current operation, poor circuit board  
design, or high ambient temperature. A 15°C hysteresis is  
included so that the ADP7157 does not return to operation after  
thermal shutdown until the on-chip temperature falls below  
135°C. When the device exits thermal shutdown, a soft start is  
initiated to reduce the inrush current.  
3.5  
3.0  
2.5  
2.0  
1.5  
Current limit and thermal shutdown protections are intended to  
protect the device against accidental overload conditions. Cases  
with a hard short from VOUT to ground or an extremely long  
soft-start timer typically cause the device to experience thermal  
oscillations between current limit and thermal shutdown.  
1.0  
EN  
0.5  
1µF  
4.7µF  
10µF  
0
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ms)  
THERMAL CONSIDERATIONS  
Figure 53. Typical Start-Up Behavior with CBYP = 1 µF  
In applications with a low input to output voltage differential, the  
ADP7157 does not dissipate much heat. However, in applications  
with high ambient temperature and/or high input voltage, the  
heat dissipated in the package may become large enough that it  
causes the junction temperature of the die to exceed the  
maximum junction temperature of 125°C.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
To guarantee reliable operation, the junction temperature of the  
ADP7157 must not exceed 125°C. To ensure that the junction  
temperature stays below this maximum value, the user must be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction temperature and ambient air (θJA). The θJA number  
is dependent on the package assembly compounds used, as well as  
the amount of copper used to solder the package ground and the  
exposed pad to the PCB.  
EN  
10µF  
47µF  
100µF  
–20  
0
20  
40  
60  
80  
100  
120  
140  
160  
TIME (ms)  
Figure 54. Typical Start-Up Behavior with CBYP = 1 µF to 100 µF  
REF, BYP, AND VREG PINS  
REF, BYP, and VREG generate voltages internally (VREF, VBYP  
and VREG) that require external bypass capacitors for proper  
operation. Do not, under any circumstances, connect any loads  
to these pins, because doing so compromises the noise and  
,
PSRR performance of the ADP7157. Using larger values of CBYP  
REF, and CREG is acceptable but can increase the start-up time,  
as described in the Start-Up Time section.  
,
C
Rev. A | Page 17 of 23  
 
 
 
 
ADP7157  
Data Sheet  
140  
120  
100  
80  
Table 7 shows typical θJA values of the 8-lead SOIC and 10-lead  
LFCSP packages for various PCB copper sizes.  
T
MAXIMUM  
J
Table 8 shows the typical ΨJB values of the 8-lead SOIC and  
10-lead LFCSP.  
2
2
500mm  
2
25mm  
6400mm  
Table 7. Typical θJA Values  
θJA (°C/W)  
60  
Copper Size (mm2)  
10-Lead LFCSP  
8-Lead SOIC  
123.8  
90.4  
251  
130.2  
93.0  
65.8  
55.6  
44.1  
40  
100  
500  
1000  
6400  
20  
66.0  
56.6  
45.5  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
1 Device soldered to minimum size pin traces.  
Figure 55. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP, TA = 25°C  
Table 8. Typical ΨJB Values  
140  
Package  
ΨJB (°C/W)  
T
MAXIMUM  
J
10-Lead LFCSP  
8-Lead SOIC  
29.1  
30.1  
120  
100  
80  
2
2
500mm  
2
25mm  
6400mm  
The junction temperature of the ADP7157 is calculated from the  
following equation:  
TJ = TA + (PD × θJA)  
where:  
(2)  
60  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
40  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
VIN and VOUT are the input and output voltages, respectively.  
)
(3)  
20  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
TOTAL POWER DISSIPATION (W)  
I
I
LOAD is the load current.  
GND is the ground current.  
Figure 56. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP, TA = 50°C  
130  
Power dissipation caused by ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to the following equation:  
T
MAXIMUM  
J
125  
120  
115  
110  
105  
100  
95  
2
2
500mm  
2
25mm  
6400mm  
TJ = TA + (((VIN VOUT) × ILOAD) × θJA)  
(4)  
As shown in Equation 4, for a given ambient temperature, input  
to output voltage differential, and continuous load current, a  
minimum copper size requirement exists for the PCB to ensure  
that the junction temperature does not rise above 150°C.  
The heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins and  
exposed pad of the ADP7157. Adding thermal planes  
underneath the package also improves thermal performance.  
However, as shown in Table 7, a point of diminishing returns is  
eventually reached, beyond which an increase in the copper  
area does not yield significant reduction in the junction to  
ambient thermal resistance.  
90  
85  
80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
Figure 57. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP, TA = 85°C  
Figure 55 to Figure 60 show junction temperature calculations  
for different ambient temperatures, power dissipation, and areas  
of PCB copper.  
Rev. A | Page 18 of 23  
 
 
 
Data Sheet  
ADP7157  
140  
120  
100  
80  
Thermal Characterization Parameter (ΨJB)  
T
MAXIMUM  
J
When board temperature is known, use the thermal character-  
ization parameter, ΨJB, to estimate the junction temperature rise  
(see Figure 61 and Figure 62). Use the board temperature (TB)  
and the power dissipation (PD) to calculate the maximum  
junction temperature (TJ) by  
2
2
500mm  
2
25mm  
6400mm  
60  
TJ = TB + (PD × ΨJB)  
(5)  
The typical ΨJB value is 29.1°C/W for the 10-lead LFCSP  
40  
package and 30.1°C/W for the 8-lead SOIC package.  
20  
140  
T
MAXIMUM  
J
0
120  
100  
80  
60  
40  
20  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Figure 58. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 25°C  
130  
T
MAXIMUM  
J
120  
110  
100  
90  
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
B
B
B
B
2
2
500mm  
2
25mm  
6400mm  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
TOTAL POWER DISSIPATION (W)  
80  
70  
Figure 61. Junction Temperature vs. Total Power Dissipation for  
the 10-Lead LFCSP  
60  
140  
50  
T
MAXIMUM  
J
40  
120  
100  
80  
60  
40  
20  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
TOTAL POWER DISSIPATION (W)  
Figure 59. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 50°C  
130  
T
MAXIMUM  
J
125  
120  
115  
110  
105  
100  
95  
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
B
B
B
B
2
2
2
25mm  
500mm  
6400mm  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TOTAL POWER DISSIPATION (W)  
Figure 62. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC  
90  
85  
80  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
Figure 60. Junction Temperature vs. Total Power Dissipation for  
the 8-Lead SOIC, TA = 85°C  
Rev. A | Page 19 of 23  
 
 
 
ADP7157  
Data Sheet  
When considering a VOUT = 1.8 V case, note that all four product  
models can generate a 1.8 V output, but the ADP7157-01 model  
provides the best PSRR performance, though other models, like  
the ADP7157-04, are still capable of generating 1.8 V output for  
PSRR relaxed applications.  
PSRR PERFORMANCE  
The ADP7157 is available in four models that optimize power  
dissipation and PSRR performance as a function of input and  
output voltage. See Table 9 and Table 10 for selection guides.  
It is recommended to select the corresponding product model for a  
particular output voltage range to achieve optimized PSRR  
performance. For example, select the ADP7157-04 model for  
The ADP7157 supports a 2.3 V to 5.5 V input range. Typically, a  
minimum 500 mV headroom is required to achieve the best PSRR  
performance above the maximum output voltage (VOUT  
_MAX) at  
1.2 A. For example, ADP7157-04 requires a minimum 3.8 V  
input voltage to achieve the best PSRR performance for a 3.3 V  
output at 1.2 A.  
V
OUT = 3.3V to achieve >80 dB PSRR (10 Hz to 100 kHz) with  
500 mV headroom.  
Table 9. Model Selection Guide for PSRR  
PSRR (dB) at 1.2 A; VIN = VOUT  
_
MAX + 0.5 V  
PSRR (dB) at 1.2 A; VIN = VOUT  
_
MAX + 0.6 V  
Model  
VOUT  
1.8  
2.3  
2.9  
3.3  
_
MAX (V)  
10 kHz  
70  
72  
75  
82  
100 kHz  
1 MHz  
52  
53  
55  
55  
10 kHz  
100 kHz  
1 MHz  
55  
57  
60  
60  
ADP7157-01  
ADP7157-02  
ADP7157-03  
ADP7157-04  
78  
70  
78  
72  
75  
75  
79  
84  
85  
83  
94  
86  
Table 10. Model Selection Guide for Input Voltage  
Model  
Adjustable VOUT Range (V)  
VOUT Range (V) for Optimized PSRR  
VREG (V)  
2.1  
2.6  
3.2  
3.6  
VIN Range (V)  
2.3 to 5.5  
2.8 to 5.5  
3.4 to 5.5  
3.8 to 5.5  
ADP7157-01  
ADP7157-02  
ADP7157-03  
ADP7157-04  
1.2 to 1.8  
1.2 to 2.3  
1.2 to 2.9  
1.2 to 3.3  
1.2 to 1.8  
1.8 to 2.3  
2.3 to 2.9  
2.9 to 3.3  
Rev. A | Page 20 of 23  
 
 
 
Data Sheet  
ADP7157  
PCB LAYOUT CONSIDERATIONS  
Place the input capacitor as close as possible to the VIN pin and  
ground. Place the output capacitor as close as possible to the  
VOUT pin and ground. Place the bypass capacitors (CREG, CREF  
and CBYP) for VREG, VREF, and VBYP close to the respective pins  
,
(VREG, REF, and BYP) and ground. The use of a 0805, a 0603,  
or a 0402 size capacitor achieves the smallest possible footprint  
solution on boards where area is limited. Maximize the amount of  
ground metal for the exposed pad, and use as many vias as  
possible on the component side to improve thermal dissipation.  
Figure 64. Sample 8-Lead SOIC PCB Layout  
Figure 63. Sample 10-Lead LFCSP PCB Layout  
Rev. A | Page 21 of 23  
 
ADP7157  
Data Sheet  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 65. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-10-9)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
2.29  
0.356  
5
4
6.20  
8
1
4.00  
6.00  
3.90  
3.80  
2.29  
5.80  
0.457  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 66. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-1)  
Dimensions shown in millimeters  
Rev. A | Page 22 of 23  
 
Data Sheet  
ADP7157  
ORDERING GUIDE  
Model1, 2  
Temperature Range Output Voltage Range (V) Package Description  
Package Option  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
RD-8-1  
RD-8-1  
RD-8-1  
RD-8-1  
Branding  
LSX  
LT0  
LT1  
LT2  
ADP7157ACPZ-01-R7  
ADP7157ACPZ-02-R7  
ADP7157ACPZ-03-R7  
ADP7157ACPZ-04-R7  
ADP7157ARDZ-01-R7  
ADP7157ARDZ-02-R7  
ADP7157ARDZ-03-R7  
ADP7157ARDZ-04-R7  
ADP7157CP-04-EVALZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
1.2 to 1.8  
1.2 to 2.3  
1.2 to 2.9  
1.2 to 3.3  
1.2 to 1.8  
1.2 to 2.3  
1.2 to 2.9  
1.2 to 3.3  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 To order a device with voltage options other than the listed options, contact your local Analog Devices sales or distribution representative.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12938-0-5/16(A)  
Rev. A | Page 23 of 23  
 

相关型号:

ADM7154ACP

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ACPZ-1.8-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ACPZ-3.3-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ARD

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7154ARDZ-3.3-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155

High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-01-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-02-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-03-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-04

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ACPZ-04-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI

ADM7155ARDZ-01-R7

600 mA, Ultralow Noise, High PSRR, RF Linear Regulator
ADI