ADMV1012 [ADI]

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter;
ADMV1012
型号: ADMV1012
厂家: ADI    ADI
描述:

17.5 GHz to 24 GHz, GaAs, MMIC, I/Q Downconverter

文件: 总19页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
17.5 GHz to 24 GHz,  
GaAs, MMIC, I/Q Downconverter  
ADMV1012  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VDRF VGRF  
RF input frequency range: 17.5 GHz to 24 GHz  
IF output frequency range: 2.5 GHz to 3.5 GHz  
LO input frequency range: 7 GHz to 13.5 GHz  
Conversion gain (with hybrid): 15 dB typical  
SSB noise figure: 2.5 dB typical  
Input IP3: 3 dBm typical  
Input P1dB: −5 dBm typical  
25 dB of image rejection  
27  
31  
ADMV1012  
RFIN  
3
LOIN 10  
VDLO  
20 IF2  
22 IF1  
×2  
15  
2
4
GND  
GND  
GND  
11  
Single-ended, 50 Ω RF and LO input ports  
Exposed pad, 4.9 mm × 4.9 mm, 32-terminal LCC  
Figure 1.  
APPLICATIONS  
Point to point microwave radios  
Radars and electronic warfare systems  
Instrumentation, automatic test equipment (ATE)  
Satellite communications  
GENERAL DESCRIPTION  
The ADMV1012 is a compact, gallium arsenide (GaAs)  
design, monolithic microwave integrated circuit (MMIC), in  
phase/quadrature (I/Q) downconverter in a RoHS compliant  
package optimized for point to point microwave radio designs  
that operate in the 17.5 GHz to 24 GHz input frequency range.  
The I/Q mixer topology reduces the need for filtering of unwanted  
sideband. The ADMV1012 is a much smaller alternative to  
hybrid style, double sideband (DSB) downconverter assemblies  
and eliminates the need for wire bonding by allowing the use of  
surface-mount manufacturing assemblies.  
The ADMV1012 provides 15 dB of conversion gain with 25 dB  
of image rejection, and 2.5 dB noise figure. The ADMV1012  
uses a radio frequency (RF) low noise amplifier (LNA) followed  
by an I/Q, double balanced mixer, where a driver amplifier drives  
the local oscillator (LO) with a ×2 multiplier. IF1 and IF2 mixer  
quadrature outputs are provided, and an external 90° hybrid is  
required to select the required sideband.  
The ADMV1012 downconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm, 32-terminal LCC. The ADMV1012  
operates over the −40°C to +85°C temperature range.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADMV1012  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Return Loss Performance.......................................................... 12  
Spurious Performance ............................................................... 13  
M × N Spurious Performance for LO = 0 dBm...................... 13  
Theory of Operation ...................................................................... 14  
LO Driver Amplifier .................................................................. 14  
Mixer............................................................................................ 14  
LNA.............................................................................................. 14  
Applications Information.............................................................. 15  
Typical Application Circuit....................................................... 15  
Evaluation Board Information ................................................. 16  
Bill of Materials........................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Upper Sideband (Low-Side LO)................................................. 6  
Lower Sideband (High-Side LO)................................................ 8  
IF Bandwidth .............................................................................. 10  
Leakage Performance................................................................. 11  
REVISION HISTORY  
2/2018—Rev. 0 to Rev. A  
Changed M × N Spurious Performance for LO = 4 dBm Section  
to M × N Spurious Performance for LO = 0 dBm Section ....... 13  
Changes to M × N Spurious Performance for LO = 0 dBm  
Section.............................................................................................. 13  
Changes to LO Driver Amplifier Section.................................... 14  
Changes to Applications Information Section and Figure 34........ 15  
Changes to Power-On Sequence Section .................................... 16  
Changes to Figure 37...................................................................... 17  
Changes to Table 6.......................................................................... 18  
Changes to Ordering Guide.......................................................... 19  
Changes to Features Section, General Description Section, and  
Figure 1 .............................................................................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Added Thermal Resistance Section and Table 3; Renumbered  
Sequentially ....................................................................................... 4  
Changes to Figure 2 and Table 4..................................................... 5  
Changes to Figure 3 and Figure 6................................................... 6  
Changes to Figure 12........................................................................ 7  
Changes to Figure 24, Figure 25, and Figure 26 ......................... 10  
Changes to Figure 27 through Figure 30..................................... 11  
10/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 19  
 
Data Sheet  
ADMV1012  
SPECIFICATIONS  
Data taken at VDRF = 3 V, V DLO = 3 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with a Mini-Circuits® QCN-45+ power  
splitter for both upper sideband (low-side LO) and lower sideband (high-side LO), unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
INPUT FREQUENCY RANGE  
Radio Frequency  
Local Oscillator  
RF  
LO  
17.5  
7
24  
13.5  
GHz  
GHz  
dBm  
LO AMPLITUDE  
−4  
0
+4  
3.5  
20  
OUTPUT FREQUENCY RANGE  
Intermediate Frequency  
RF PERFORMANCE  
Conversion Gain  
IF  
2.5  
GHz  
dB  
With hybrid  
10.5  
15  
Single Sideband (SSB) Noise Figure  
Lower Sideband (High-Side LO)  
Upper Sideband (Low-Side LO)  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Image Rejection  
SSB NF  
2.1  
2.5  
3
−5  
25  
3.5  
4
dB  
dB  
dBm  
dBm  
dB  
IP3  
P1dB  
At −20 dBm/tone  
0
−9  
20  
Leakage  
LO to RF  
LO to IF  
2× LO to IF  
−37 −25  
−40 −25  
−40 −25  
dBm  
dBm  
dBm  
IM3 at Input  
−20 dBm Input Power  
−25 dBm Input Power  
−30 dBm Input Power  
Return Loss  
−23 dBm per tone  
−28 dBm per tone  
−33 dBm per tone  
46  
52  
56  
52  
60  
70  
dBc  
dBc  
dBc  
RF Input  
IF Output  
LO Input  
−11 −10  
−23 −10  
−11 −10  
dB  
dB  
dB  
POWER INTERFACE  
RF LNA Bias Voltage  
LO Amplifier Bias Voltage  
RF LNA Gate Voltage  
RF Amplifier Bias Current  
LO Amplifier Bias Current  
RF Amplifier Gate Current  
Total Power  
VDRF  
VDLO  
VGRF  
IDRF  
IDLO  
IGRF  
3
3
3.5  
3.5  
−0.4  
V
V
−1.8  
Adjust VGRF between −1.8 V to −0.4 V to get IDRF  
68  
mA  
mA  
mA  
W
170  
<1  
0.7  
0.8  
Rev. A | Page 3 of 19  
 
ADMV1012  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Supply Voltage  
VDLO  
VGRF  
VDRF − VGRF1  
4 V  
0 V  
6 V  
θJA is thermal resistance, junction to ambient (°C/W), and θJC is  
thermal resistance, junction to case (°C/W).  
Input Power  
RF  
LO  
Table 3. Thermal Resistance  
15 dBm  
15 dBm  
175°C  
2 W  
1
Package Type  
θJA  
θJC  
Unit  
E-32-1  
33.4  
34  
°C/W  
Maximum Junction Temperature  
Maximum Power Dissipation  
Lifetime at Maximum Junction Temperature (TJ) >1 million hours  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
Moisture Sensitivity Level (MSL) Rating  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
−40°C to +85°C  
−65°C to +150°C  
260°C  
ESD CAUTION  
MSL3  
750 V  
500 V  
Field Induced Charged Device Model  
(FICDM)  
1 The maximum VDRF voltage and the minimum VGRF voltage is determined  
by this difference. If a maximum VDRF voltage of +4 V is required, then the  
minimum VGRF voltage is −2 V.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 4 of 19  
 
 
 
Data Sheet  
ADMV1012  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC  
GND  
RFIN  
GND  
NIC  
NIC  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 NIC  
23  
22 IF1  
21 NIC  
20 IF2  
NIC  
ADMV1012  
TOP VIEW  
(Not to Scale)  
19  
NIC  
18 NIC  
17 NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. IT IS  
RECOMMENDED TO GROUND THESE PINS  
ON THE PCB.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO GND. GOOD RF AND THERMAL  
GROUNDING IS RECOMMENDED.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 5 to 9, 12 to 14, 16 to 19, NIC  
21, 23 to 26, 28 to 30, 32  
Not Internally Connected. It is recommended to ground these pins on the PCB.  
2, 4, 11  
3
10  
15  
GND  
RFIN  
LOIN  
VDLO  
Ground.  
RF Input. This pin is ac-coupled internally and matched to 50 Ω single ended.  
LO Input. This pin is ac-coupled internally and matched to 50 Ω single ended.  
Power Supply Voltage for the LO Amplifier. Refer to the Applications Information section for the  
required external components and biasing.  
20, 22  
27  
IF2, IF1  
VDRF  
Quadrature IF Outputs. Matched to 50 Ω and ac coupled. No external dc block is required.  
Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the  
required external components and biasing.  
31  
VGRF  
EPAD  
Power Supply Gate Voltage for the RF Amplifier. Refer to the Applications Information section for  
the required external components and biasing.  
Exposed Pad. The exposed pad must be connected to GND. Good RF and thermal grounding is  
recommended.  
Rev. A | Page 5 of 19  
 
ADMV1012  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
UPPER SIDEBAND (LOW-SIDE LO)  
Data taken at VDRF = 3 V, V DLO = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+,  
power splitter as upper sideband (low-side LO), unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C , 2.5GHz IF  
+4°C, 3.5GHz IF  
0°C, 3.5GHz IF  
–4°C, 3.5GHz IF  
+4°C, 3.0GHz IF  
0°C, 3.0GHz IF  
–4°C, 3.0GHz IF  
+4°C, 2.5GHz IF  
0°C, 2.5GHz IF  
–4°C, 2.5GHz IF  
6
6
4
4
2
2
0
20.0  
0
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 6. Conversion Gain vs. RF Frequency at Various LO Powers and  
Various IF Frequencies  
60  
50  
40  
30  
60  
50  
40  
30  
–40°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
+85°C, 2.5GHz IF  
–40°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
+85°C, 3.0GHz IF  
–40°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
+85°C, 3.5GHz IF  
–4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
+4dB, 2.5GHz IF  
–4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
+4dB, 3.0GHz IF  
–4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
+4dB, 3.5GHz IF  
20  
10  
0
20  
10  
0
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 4. Image Rejection vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 7. Image Rejection vs. RF Frequency at Various LO Powers and  
Various IF Frequencies  
12  
10  
8
12  
10  
8
6
6
4
4
+85°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
+4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
–4dB, 3.5GHz IF  
+4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
–4dB, 3.0GHz IF  
+4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
–4dB, 2.5GHz IF  
2
2
0
20.0  
0
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Input IP3 vs. RF Frequency at Various Temperatures and Various  
IF Frequencies  
Figure 8. Input IP3 vs. RF Frequency at Various LO Powers and Various IF  
Frequencies  
Rev. A | Page 6 of 19  
 
 
Data Sheet  
ADMV1012  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
+85°C, 3.5GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
+4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
–4dB, 3.5GHz IF  
+4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
–4dB, 3.0GHz IF  
+4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
–4dB, 2.5GHz IF  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Input P1dB vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 11. Input P1dB vs. RF Frequency at Various LO Powers and Various  
IF Frequencies  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
+85°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
+4°C, 3.5GHz IF  
0°C, 3.5GHz IF  
–4°C, 3.5GHz IF  
+4°C, 3.0GHz IF  
0°C, 3.0GHz IF  
–4°C, 3.0GHz IF  
+4°C, 2.5GHz IF  
0°C, 2.5GHz IF  
–4°C, 2.5GHz IF  
1.0  
0.5  
0
1.0  
0.5  
0
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
20.0  
20.5  
21.0  
21.5  
22.0  
22.5  
23.0  
23.5  
24.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Noise Figure vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 12. Noise Figure vs. RF Frequency at Various LO Powers and  
Various IF Frequencies  
Rev. A | Page 7 of 19  
ADMV1012  
Data Sheet  
LOWER SIDEBAND (HIGH-SIDE LO)  
Data taken at VDRF = 3 V, V DLO = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+,  
power splitter as lower sideband (high-side LO), unless otherwise noted.  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
+85°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
+4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
–4dB, 3.5GHz IF  
+4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
–4dB, 3.0GHz IF  
+4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
–4dB, 2.5GHz IF  
6
6
4
4
2
2
0
17.0  
0
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures  
and Various IF Frequencies  
Figure 16. Conversion Gain vs. RF Frequency at Various LO Powers and  
Various IF Frequencies  
29.0  
28.5  
28.0  
27.5  
29.0  
28.5  
28.0  
27.5  
27.0  
27.0  
–40°C, 2.5GHz IF  
–4dB, 2.5GHz IF  
+25°C, 2.5GHz IF  
0dB, 2.5GHz IF  
+4dB, 2.5GHz IF  
–4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
+4dB, 3.0GHz IF  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
+85°C, 2.5GHz IF  
–40°C, 3.0GHz IF  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
+25°C, 3.0GHz IF  
+85°C, 3.0GHz IF  
–40°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
+85°C, 3.5GHz IF  
–4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
+4dB, 3.5GHz IF  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 14. Image Rejection vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 17. Image Rejection vs. RF Frequency at Various LO Powers and  
Various IF Frequencies  
7
7
+85°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
+4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
–4dB, 3.5GHz IF  
+4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
–4dB, 3.0GHz IF  
+4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
–4dB, 2.5GHz IF  
6
5
4
3
2
1
6
5
4
3
2
1
0
17.0  
0
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Input IP3 vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 18. Input IP3 vs. RF Frequency at Various LO Powers and Various IF  
Frequencies  
Rev. A | Page 8 of 19  
 
Data Sheet  
ADMV1012  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
+85°C, 3.5GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
+4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
–4dB, 3.5GHz IF  
+4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
–4dB, 3.0GHz IF  
+4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
–4dB, 2.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–1  
–2  
–3  
–4  
–5  
–6  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 19. Input P1dB vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 21. Input P1dB vs. RF Frequency at Various LO Powers and Various  
IF Frequencies  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.0  
2.5  
2.0  
1.5  
+4dB, 3.5GHz IF  
0dB, 3.5GHz IF  
–4dB, 3.5GHz IF  
+4dB, 3.0GHz IF  
0dB, 3.0GHz IF  
–4dB, 3.0GHz IF  
+4dB, 2.5GHz IF  
0dB, 2.5GHz IF  
–4dB, 2.5GHz IF  
1.0  
0.5  
0
1.0  
0.5  
0
+85°C, 3.5GHz IF  
+25°C, 3.5GHz IF  
–40°C, 3.5GHz IF  
+85°C, 3.0GHz IF  
+25°C, 3.0GHz IF  
–40°C, 3.0GHz IF  
+85°C, 2.5GHz IF  
+25°C, 2.5GHz IF  
–40°C, 2.5GHz IF  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
17.0  
17.5  
18.0  
18.5  
19.0  
19.5  
20.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Noise Figure vs. RF Frequency at Various Temperatures and  
Various IF Frequencies  
Figure 22. Noise Figure vs. RF Frequency at Various LO Powers and  
Various IF Frequencies  
Rev. A | Page 9 of 19  
ADMV1012  
Data Sheet  
IF BANDWIDTH  
Data taken at VDRF = 3 V, V DLO = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm at 10 GHz, −40°C ≤ TA ≤ +85°C, with  
Mini-Circuits QCN-45+, power splitter, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
+4dBm, UPPER  
0dBm, UPPER  
–4dBm, UPPER  
+4dBm, LOWER  
0dBm, LOWER  
–4dBm, LOWER  
+85°C, UPPER  
+25°C, UPPER  
–40°C, UPPER  
+85°C, LOWER  
+25°C, LOWER  
–40°C, LOWER  
0
2.0  
0
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 25. Conversion Gain vs. IF Frequency at Various LO Powers and  
Sidebands  
Figure 23. Conversion Gain vs. IF Frequency at Various Temperatures and  
Sidebands  
10  
9
10  
9
8
8
7
7
6
6
5
5
4
4
3
3
+85°C, UPPER  
+4dBm, UPPER  
+25°C, UPPER  
0dBm, UPPER  
–4dBm, UPPER  
+4dBm, LOWER  
0dBm, LOWER  
–4dBm, LOWER  
2
1
0
2
–40°C, UPPER  
+85°C, LOWER  
1
+25°C, LOWER  
–40°C, LOWER  
0
2.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 26. Input IP3 vs. IF Frequency at Various LO Powers and Sidebands  
Figure 24. Input IP3 vs. IF Frequency at Various Temperatures and  
Sidebands  
Rev. A | Page 10 of 19  
 
Data Sheet  
ADMV1012  
LEAKAGE PERFORMANCE  
Data taken at VDRF = 3 V, V DLO = 3 V, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+, power  
splitter, unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
+85°C, UPPER  
+25°C, UPPER  
–40°C, UPPER  
+85°C, LOWER  
+25°C, LOWER  
–40°C, LOWER  
+4dBm, UPPER  
0dBm, UPPER  
–4dBm, UPPER  
+4dBm, LOWER  
0dBm, LOWER  
–4dBm, LOWER  
6
7
8
9
10  
11  
12  
13  
14  
6
7
8
9
10  
11  
12  
13  
14  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 27. LO Leakage at IF Output vs. LO Frequency at Various  
Temperatures and Sidebands  
Figure 29. LO Leakage at IF Output vs. LO Frequency at Various LO  
Powers and Sidebands  
–30  
–30  
+4dBm  
0dBm  
–4dBm  
+85°C  
+25°C  
–40°C  
–35  
–40  
–45  
–50  
–55  
–35  
–40  
–45  
–50  
–55  
6
7
8
9
10  
11  
12  
13  
14  
6
7
8
9
10  
11  
12  
13  
14  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 28. LO Leakage at RFIN vs. LO Frequency at Various Temperatures  
Figure 30. LO Leakage at RFIN vs. LO Frequency at Various LO Powers  
Rev. A | Page 11 of 19  
 
ADMV1012  
Data Sheet  
RETURN LOSS PERFORMANCE  
Data taken at VDRF = 3 V, V DLO = 3 V, IDRF = 68 mA, LO = −4 dBm ≤ LO ≤ +4 dBm, −40°C ≤ TA ≤ +85°C, with Mini-Circuits QCN-45+,  
power splitter, unless otherwise noted. Measurement reference plane at connector.  
0
0
+85°C, UPPER  
+85°C, LOWER  
+25°C, UPPER  
+25°C, LOWER  
–40°C, UPPER  
–40°C, LOWER  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
+85°C  
+25°C  
–40°C  
17.5  
18.5  
19.5  
20.5  
21.5  
22.5  
23.5  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 31. RF Input Return Loss vs. RF Frequency at Various Temperatures  
Figure 33. IF Output Return Loss vs. IF Frequency at Various Temperatures  
and Sidebands  
0
–5  
–10  
–15  
+85°C  
–20  
+25°C  
–40°C  
–25  
–30  
7
8
9
10  
11  
12  
13  
LO FREQUENCY (GHz)  
Figure 32. LO Input Return Loss vs. LO Frequency at Various Temperatures  
Rev. A | Page 12 of 19  
 
Data Sheet  
ADMV1012  
SPURIOUS PERFORMANCE  
Data taken at VDRF = 3 V, VDLO = 3 V, IDRF = 68 mA, LO =  
0 dBm, and −40°C ≤ TA ≤ +85°C with a Mini-Circuits QCN-45+,  
power splitter, unless otherwise noted.  
IF = 3.5 GHz  
RF = 18000 MHz at RF power of −20 dBm, and LO = 10750 MHz  
at LO power of 4 dBm. All values in dBc below IF power level.  
N/A means not applicable.  
Table 5. LO Harmonic Leakage at IF Output  
N × LO  
Frequency  
0
1
2
3
4
LO Frequency (MHz)  
7000  
8500  
9000  
10,000  
11,000  
12,000  
13,000  
13,500  
1.0  
2.0  
3.0  
4.0  
N/A  
N/A  
N/A  
−48.2  
−77.2  
N/A  
N/A  
0
N/A  
−76.6  
−47.2  
N/A  
N/A  
−57.5  
−74.2  
−46.2  
N/A  
−2  
−1  
0
−48  
−47  
−50  
−49  
−49  
−58  
−54  
−55  
−65  
−64  
−51  
−40  
−47  
−46  
−42  
−40  
−42  
−57  
−51  
−52  
−61  
−56  
−59  
N/A  
−57  
−64  
−61  
−61  
N/A  
N/A  
N/A  
N/A  
N/A  
−42.7  
−74.5  
−59.9  
−33.4  
−83.8  
N/A  
M × RF  
1
N/A  
2
Upper Sideband  
IF = 2.8 GHz  
RF = 23000 MHz at RF power of −20 dBm, and LO = 10100 MHz  
at LO power of 4 dBm. All values in dBc below IF power level.  
N/A means not applicable.  
M × N SPURIOUS PERFORMANCE FOR LO = 0 dBm  
Mixer spurious products are measured in dBc from the IF  
output power level. Spurious values are measured using the  
following equation: (M × RF)+ (N × LO). N/A means not  
applicable. The frequencies are referred from the frequencies  
applied to the pin of the ADMV1012.  
N × LO  
0
1
2
3
4
N/A  
N/A  
N/A  
−53.2  
−60.9  
N/A  
N/A  
−39.9  
−77.8  
N/A  
N/A  
0
N/A  
−62.6  
−46.9  
N/A  
N/A  
−56.4  
−72.3  
−47  
N/A  
N/A  
−2  
−1  
0
−40.2  
−64.9  
N/A  
M ×RF  
Lower Sideband  
1
IF = 2.8 GHz  
2
RF = 18000 MHz at −20 dBm and LO = 10400 MHz at 4 dBm.  
All values in dBc below IF power level. N/A means not applicable.  
IF = 3.3 GHz  
RF = 23000 MHz at RF power of −20 dBm, and LO = 9850 MHz  
at LO power of 4 dBm. All values in dBc below IF power level.  
N/A means not applicable.  
N × LO  
0
1
2
3
4
N/A  
N/A  
N/A  
N/A  
N/A  
−42  
N/A  
0
N/A  
−58.6  
−2  
−1  
0
N × LO  
−68.5 −71.1  
0
1
2
3
4
−38.4 −52.2 −53.2  
M × RF  
N/A  
N/A  
N/A  
−52.9  
−74.9  
N/A  
N/A  
−40.6  
−99.8  
N/A  
N/A  
0
N/A  
−53.8  
−44.2  
N/A  
N/A  
−61.5  
−69  
−56.5  
N/A  
N/A  
−2  
−1  
0
−49.1 −70.2 −65.7 −67.9 N/A  
−66.5 −74.4 N/A N/A N/A  
1
2
−42  
−65.3  
N/A  
M × RF  
IF = 3.3 GHz  
1
RF = 18000 MHz at RF power of −20 dBm, and LO = 10650 MHz  
at LO power of 4 dBm. All values in dBc below IF power level.  
N/A means not applicable.  
2
IF = 3.5 GHz  
RF = 23000 MHz at RF power of −20 dBm, and LO = 9750 MHz  
at LO power of 4 dBm. All values in dBc below IF power level.  
N/A means not applicable.  
N × LO  
0
1
2
3
4
N/A  
N/A  
N/A  
−48.8  
−71.7  
N/A  
N/A  
0
N/A  
−56  
−83.9  
−56.9  
N/A  
N/A  
−2  
−1  
0
N × LO  
N/A  
−72.5  
−54.1  
−63.4  
N/A  
0
1
2
3
4
−42.3  
−68.3  
−65.8  
−44.7  
−69.5  
N/A  
M × RF  
N/A  
N/A  
N/A  
−53.6  
−70.7  
N/A  
N/A  
−41.5  
−68.7  
N/A  
N/A  
0
N/A  
−50.1  
−47.4  
N/A  
N/A  
−67.6  
−63.9  
−64.8  
N/A  
−2  
−1  
0
1
2
−40.8  
−72.2  
N/A  
M × RF  
1
N/A  
2
Rev. A | Page 13 of 19  
 
 
ADMV1012  
Data Sheet  
THEORY OF OPERATION  
The ADMV1012 is a compact GaAs, MMIC, double sideband  
(DSB) downconverter in a RoHS compliant package optimized  
for both upper sideband and lower sideband point to point  
microwave radio applications operating in the 17.5 GHz to  
24 GHz input frequency range. The ADMV1012 supports  
LO input frequencies of 7 GHz to 13.5 GHz and IF output  
frequencies of 2.5 GHz to 3.5 GHz.  
MIXER  
The mixer is an I/Q double balanced mixer, and this mixer  
topology reduces the need for filtering unwanted sideband.  
An external 90° hybrid is required to select the upper sideband  
of operation. The ADMV1012 has been optimized to work with  
the Mini-Circuits QCN-45+ RF 90° hybrid.  
LNA  
The ADMV1012 uses a RF LNA followed by an I/Q double  
balanced mixer, where a driver amplifier drives the LO (see  
Figure 1). This combination of design, process, and packaging  
technology allows the functions of these subsystems to be  
integrated into a single die, using mature packaging and  
interconnection technologies to provide a high performance,  
low cost design with excellent electrical, mechanical, and  
thermal properties. In addition, the need for external  
components is minimized, optimizing cost and size.  
The LNA requires a single dc bias voltage (VDRF) and a single  
dc gate bias (VGRF) to operate. Starting at −1.8 V at the gate  
supply (VGRF), the LNA is biased at +3 V (VDRF). Then, the  
gate bias (VGRF) is varied until the desired LNA bias current  
(IDRF) is achieved. The desired LNA bias current is 68 mA at  
3 V under small signal conditions.  
The typical application circuit (see Figure 34) shows the  
necessary external components on the bias lines to eliminate  
any undesired stability problems for the RF amplifier and the  
LO amplifier.  
LO DRIVER AMPLIFIER  
The LO driver amplifier takes a single LO input and doubles the  
frequency and amplifies it to the desired LO signal level for the  
mixer to operate optimally. The LO driver amplifier is self  
biased, and it requires only a single dc bias voltage (VDLO),  
which draws approximately 170 mA at 3 V under the LO drive.  
The LO amplitude range of −4 dBm to +4 dBm makes it  
compatible with the Analog Devices, Inc., wideband synthesizer  
portfolio without the need for an external LO driver amplifier.  
The ADMV1012 is a much smaller alternative to hybrid style  
image reject converter assemblies, and it eliminates the need  
for wire bonding by allowing the use of surface-mount  
manufacturing assemblies.  
The ADMV1012 downconverter comes in a compact, thermally  
enhanced, 4.9 mm × 4.9 mm, 32-terminal ceramic leadless chip  
carrier (LCC) package. The ADMV1012 operates over the  
−40°C to +85°C temperature range.  
Rev. A | Page 14 of 19  
 
 
 
 
Data Sheet  
ADMV1012  
APPLICATIONS INFORMATION  
The evaluation board and typical application circuit are  
optimized for low-side LO (upper sideband) performance  
with the Mini-Circuit QCN-45+ RF 90° hybrid. Because the  
I/Q mixers are double balanced, the ADMV1012 can support IF  
frequencies from 3.5 GHz to low frequency.  
TYPICAL APPLICATION CIRCUIT  
The typical applications circuit is shown in Figure 34. The  
application circuit shown has been replicated for the evaluation  
board circuit.  
VGRF  
5019  
VDRF  
5019  
1
1
C13  
C9  
1µF  
C11  
1µF  
C8  
0.01µF  
C12  
0.01µF  
C7  
IF_OUTPUT_USB  
R1  
1
100pF  
100pF  
0Ω  
4
3
2
AGND  
AGND  
25-146-1000-92  
AGND  
DUT  
24  
1
2
3
4
5
6
7
8
X1  
NIC  
NIC  
23  
22  
21  
20  
19  
18  
17  
RF_INPUT  
1
GND  
RFIN  
GND  
NIC  
NIC  
1
4
6
3
SUM_PORT  
PORT_1  
RF_INPUT  
PORT_2  
IF1  
NIC  
IF2  
IF_OUTPUT_LSB  
1
R4  
4
3 2  
ADMV1012AEZ  
50Ω _TERM  
25-146-1000-92  
0Ω  
NIC  
NIC  
NIC  
NIC  
GND GND  
4
3
2
NIC  
2
5
QCN-45+  
25-146-1000-92  
AGND  
NIC  
AGND  
AGND  
AGND  
AGND  
AGND  
LO_INPUT  
1
LO_INPUT  
4
3 2  
25-146-1000-92  
C5  
AGND  
100pF  
C10  
0.01µF  
C3  
1µF  
AGND  
VDLO  
5019  
1
VDLO  
Figure 34. Typical Application Circuit  
Rev. A | Page 15 of 19  
 
 
 
ADMV1012  
Data Sheet  
Power-On Sequence  
EVALUATION BOARD INFORMATION  
To set up the ADMV1012-EVALZ, take the following steps:  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance, and  
the package ground leads and exposed pad must be connected  
directly to the ground plane similarly to that shown in Figure 35  
and Figure 36. Use a sufficient number of via holes to connect  
the top and bottom ground planes. The evaluation circuit board  
shown in Figure 34 is available from Analog Devices upon request.  
1. Power up the VGRF with a −1.8 V supply.  
2. Power up the VDRF with a 3 V supply.  
3. Power up the VDLO with a 3 V supply.  
4. Adjust the VGRF supply between −1.8 V to −0.4 V until  
IDRF = 68 mA.  
5. Connect LOIN to the LO signal generator with an LO  
power of between −4 dBm to +4 dBm.  
Layout  
6. For the upper sideband, add a 50 Ω termination to the  
IF_OUTPUT_LSB connector. For the lower sideband, add  
a 50 Ω termination to the IF_OUTPUT_USB connector.  
7. Apply a RF signal to the RF_INPUT and LO_INPUT ports.  
Solder the exposed pad on the underside of the ADMV1012 to  
a low thermal and electrical impedance ground plane. This pad  
is typically soldered to an exposed opening in the solder mask  
on the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 35 shows the PCB  
land pattern footprint for the ADMV1012-EVALZ , and Figure 36  
shows the solder paste stencil for the ADMV1012-EVALZ  
evaluation board.  
Power-Off Sequence  
To turn off the ADMV1012-EVALZ, take the following steps:  
1. Turn off the LO and RF signals.  
2. Set VGRF to −1.8 V.  
3. Set the VDRF supply to 0 V and then turn off the VDRF  
supply.  
4. Set the VDLO supply to 0 V and then turn off the VDLO  
supply.  
5. Turn off the VGRF supply.  
0.217" SQUARE  
0.004" MASK/METAL OVERLAP  
0.010" MINIMUM MASK WIDTH  
SOLDER MASK  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.197"  
[0.50]  
0.156"  
MASK  
OPENING  
ø.034"  
TYPICAL  
VIA SPACING  
ø.010"  
TYPICAL VIA  
0.010" REF  
0.138" SQUARE MASK OPENING  
0.02 × 45° CHAMFER FOR PIN 1  
0.030"  
MASK OPENING  
0.146" SQUARE  
GROUND PAD  
Figure 35. PCB Land Pattern Footprint of the ADMV1012-EVALZ  
Rev. A | Page 16 of 19  
 
 
Data Sheet  
ADMV1012  
0.017  
0.0197  
TYP  
0.219  
SQUARE  
0.132  
SQUARE  
0.017  
0.027  
TYP  
R0.0040 TYP  
132 PLCS  
0.010  
TYP  
Figure 36. Solder Paste Stencil of the ADMV1012-EVALZ  
NOTES  
1. NOT ALL COMPONENTS OR BIAS LINES ARE USED ON THE EVALUATION BOARD.  
Figure 37. ADMV1012-EVALZ Evaluation Board Top Layer  
Rev. A | Page 17 of 19  
 
ADMV1012  
Data Sheet  
BILL OF MATERIALS  
Table 6.  
Qty. Component  
Description  
Manufacturer/Part No.  
1
4
Evaluation board  
C5, C7, C12  
PCB  
Analog Devices, Supplied/042365  
TDK/C1005NP01H101J050BA  
100 pF, high temperature, multilayer  
ceramic capacitors, NP0, 0402  
4
4
7
C8, C10, C11  
C3, C9, C13  
GND, VDLO, VDRF, VGRF  
0.01 µF ceramic capacitors, X7R, 0402  
1 µF ceramic capacitors, X5R, 0603  
CONN-PCB test points, compact mini, Keystone Electronics Corporation/5019.00  
CNKEY5019  
Murata Manufacturing/GRM155R71E103KA01D  
Murata Manufacturing/GRM188R61E105KA12D  
4
LO_INPUT, RF_INPUT, IF_OUTPUT_LSB,  
IF_OUTPUT_USB  
CONN-PCB, SMA K_SRI-NS,  
CNSMAL460W295H156  
SRI CONNECTOR GAGE/25-146-1000-92  
2
1
R1, R4  
X1  
0 Ω resistor chips, SMD, JMPR, 0402  
Panasonic/ERJ-2GE0R00X  
Mini-Circuits/QCN-45+  
XFMR, power splitter/combiner,  
2500 MHz to 4500 MHz,  
TSML126W63H42  
1
1
Device under test (DUT)  
Heatsink  
17.5 GHz to 24 GHz, GaAs, MMIC, I/Q  
downconverter  
Heatsink  
Analog Devices Supplied/ADMV1012AEZ  
Analog Devices Supplied/104365  
Rev. A | Page 18 of 19  
 
Data Sheet  
ADMV1012  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
REF  
INDICATOR  
PIN 1  
32  
25  
24  
1
0.50  
BSC  
3.60  
3.50 SQ  
3.40  
EXPOSED  
PAD  
17  
8
16  
9
0.38  
0.32  
0.26  
0.20 MIN  
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
1.10  
1.00  
0.90  
4.10 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 38. 32-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Package Body Material  
Alumina Ceramic  
Lead Finish  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
32-Terminal LCC  
32-Terminal LCC  
Package Option  
E-32-1  
E-32-1  
ADMV1012AEZ  
ADMV1012AEZ-R7  
ADMV1012-EVALZ  
Gold Over Nickel  
Gold Over Nickel  
Alumina Ceramic  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16349-0-2/18(A)  
Rev. A | Page 19 of 19  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY