ADMOD79JQ [ADI]

IC SPECIALTY ANALOG CIRCUIT, CDIP28, 0.600 INCH, CERDIP-28, Analog IC:Other;
ADMOD79JQ
型号: ADMOD79JQ
厂家: ADI    ADI
描述:

IC SPECIALTY ANALOG CIRCUIT, CDIP28, 0.600 INCH, CERDIP-28, Analog IC:Other

CD 信息通信管理
文件: 总9页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Dual-Channel ∑∆ Modulator  
ADM0D79*  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
High-Perform ance ∑∆ ADC Building Block  
Fifth-Order, 64 Tim es Oversam pling Modulator w ith  
Patented Noise-Shaping  
VINL+  
DAC  
Modulator Clock Rate to 3.57 MHz  
103 dB Dynam ic Range (for 20 kHz Input  
Bandw idth)  
LOUT  
Differential Architecture for Superior SNR and Dynam ic  
Range  
Dual-Channel Differential Analog Inputs (±6.2 V  
Differential Input Voltage)  
DAC  
VINL–  
VINR+  
REFERENCE  
DAC  
On-Chip Voltage Reference  
APPLICATIONS  
Digital Audio  
ROUT  
Medical Electronics  
Electronic Im aging  
Sonar Signal Processing  
Instrum entation  
DAC  
VINR–  
P RO D UCT O VERVIEW  
dynamic range and excellent common-mode rejection character-  
istics. Because its modulator is single-bit, the ADMOD79 is  
inherently monotonic and has no mechanism for producing  
differential linearity errors. Analog and digital supply connec-  
tions are separated to isolate the analog circuitry from the digital  
supplies.  
T he ADMOD79 Sigma-Delta (∑∆) modulator is a building  
block which can be used to build a superior analog-to-digital  
conversion system customized to a particular application’s  
requirement. T he ADMOD79 is a two-channel, fully differen-  
tial modulator. Each channel consists of a fifth-order one-bit  
noise shaping modulator. An on-chip voltage reference provides  
a voltage source to both channels that is stable over temperature  
and time. T here are separate single-bit digital outputs for each  
channel. T he ADMOD79 accepts a 64 × FS input master clock  
(SMPCLK) that can range from 2.5 kHz to 3.57 MHz.  
T he ADMOD79 is fabricated in a BiCMOS process and is  
supplied in a 0.6" wide 28-lead cerdip package. T he  
ADMOD79 operates from ±5 V power supplies over the  
temperature range of –25°C to +70°C.  
Input signals are sampled at 64 × FS on switched-capacitors,  
eliminating external sample-and-hold amplifiers and minimizing  
the requirements for antialias filtering at the input. With  
simplified antialiasing, linear phase can be preserved across the  
passband. T he ADMOD79s proprietary fifth-order differential  
switched-capacitor modulator architecture shapes the one-bit  
comparator’s quantization noise out of the passband. T he high  
order of the modulator randomizes the modulator output,  
reducing idle tones in the output spectrum to very low levels.  
T he ADMOD79s differential architecture provides increased  
*P r otected by U.S. P atent Num ber s 5055843, 5126653, and other s pending.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
ADMOD79–SPECIFICATIONS  
TEST CO ND ITIO NS UNLESS O TH ERWISE NO TED  
Supply Voltages  
±5  
V
Input Signal  
974  
Hz  
Ambient T emperature  
Input Clock (SMPCLK)  
25  
3.072  
°C  
MHz  
–0.5  
0 to 20  
dB Full-Scale  
kHz  
Passband  
Min  
Typ  
Max  
Units  
ANALOG PERFORMANCE  
Dynamic Range (0 Hz to 20 kHz, –60 dB Input)  
No A-Weight Filter  
With A-Weight Filter  
Signal to (Distortion + Noise)  
Full-Scale Input  
100  
90  
103  
105  
dB  
dB  
96  
83  
–20 dB Input  
T rimmed1 Signal to (Distortion + Noise)  
Full-Scale Input  
93  
98  
83  
dB  
dB  
–20 dB Input  
T rimmed1 Signal to T otal Harmonic Distortion  
Full-Scale Input  
98  
100  
dB  
dB  
–20 dB Input  
Analog Inputs  
Differential Input Range2  
Input Impedance at Each Input Pin  
DC Accuracy  
±5.89  
±6.2  
7.0  
±6.51  
V
kΩ  
Gain Error  
±5  
%
Interchannel Gain Mismatch  
Gain Drift  
Offset Error (Referrred to Input)  
Offset Drift (Referred to Input)  
Voltage Reference*  
±0.15  
dB  
±200  
±0.057  
±13  
ppm/°C  
% of FS  
ppm/°C  
V
±0.343  
2.4  
2.8  
3.2  
Crosstalk (EIAJ Method)  
100  
dB  
Interchannel Phase Deviation  
±0.001  
Degrees  
DIGIT AL T IMING (Guaranteed over 0°C T A 70°C, AVSS = –5.0 V ± 5%, AVDD = DVDD = +5.0 V ± 5%)  
tSCP  
SMPCLK Period  
0.28  
140  
140  
400  
µs  
ns  
ns  
ns  
tSCPWL  
tSCPWH  
tOPD  
SMPCLK LO Pulse Width  
SMPCLK HI Pulse Width  
Propagation Delay, SMPCLK  
Falling Edge to ROUT , LOUT  
Propagation Delay, SMPCLK  
Rising Edge to RRESET, LRESET  
100  
125  
tRPD  
ns  
DIGIT AL I/O (Guaranteed over 0°C T A 70°C, AVSS = –5.0 V ± 5%, AVDD = DVDD = +5.0 V ± 5%)  
Input Voltage HI (VIH)  
3.4  
V
Input Voltage LO (VIL)  
IIH @ VIH = 5 V  
IIL @ VIL = 0 V  
Output Voltage HI (VOH @ IOH = 360 µA)  
Output Voltage LO (VOL @ IOL = 1.6 mA)  
0.8  
10  
10  
V
µA  
µA  
V
4.0  
0.5  
V
POWER SUPPLIES  
Current, DVDD  
1.0  
76  
8
1.5  
95  
12  
20  
mA  
mA  
mA  
mA  
Current, AVDD1, AVSS1  
Current, AVDD2, AVSS2  
Current, AVDD1, AVSS1 – Power Down  
Dissipation  
14  
Operation (All Supplies)  
Power Down (All Supplies)  
Power Supply Rejection  
1 kHz 300 mV p-p Signal at Analog Supply Pins  
845  
225  
1078  
328  
mW  
mW  
102  
+25  
dBFS  
T EMPERAT URE RANGE  
Specifications Guaranteed  
Functionality Guaranteed  
Storage  
°C  
°C  
°C  
–25  
–60  
+70  
+100  
NOT ES  
1Differential gain imbalance manually trimmed to eliminate second harmonic. See “Application Issues” below.  
2T he differential input range is twice the range seen at each input pin. T he input range corresponds to the full-scale digital output range.  
*Guaranteed, not tested.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADMOD79  
ABSO LUTE MAXIMUM RATINGS*  
P IN D ESCRIP TIO NS  
Input/  
Min  
Max  
Units  
P in  
Num ber Mnem onic O utput D escription  
DVDD to DGND and  
AVDD1/AVDD2 to AGND  
AVSS1/AVSS2 to AGND  
AVSS2 to AVSS1  
Digital Input to DGND  
Analog Inputs  
AGND to DGND  
Reference Voltage  
Soldering  
0
–6  
–0.3  
–0.3  
6
0
V
V
V
V
V
V
1
2
RRESET  
ROUT  
O
O
Right Modulator Reset  
Right Bitstream Modulator  
Output  
3.072 MHz (Nominal)  
Modulator Input Clock  
Digital Ground  
DVDD + 0.3  
AVSS1 + 0.3  
0.3  
3
SMPCLK  
I
AVSS1 – 0.3  
–0.3  
Indefinite Short Circuit to Ground  
4
DGND  
AVSS1  
AVSS2  
AGND  
N/C  
I
I
I
I
5
–5 V Analog Supply  
–5 V Analog Logic Supply  
+300  
10  
°C  
sec  
6
7
Analog Ground  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
8
No Connect  
9
PWRDWN  
N/C  
I
Power Down  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
No Connect  
VINR–  
VINR+  
VREFIR  
VREFOR  
VREFOL  
VREFIL  
VINL+  
VINL–  
AGND  
N/C  
I
Right Inverting Input  
Right Noninverting Input  
Right Reference Input  
Right Reference Output  
Left Reference Output  
Left Reference Input  
Left Noninverting Input  
Left Inverting Input  
Analog Ground  
O RD ERING GUID E  
I
I
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
O
O
I
Model  
ADMOD79JQ  
0°C to +70°C  
Cerdip  
Q-28  
I
I
P IN CO NFIGURATIO NS  
I
No Connect  
RRESET  
1
2
3
4
5
6
7
8
9
28 LRESET  
27  
N/C  
No Connect  
ROUT  
SMPCLK  
DGND  
LOUT  
AVDD  
N/C  
1
2
I
+5 V Analog Supply  
No Connect  
26 CALIB  
25 DVDD  
AVSS  
AVSS  
1
2
24 AVDD  
23 N/C  
22 AVDD  
21 N/C  
20 N/C  
2
AVDD  
I
+5 V Analog Logic Supply  
+5 V Digital Supply  
Calibration  
Left Bitstream Modulator  
Output  
DVDD  
I
ADMOD79  
TOP VIEW  
(Not to Scale)  
AGND  
N/C  
1
CALIB  
LOUT  
I
O
PWRDWN  
N/C 10  
VINR– 11  
VINR+ 12  
19 AGND  
18 VINL–  
17 VINL+  
16 VREF IL  
15 VREF OL  
28  
LRESET  
O
Left Modulator Reset Signal  
V
REF IR 13  
V
REF OR 14  
N/C = NO CONNECT  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADMOD79 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
ADMOD79  
D EFINITIO NS  
TH EO RY O F O P ERATIO N  
Resonators in the proprietary fifth-order ADMOD79 modulator  
architecture place zeros in the noise-shaping spectrum, reducing  
the quantization noise at lower frequencies. (See Figure 1.)  
T he ADMOD79s fully differential architecture increases its  
signal-to-noise ratio performance. Completely independent  
right and left channels with separate references minimize  
crosstalk. Modulator clock rates as high as 3.57 MHz are  
supported.  
D ynam ic Range  
T he ratio of a full-scale output signal to the integrated output  
noise in the passband (0 kHz to 20 kHz with a 3.072 MHz  
modulator clock rate), expressed in decibels (dB). Dynamic  
range is measured with a –60 dB input signal and is equal to (S/  
[T HD+N]) +60 dB.  
Signal to (D istor tion + Noise) (or S/[TH D +N])  
T he ratio of the root-mean-square (rms) value of the fundamen-  
tal input signal to the rms sum of all spectral components in the  
passband, expressed in decibels (dB).  
–80  
–85  
–90  
Signal to Total H ar m onic D istor tion (or S/TH D )  
T he ratio of the rms value of the fundamental input signal to the  
rms sum of all harmonically related spectral components in the  
passband, expressed in decibels (dB).  
–95  
–100  
–105  
–110  
Gain Er r or  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
With a near full-scale input, the ratio of actual output to  
expected output, expressed as a percentage.  
Inter channel Gain Mism atch  
With near full-scale inputs, the ratio of outputs of the two stereo  
channels, expressed in decibels.  
Gain D r ift  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY – kHz  
Change in response to a near full-scale input with a change in  
temperature, expressed as parts-per-million (ppm) per °C.  
Figure 1. Noise Spectrum per 5 Hz (3.072 MHz Modulator  
Clock)  
Midscale O ffset Er r or  
Output response to a midscale input (i.e., zero volts dc),  
expressed as a percentage of full scale.  
User-supplied digital decimation filters allow for a broad range  
of performance and filter functions. For standard, brick-wall  
digital low-pass filters with sufficient stopband attenuation, the  
following performance can be achieved with the ADMOD79  
running at a 3.072 MHz modulator clock rate:  
Midscale D r ift  
Change in midscale offset error with a change in temperature,  
expressed as parts-per-million (ppm) of full scale per °C.  
Cr osstalk  
Filter Cut-O ff  
Frequency  
O versam pling  
Ratio  
Signal-to-Noise  
Ratio  
Ratio of response on one channel with a grounded input to a  
full-scale 1 kHz sine-wave input on the other channel, expressed  
in decibels.  
20 kHz  
10 kHz  
5 kHz  
2.5 kHz  
1.25 kHz  
625 Hz  
64  
103 dB  
106 dB  
109 dB  
112 dB  
115 dB  
118 dB  
Inter channel P hase D eviation  
128  
256  
512  
1024  
2048  
Difference in input sampling times between stereo channels,  
expressed as a phase difference in degrees between 1 kHz  
inputs.  
P ower Supply Rejection  
With analog inputs grounded, energy at the output when a  
300 mV p-p signal applied to the power supply pins, expressed  
in decibels of full scale.  
–4–  
REV. 0  
ADMOD79  
In general, since the noise is spectrally white in the passband,  
each halving of the input bandwidth with a constant modulator  
clock frequency will increase the SNR across the bandwidth by  
3 dB.  
O P ERATING FEATURES  
T he ADMOD79 produces a pair of noise-shaped bitstreams  
(LOUT and ROUT ) from a pair of differential analog inputs  
(+VINL & VINL and +VINR & VINR). T he analog input  
signal range at any given signal input pin is ±3.1 V. T his  
implies that voltage difference across each differential pair can  
range ±6.2 V. T he modulator clock oversamples the analog  
input at a rate much higher than the input bandwidth, signifi-  
cantly reducing the requirements on antialiasing filters. Only  
signals with frequency components near the very high modula-  
tor clock rate will alias into the passband. T he high clock rate  
also eliminates the requirement for a sample-and-hold amplifier.  
Power consumption of the ADMOD79 is 1078 mW maximum.  
However, in power-down mode, consumption is reduced to  
328 mW (with a 3.072 MHz modulator clock). Note that the  
ADMOD79 will still function in this mode. In the power-down  
mode, the ADMOD79 will operate with a slower modulator  
clock over a more limited bandwidth. T he SNR over the band  
of interest is reduced relative to that possible with a full-speed  
modulator clock.  
Holding the calibration input, CALIB, LO disconnects the  
input from the modulators, regardless of the signal applied to  
the input pins. T his feature allows for system calibration.  
Allow at least ten modulator clock cycles after asserting CALIB  
before reading the output bit streams.  
T ypical modulator noise integrated across the passband of the  
modulator as shown in Figure 1 is always 103 dB, regardless of  
modulator clock rate. T he width of that passband, however,  
scales down linearly with a slower clock. For example, if the  
modulator clock is slowed by a factor of two, noise will begin to  
rise at 10 kHz instead of 20 kHz. Since the same inband noise  
is now spread across a narrower passband, the noise per one Hz  
bin will also increase accordingly. T hus, the passband of  
Figure 1 will narrow and its floor will rise.  
Should an input overdrive the modulator to instability, the  
ADMOD79 will reset itself within 25 modulator clock cycles.  
Each modulator independently produces an output signal on  
pins LRESET and RRESET, respectively, indicating the  
initiation of a reset sequence. T hese pins, normally HI, will go  
LO for one cycle should instability occur.  
Modulator  
Clock  
Modulator  
P assband  
SNR per  
O ne H z Bin  
SNR  
T he pair of modulator outputs are T T L-compatible but are in  
fact driven to CMOS logic levels. Digital output data is valid on  
the rising edge of SMPCLK. For highest performance, the  
ADMOD79 modulator has been designed so that the full-scale  
range of the one’s density is from 20% to 80% (i.e., –dc full  
scale = 20% one’s density, +dc full scale = 80% one’s density).  
T he user’s decimator should effectively gain up the modulator’s  
output by a factor of 5/3 to produce a full-scale output corre-  
sponding to a full-scale input.  
3.072 MHz  
1.536 MHz  
768 kHz  
384 kH z  
192 kHz  
96 kHz  
20 kHz  
10 kHz  
5 kHz  
2.5 kH z  
1.25 kHz  
625 Hz  
103 dB  
103 dB  
103 dB  
103 dB  
103 dB  
103 dB  
145 dB  
142 dB  
139 dB  
136 dB  
133 dB  
130 dB  
T he power-down mode will support modulator clocks as fast as  
384 kHz, shown above in bold.  
T he ADMOD79 contains a pair of +2.8 V voltage references.  
T he user has the option of using these internal references or  
supplying an external reference. In the former case, two  
external capacitors and two external resistors are required for  
voltage reference noise reduction. T hese capacitors and  
resistors should be connected between reference inputs (VREFIL  
and VREFIR) and analog ground as shown in Figure 2. T he  
reference outputs (VREFOL and VREFOR) should be connected  
directly to the reference input pair. T o use external  
As described above, the SNR can always be increased at a  
constant modulator clock rate by limiting the input band-  
width with a brick-wall digital decimation filter. T his same  
technique can be used in the power-down mode. T hus,  
with a 384 kHz clock in the power-down mode, 105 dB  
would be achievable over a 1.25 kHz bandwidth (128 times  
oversampling) and 108 dB over a 625 Hz band of interest  
(256 times oversampling).  
reference(s), bypass the reference(s) to analog ground and  
connect to the reference inputs (VREFIL and VREFIR). T he  
reference outputs become no connects.  
T he ADMOD79s fifth-order modulators use a distinctive  
architecture of feed-forward and feed-back signal paths to  
achieve a high performance level. Gain is controlled by  
switched capacitors. Resonator loops feeding back from the  
third and fifth stage outputs allow the placement of zeros in the  
quantization-noise transfer function. T hese zeros have been  
chosen to further reduce noise in the passband. T he noise  
floor is dominated by spectrally flat thermal circuit noise in the  
passband.  
T he ADMOD79 requires a ±5 V analog supply and a +5 V  
digital supply. T he analog supply should be connected to the  
two sets of analog supply pins, which should be decoupled from  
each other. (T he AVSS1 and AVDD1 pins power the amplifiers  
and other active analog circuitry; the AVSS2 and AVDD2 pins  
provide voltage for the modulator’s switches.) See Figure 4 for  
the recommended bypassing configuration.  
REV. 0  
–5–  
ADMOD79  
100pF  
10µF  
5.76kΩ  
NE5532 OR  
OP275  
200Ω  
249kΩ  
5.62kΩ  
V
CC  
RIGHT  
INPUT  
0.1µF  
51Ω  
13  
14  
0.1µF  
5.62kΩ  
5.62kΩ  
0.01µF  
NPO  
100kΩ  
V
IR  
V
OR  
REF  
REF  
0.0047µF  
NPO  
51Ω  
V
SS  
11  
12  
VINR–  
VINR+  
5.62kΩ  
0.01µF  
NPO  
0.1µF  
ADMOD79  
249kΩ  
5.49kΩ  
V
17  
18  
VINL+  
SS  
NE5532 OR  
OP275  
100pF  
100pF  
VINL–  
V
IL  
V
OL  
REF  
REF  
5.36kΩ  
V
CC  
16  
15  
249kΩ  
5.62kΩ  
0.1µF  
51Ω  
200Ω  
0.01µF  
NPO  
100kΩ  
5.62kΩ  
5.62kΩ  
V
CC  
0.0047µF  
0.1µF  
NPO  
LEFT  
INPUT  
51Ω  
5.62kΩ  
10µF  
0.01µF  
NPO  
0.1µF  
V
SS  
NE5532 OR  
OP275  
249kΩ  
5.9kΩ  
100pF  
Figure 2. Recom m ended Input Structure  
VINL+ signals that can be found in Figure 2. By trimming gain  
imbalance, second harmonic distortion can always be elimi-  
nated. In the “Specifications” section of this data sheet, a  
AP P LICATIO NS ISSUES  
Recom m ended Input Str uctur e  
T he ADMOD79 input structure is fully differential for im-  
proved common-mode rejection properties and increased  
dynamic range. Since each input pin sees ±3.1 V swings, each  
channel’s input signal effectively swings ±6.2 V, i.e., across a  
12.4 V range.  
+5V ANALOG  
7805  
V
IN  
OUT  
CC  
GND  
0.1µF  
22µF  
0.1µF  
10µF  
AGND  
In most cases, a single-ended-to-differential input circuit is  
required. Shown in Figure 2 is the recommended circuit, based  
on extensive experimentation. Note that to maximize signal  
swing, the op amps in this circuit are powered by ±12 V or  
greater supplies. T he ADMOD79 itself requires ±5 V supplies.  
If ±5 V supplies are not available in the target system, Figure 3  
illustrates the recommended circuit for generating these  
supplies.  
0.1µF  
22µF  
0.1µF  
10µF –5V ANALOG  
GND  
V
SS  
IN  
OUT  
7905  
+5V DIGITAL  
V
DD  
+12V < V < +18V  
CC  
0.1µF  
22µF  
–12V > V > –18V  
SS  
DGND  
Figure 3. ADMOD79 Recom m ended Power Conditioning  
Circuit  
T he trim potentiometers shown in Figure 2 connecting the  
minus (–) inputs of the driving op amps permit trimming out dc  
offset, if desired.  
distinction is drawn between trimmed and untrimmed signal-to-  
(noise + distortion) and trimmed and untrimmed total har-  
monic distortion. T he untrimmed specifications are tested with  
the input structure shown in Figure 2. T he trimmed specifica-  
tions are based on a part-by-part trim of this differential gain to  
eliminate the second harmonic.  
Note that the driving op amp feedback resistors all have slightly  
different values. T hese values produce a slight differential gain  
imbalance and were derived empirically to minimize second  
harmonic distortion on average and produce the lowest overall  
T HD without part-by-part trimming. Replacing one of these  
feedback resistors in each channel with a trim potentiometer  
allows trimming the differential gain imbalance for part-by-part  
optimal performance. Analog Devices has done this in the lab  
by paralleling 100 ktrim potentiometers around the 5.49 kΩ  
and 5.36 kinput feedback resistors for the VINR+ and  
T he input circuit of Figure 2 could be implemented with a  
single pair of operational amplifiers per channel, one inverting  
and one noninverting. T he recommended architecture shown in  
Figure 2 using three inverting op amps per channel provides  
isolation of the op amp inputs from charge dumped back from  
–6–  
REV. 0  
ADMOD79  
the ADMOD79s input capacitors when these large capacitors  
switch. T he performance from a two op amp per channel input  
structure may be adequate in many applications.  
RRESET  
ROUT  
1
2
3
4
5
6
7
8
9
28 LRESET  
DIGITAL  
GROUND PLANE  
27 LOUT  
26 CALIB  
25 DVDD  
Layout and D ecoupling Consider ations  
SMPCLK  
DGND  
Obtaining the best possible performance from a state-of-the-art  
modulator like the ADMOD79 requires close attention to board  
layout. From extensive experimentation, Analog Devices has  
discovered principles that produce typical values of 103 dB  
dynamic range and 98 dB S/(T HD+N) in target systems with an  
oversampling ratio of 64. T he principles and their rationales are  
listed below in descending order of importance. T he first two  
pertain to bypassing and are illustrated in Figure 4.  
AVSS1  
24 AVDD  
23 N/C  
22 AVDD  
21 N/C  
20 N/C  
2
AVSS  
2
AGND  
N/C  
1
ANALOG  
GROUND PLANE  
PWRDWN  
N/C 10  
VINR– 11  
VINR+ 12  
VREF IR 13  
19 AGND  
18 VINL–  
17 VINL+  
16 VREF IL  
15 VREF OL  
+5V ANALOG  
10µF  
–5V ANALOG  
ADMOD79  
10µF  
14  
VREF OR  
+5V DIGITAL  
OSCILLATOR  
5
22  
DD  
19  
7
N/C = NO CONNECT  
AV  
1
AV  
1
AGND  
AGND  
SS  
3
SMPCLK  
0.1µF  
ADMOD79  
Figure 5. ADMOD79 Recom m ended Ground Plane  
AV  
2
AV  
2
DV  
DD  
DGND  
SS  
DD  
Each reference input pin (13 and 16) should be bypassed with  
a 200 resistor and a 10 µF capacitor as shown in Figure 2.  
One end of the resistor should be placed as close to the package  
pin as possible, and the trace to it from the reference pin should  
be as short and as wide as possible. Keep this trace away from  
input pin traces! Coupling between input and reference traces  
will cause second harmonic distortion. T he resistor is used to  
reduce the high-frequency coupling into the references from the  
board.  
6
24  
25  
4
10µF  
–5V ANALOG  
0.1µF  
10µF  
+5V DIGITAL  
+5V ANALOG  
Figure 4. Recom m ended Bypassing and Oscillator  
Circuits  
T he digital bypassing of the ADMOD79 is a critical item on the  
board layout. T he user should tie a bypass capacitor set (0.1 µF  
ceramic and 10 µF tantalum) on the DVDD supply pin as close to  
the pin as possible. T he trace between the package pin and the  
capacitors should be as short and as wide as possible. T his will  
prevent digital supply current transients from being inductively  
transmitted to the inputs of the part.  
Wherever possible, minimize the capacitive load on digital  
outputs of the part. T his will reduce the digital spike currents  
drawn from the digital supply pins.  
D igital Tim ing  
T he delay from a SMPCLK falling edge to ROUT and LOUT  
data valid is tOPD. T he minimum SMPCLK LO pulse width is  
tSCPWL, and the minimum SMPCLK HI pulse width is tSCPWH  
T he minimum SMPCLK period is tSCP. T he delay from a  
.
T he analog input bypassing is a second critical item. Use  
0.01 µF NPO ceramic capacitors from each input pin to the  
analog ground plane, with a clear ground path from the bypass  
capacitor to the AGND pin on the same side of the package  
(Pins 7 and 19). T he trace between this package pin and the  
capacitor should be as short and as wide as possible. A  
0.0047 µF NPO ceramic capacitor should be placed between  
each set of input pins (11 to 12, and 17 to 18) to complete the  
input bypassing. T his input bypassing minimizes the RF  
transmission and reception capability of the ADMOD79 inputs.  
SMPCLK rising edge to RRESET or LRESET is tRPD. T hese  
timing relationships are shown in Figure 6.  
tSCP  
tSCPWL  
tOPD  
SMPCLK  
tSCPWH  
ROUT, LOUT  
RRESET,  
T he ADMOD79 should be placed on a split ground plane as  
illustrated in Figure 5. T he digital ground plane should be  
placed under the top end of the package and the analog ground  
plane should be placed under the bottom end of the package as  
shown in Figure 5. T he split should be between Pins 4 and 5  
and between Pins 24 and 25. T he ground planes should be tied  
together at one spot underneath the center of the package. T his  
ground plane technique also minimizes RF transmission and  
reception.  
LRESET  
tRPD  
Figure 6. Digital Tim ing Diagram  
REV. 0  
–7–  
ADMOD79  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
Q -28  
28-Lead Cer dip  
0.005 (0.13) MIN  
0.100 (2.54) MAX  
15  
28  
0.610 (15.49)  
PIN 1  
0.500 (12.70)  
14  
1
0.015  
(0.38)  
MIN  
0.620 (15.75)  
0.590 (14.99)  
1.490 (37.85) MAX  
0.225  
(5.72)  
MAX  
0.150  
(3.81)  
MIN  
0.018 (0.46)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
0.110 (2.79)  
0.090 (2.29)  
0.026 (0.66)  
0.014 (0.36)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
–8–  
REV. 0  
ADMOD79  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption*  
Model  
ADMOD79JQ  
0°C to +70°C  
Cerdip  
Q-28  
*For outline information see Package Information section.  
REV. 0  
–9–  

相关型号:

ADMP401-1

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP401-1ACEZ-RL

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP401-1ACEZ-RL7

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP401ACEZ

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP401ACEZ-RL

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP401ACEZ-RL7

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP404

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP404ACEZ

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP404ACEZ-RL

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP404ACEZ-RL7

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP405

Omnidirectional Microphone with Bottom Port and Analog Output
ADI

ADMP405ACEZ

Omnidirectional Microphone with Bottom Port and Analog Output
ADI