ADMV1013ACCZ-R7 [ADI]

Wideband, Microwave Upconverter;
ADMV1013ACCZ-R7
型号: ADMV1013ACCZ-R7
厂家: ADI    ADI
描述:

Wideband, Microwave Upconverter

文件: 总39页 (文件大小:1457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 GHz to 44 GHz,  
Wideband, Microwave Upconverter  
ADMV1013  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Wideband RF input frequency range: 24 GHz to 44 GHz  
2 upconversion modes  
Direct conversion from baseband I/Q to RF  
Single-sideband upconversion from real IF  
LO input frequency range: 5.4 GHz to 10.25 GHz  
LO quadrupler for up to 41 GHz  
RST  
DVDD  
IF_I  
I_N  
Matched 50 Ω single-ended RF output and IF inputs  
Option between matched 100 Ω balanced or 50 Ω single-  
ended LO inputs  
SCLK  
I_P  
×4  
90°  
0°  
SDI  
SDO  
GND  
100 Ω balanced baseband inputs  
Q_P  
Sideband suppression and carrier feedthrough optimization  
Variable attenuator for transceiver power control  
Programmable via 4-wire SPI interface  
40-terminal land grid array package (LGA)  
BG_RBIAS2  
VCC_DRV  
GND  
Q_N  
ADMV1013  
IF_Q  
VCC_BG2  
VENV_P  
VENV_N  
APPLICATIONS  
RF  
VVA2  
VVA1  
Point to point microwave radios  
Radar, electronic warfare systems  
GND  
DET  
Instrumentation, automatic test equipment (ATE)  
Figure 1.  
GENERAL DESCRIPTION  
The ADMV1013 is a wideband, microwave upconverter optimized  
for point to point microwave radio designs operating in the  
24 GHz to 44 GHz radio frequency (RF) range.  
while suppressing the unwanted sideband by typically better than  
26 dBc. The serial port interface (SPI) allows adjustment of the  
quadrature phase and mixer gate voltage to allow optimum  
sideband suppression and local oscillator (LO) nulling. In  
addition, the SPI interface allows powering down the output  
envelope detector to reduce power consumption.  
The upconverter offers two modes of frequency translation. The  
device is capable of direct conversion to RF from baseband in-phase  
quadrature (I/Q) input signals, as well as single-sideband (SSB)  
upconversion from complex intermediate frequency (IF) inputs.  
The baseband I/Q input path can be disabled and modulated  
complex IF signals, anywhere from 0.8 GHz to 6.0 GHz, can be  
inserted in the IF path and upconverted to 24 GHz to 44 GHz  
The ADMV1013 upconverter comes in a 40-terminal land grid  
array package (LGA) package. The ADMV1013 operates over  
the −40°C to +85°C case temperature range.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADMV1013  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Sideband Suppression Optimization ....................................... 25  
Carrier Feedthrough Nulling.................................................... 26  
Envelope Detector...................................................................... 26  
Power Down and Reset.............................................................. 26  
Serial Port Interface (SPI) ......................................................... 26  
Applications Information.............................................................. 28  
Baseband Quadrature Modulation from Low Frequencies.. 28  
Performance at Different Quad Filter Settings....................... 28  
VVA Temperature Compensation............................................ 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Serial Port Register Timing......................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
I/Q Mode ....................................................................................... 9  
IF Mode........................................................................................ 14  
Envelope Detector Performance............................................... 19  
Return Loss.................................................................................. 21  
M × N Spurious Performance................................................... 24  
Theory of Operation ...................................................................... 25  
Start-Up Sequence...................................................................... 25  
Baseband Quadrature Modulation (I/Q Mode)..................... 25  
Single-Sideband Upconversion (IF Mode) ............................. 25  
LO Input Path ............................................................................. 25  
Performance Between Differential vs. Single-Ended LO Input  
....................................................................................................... 29  
Performance Across RF Frequency at Fixed Input  
Frequencies ................................................................................. 30  
Performance Across Common-Mode Voltage in I/Q Mode 31  
Operating VCTRL1 and VCTRL2 Independently..................... 31  
Recommended Land Pattern.................................................... 33  
Evaluation Board Information ................................................. 33  
Register Summary .......................................................................... 34  
Register Details ............................................................................... 35  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
REVISION HISTORY  
4/2019—Rev. 0 to Rev. A  
Moved Figure 70; Renumbered Sequentially.............................. 21  
Moved Figure 72............................................................................. 22  
Moved Figure 77............................................................................. 22  
Moved Figure 80............................................................................. 23  
Changes to M × N Spurious Performance Section, I/Q Mode  
Section, and IF Mode Section....................................................... 24  
Changes to Start-Up Sequence Section ....................................... 25  
Changes to Figure 1.......................................................................... 1  
Changes to Frequency Ranges Parameter, Table 1....................... 3  
Changes to Thermal Resistance Section........................................ 6  
Changes to Figure 3.......................................................................... 7  
Changes to Table 5............................................................................ 8  
Changes to Figure 50 Caption....................................................... 16  
Changes to Figure 58 Caption....................................................... 18  
Change to Return Loss and Isolation Section............................. 21  
12/2018—Revision 0: Initial Version  
Rev. A | Page 2 of 39  
 
Data Sheet  
ADMV1013  
SPECIFICATIONS  
IF and I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER =  
VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.  
Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, IF input frequency (fIF) = 3.5 GHz.  
Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (VCM) = 0 V,  
Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q baseband frequency (fBB) = 100 MHz.  
VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL =1800 mV, unless otherwise specified.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGES  
RF Output  
24  
44  
GHz  
LO Input  
LO Quadrupler  
IF Input  
Baseband (BB) I/Q Input  
LO AMPLITUDE RANGE  
I/Q MODULATOR PERFORMANCE  
Conversion Gain  
24 GHz to 40 GHz  
5.4  
21.6  
0.8  
DC  
−6  
10.25 GHz  
41  
GHz  
GHz  
GHz  
dBm  
6.0  
6.0  
+6  
0
At maximum gain  
fBB ≤ 3.5 GHz  
6 GHz > fBB > 3.5 GHz  
18  
23  
21  
19  
35  
dB  
40 GHz to 44 GHz  
dB  
dB  
Voltage Variable Attenuator (VVA) Control Range  
Single-Sideband (SSB) Noise Figure  
24 GHz to 40 GHz  
At maximum gain  
18  
19  
dB  
dB  
40 GHz to 44 GHz  
Output Third-Order Intercept (IP3)  
24 GHz to 40 GHz  
40 GHz to 44 GHz  
Output 1 dB Compression Point (P1dB)  
24 GHz to 40 GHz  
40 GHz to 44 GHz  
At maximum gain  
20  
10  
23  
22  
dBm  
dBm  
At maximum gain  
13  
12  
dBm  
dBm  
Sideband Rejection (SBR)  
Uncalibrated  
24 GHz to 44 GHz, at maximum gain  
32  
dBc  
dB  
IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE  
Conversion Gain  
At maximum gain  
fIF ≤ 3.5 GHz  
6 GHz > fIF > 3.5 GHz  
24 GHz to 40 GHz  
13  
18  
12  
14  
35  
40 GHz to 44 GHz  
VVA Control Range  
SSB Noise Figure  
24 GHz to 40 GHz  
40 GHz to 44 GHz  
Output IP3  
dB  
dB  
At maximum gain  
25  
28  
dB  
dB  
At maximum gain  
24 GHz to 40 GHz  
40 GHz to 44 GHz  
Output P1dB  
24 GHz to 40 GHz  
40 GHz to 44 GHz  
SBR  
20  
10  
23  
22  
dBm  
dBm  
At maximum gain  
13  
12  
dBm  
dBm  
24 GHz to 44 GHz, at maximum gain  
Uncalibrated  
Calibrated  
26  
36  
dBc  
dBc  
Calibrated using LOAMP_PH_ADJ_  
Q_FINE and LOAMP_PH_ADJ_I_FINE bits  
Rev. A | Page 3 of 39  
 
ADMV1013  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ENVELOPE DETECTOR PERFORMANCE  
Output Level  
For optimum performance  
Minimum  
Maximum  
−45  
−20  
dBm  
dBm  
Envelope Bandwidth  
Measured with two tones with total  
power output (POUT) at RF = 10 dBm  
3 dB  
10 dB  
RF frequency (fRF) = 28 GHz  
fRF = 28 GHz  
350  
1
MHz  
GHz  
RETURN LOSS  
RF Output  
LO Input  
IF Input  
BB Input  
50 Ω single-ended  
100 Ω differential  
50 Ω single-ended  
100 Ω differential  
−8  
dB  
dB  
dB  
dB  
−12  
−12  
−10  
100  
BB I/Q Input Impedance  
LEAKAGE  
At maximum gain  
Fundamental LO to RF  
4 × LO to RF  
−80  
dBm  
5.4 GHz to 6.8 GHz LO  
6.8 GHz to 10.25 GHz LO  
5.4 GHz to 10.25 GHz LO  
Uncalibrated  
Uncalibrated  
Calibrated using MXER_OFF_ADJ_I_N,  
MXER_OFF_ADJ_I_P, MXER_OFF_  
−12  
−20  
−45  
dBm  
dBm  
dBm  
ADJ_Q_N, MXER_OFF_ADJ_Q_P bits at  
V
CTRL = 1800 mV, IF mode  
5 × LO to RF  
−55  
−70  
−75  
dBm  
dBm  
dBm  
Fundamental LO to IF  
Fundamental LO to I/Q  
LOGIC INPUTS  
Input Voltage Range  
High, VINH  
Low, VINL  
DVDD − 0.4  
0
1.8  
0.4  
V
V
Input Current, IINH/IINL  
Input Capacitance, CIN  
LOGIC OUTPUTS  
Output Voltage Range  
High, VOH  
Low, VOL  
Output High Current, IOH  
POWER INTERFACE  
100  
3
µA  
pF  
DVDD − 0.4  
0
1.8  
0.4  
500  
V
V
µA  
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV,  
VCC_AMP1, VCC_BG2, VCC_MIXER, VCC_BG,  
VCC_QUAD  
3.15  
1.7  
3.3  
3.45  
V
3.3 V Supply Current  
VCTRL = 1.8 V, no IF and I/Q or LO input  
signal  
550  
mA  
DVDD, VCC_VVA  
1.8 V Supply Current  
1.8  
3
1.9  
V
mA  
VCTRL = 1.8 V, no IF and I/Q or LO input  
signal  
Total Power Consumption  
Power-Down  
1.9  
77  
W
mW  
136  
Rev. A | Page 4 of 39  
Data Sheet  
ADMV1013  
SERIAL PORT REGISTER TIMING  
Table 2.  
Parameter  
tSDI, SETUP  
tSDI, HOLD  
tSCLK, HIGH  
tSCLK, LOW  
tSCLK,  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
%
%
Data to clock setup time  
Data to clock hold time  
Clock high duration  
Clock low duration  
10  
10  
40 to 60  
40 to 60  
30  
Clock to  
SEN SEN2  
/
setup time  
ns  
/
_SETUP  
SEN SEN2  
tSCLK, DOT  
tSCLK, DOV  
tSCLK,  
Clock to data out transition time  
Clock to data out valid time  
10  
10  
ns  
ns  
ns  
Clock to  
Inactive  
SEN SEN2  
/
inactive  
20  
80  
/
_INACTIVE  
SEN SEN2  
tSEN SEN2  
/
(between two operations)  
ns  
SEN SEN2  
/
_INACTIVE  
Timing Diagram  
tSCLK, HIGH  
tSCLK, LOW  
SCLK  
tSCLK, SEN/SEN2_SETU P  
tSEN/SEN2_INACTIVE  
SEN/SEN2  
tSCLK, DOT  
tSCLK, SEN/SEN2_INACTIVE  
tSCLK, DOV  
SDO  
SDI  
tSDI, HOLD  
tSDI, SETUP  
Figure 2. Serial Port Register Timing Diagram  
Rev. A | Page 5 of 39  
 
ADMV1013  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
TJ = (P × ѰJT) + TTop (Equation 1)  
Top: Refers to package top temperature (°C). TTop is measured at  
the top-center of the package.  
T
Parameter  
Rating  
Supply Voltage  
ѰJT: Refers to junction-to-top thermal characterization number.  
P: Refers to total power dissipation in the chip (W).  
TJ = (P × ѰJB) + TBoard (Equation 2)  
VCC_DRV, VCC2_DRV, VCC_AMP2,  
VCC_ENV, VCC_AMP1, VCC_BG2,  
VCC_BG, VCC_MIXER  
4.3 V  
DVDD, VCC_VVA  
2.3 V  
IF Input Power  
I/Q Input Power  
LO Input Power  
Maximum Junction Temperature  
Maximum Power Dissipation1  
5 dBm  
5 dBm  
9 dBm  
125°C  
2.9 W  
T
Board: Refers to board temperature measured on the mid-point  
of the longest side of the package no more than 1 mm from the  
edge of the package body (°C).  
ѰJB: Refers to junction-to-board thermal characterization number.  
Lifetime at Maximum Junction Temperature (TJ) 1 ×106 hours  
P: Refers to total power dissipation in the chip (W).  
Operating Case Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
Moisture Sensitivity Level (MSL) Rating2  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
−40°C to +85°C  
−55°C to +125°C  
260°C  
As stated in JEDEC51-12, Equation 1 and Equation 2 must only  
be used when no heat sink/heat spreader is present. When a  
heat sink/heat spreader is added, estimating and calculating  
MSL3  
junction temperature can be achieved using θJC_TOP  
.
Table 4. Thermal Resistance  
1250 V  
750 V  
Package Type1  
θJA  
θJC_TOP  
θJB  
11.1 6.4  
ΨJT  
ΨJB  
13.8 °C/W  
Unit  
2
3
4
5
6
Field Induced Charged Device Model  
(FICDM)  
CC-40-5  
28  
13.8  
1 The thermal resistance values specified in Table 4 are simulated based on  
JEDEC specifications, unless specified otherwise, and must be used in  
compliance with JESD51-12.  
1 The maximum power dissipation is a theoretical number calculated by  
(TJ − 85°C)/θJC_TOP  
.
2 Based on IPC/JEDEC J-STD-20 MSL classifications.  
2 θJA is the junction to ambient thermal resistance in a natural convection,  
JEDEC environment.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
3 θJC_TOP is the junction to case (top) JEDEC thermal resistance.  
4 θJB is the junction to board JEDEC thermal resistance.  
5 ΨJT is the junction to top JEDEC thermal characterization parameter.  
6 ΨJB is the junction to board JEDEC thermal characterization parameter.  
ESD CAUTION  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC  
is the junction to case thermal resistance.  
θ
JA and θJC must only be used to compare thermal performance  
of different packages if all test conditions listed are similar to  
JEDEC specifications. Instead, ѰJT and ѰJB can be used to  
calculate the junction temperature of the device using the  
following equations:  
Rev. A | Page 6 of 39  
 
 
 
 
Data Sheet  
ADMV1013  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADMV1013  
TOP VIEW  
(Not to Scale)  
40 39 38 37 36 35 34 33 32 31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
IF_I  
I_N  
RST  
DVDD  
SCLK  
SDI  
SDO  
3
I_P  
GND  
Q_P  
4
5
6
BG_RBIAS2  
VCC_DRV  
GND  
Q_N  
IF_Q  
VCC_BG2  
VENV_P  
VENV_N  
7
8
9
RF  
10  
GND  
11 12 13 14 15 16 17 18 19 20  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THIS PIN IS NOT CONNECTED INTERNALLY.  
2. EXPOSED PAD. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE GROUND PLANE.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
RST  
DVDD  
SCLK  
SDI  
SDO  
SPI Reset. Connect this pin to logic high for normal operation. The SPI logic is 1.8 V.  
1.8 V SPI Digital Supply.  
SPI Clock Digital Input.  
SPI Serial Data Input.  
SPI Serial Data Output.  
BG_RBIAS2  
Voltage Gain Amplifier (VGA) Chip Band Gap Circuit, External High Precision Resistor. Place a 1.1 kΩ,  
high precision resistor shunt to ground close to this pin.  
7
VCC_DRV  
GND  
3.3 V Power Supply for RF Driver. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.  
Ground.  
8, 10, 27, 36, 39  
9
11  
12, 13, 31  
RF  
RF Output. This pin is dc-coupled internally to GND and matched to 50 Ω single ended.  
3.3 V Power Supply for RF Predriver. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.  
Not Internally Connected. This pin is not connected internally.  
VCC2_DRV  
NIC  
14  
15  
16  
17  
VCC_VVA  
VCTRL1  
VCTRL2  
VCC_AMP2  
1.8 V Power Supply for VVA Control Circuit. Place a 100 pF, 0.01 µF, and a 10 µF capacitor close to this pin.  
RF Voltage Variable Attenuator 1 (VVA1) Control Voltage. Place a 1 kΩ series resistor with this pin.  
RF Voltage Variable Attenuator 2 (VVA2) Control Voltage. Place a 1 kΩ series resistor with this pin.  
3.3 V Power Supply for RF Amplifier 2 (AMP2). Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to  
this pin.  
18  
19  
20  
SPI Serial Enable for VGA Chip. Connect this pin with Pin 40 ( ).  
SEN  
SEN2  
VCC_ENV  
VCC_AMP1  
3.3 V Power Supply for Envelope Detector. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.  
3.3 V Power Supply for RF Amplifier 1 (AMP1). Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to  
this pin.  
21  
22  
23  
VENV_N  
VENV_P  
VCC_BG2  
Negative Differential Envelope Detector Output.  
Positive Differential Envelope Detector Output.  
3.3 V Power Supply for VGA Chip Band Gap Circuit. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor  
close to this pin.  
24, 30  
IF_Q, IF_I  
IF Single-Ended Complex Inputs. These pins are internally ac-coupled. When in IF mode, Pin 25 (Q_P),  
Pin 26 (Q_N), Pin 28 (I_P), and Pin 29 (I_N) must be kept floating.  
25, 26  
28, 29  
Q_N, Q_P  
I_P, I_N  
Differential Baseband Q Inputs. These pins are dc-coupled. Do not connect these pins in IF mode.  
Differential Baseband I Inputs. These pins are dc-coupled. Do not connect these pins in IF mode.  
Rev. A | Page 7 of 39  
 
ADMV1013  
Data Sheet  
Pin No.  
32  
33  
Mnemonic  
VCC_MIXER  
VCC_BG  
Description  
3.3 V Power Supply for Mixer. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.  
3.3 V Power Supply for Mixer Chip Band Gap Circuit. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor  
close to this pin.  
34  
BG_RBIAS1  
Mixer Chip Band Gap Circuit, External High Precision Resistor. Place a 1.1 kΩ, high precision resistor  
shunt to ground close to this pin.  
35  
37, 38  
VCC_QUAD  
LON, LOP  
3.3 V Power Supply for Quadruppler. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.  
Negative and Positive Differential Local Oscillator Input. This pin is dc-coupled internally to ground  
and matched to 100 Ω differential or 50 Ω single ended. If using the LO as single ended, terminate  
the unused LO port with 50 Ω impedance to ground.  
40  
SPI Serial Enable for Mixer Chip. Connect this pin with Pin 18 (  
SEN2  
).  
SEN  
EPAD  
Exposed Pad. Solder the exposed pad to a low impedance ground plane.  
Rev. A | Page 8 of 39  
Data Sheet  
ADMV1013  
TYPICAL PERFORMANCE CHARACTERISTICS  
I/Q MODE  
I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER =  
VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.  
VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.  
Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and  
Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.  
35  
30  
30  
25  
25  
20  
20  
+85°C AT 1.8V UPPER SIDEBAND  
+25°C AT 1.8V UPPER SIDEBAND  
–40°C AT 1.8V UPPER SIDEBAND  
15  
15  
10  
10  
5
+85°C AT 0.8V UPPER SIDEBAND  
+25°C AT 0.8V UPPER SIDEBAND  
–40°C AT 0.8V UPPER SIDEBAND  
–5  
5
0
0
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–5  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 9GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
–10  
–15  
–20  
–25  
–30  
+85°C AT 0V UPPER SIDEBAND  
+25°C AT 0V UPPER SIDEBAND  
–40°C AT 0V UPPER SIDEBAND  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 4. Conversion Gain vs. RF Frequency (fRF) at Three Different Gain  
Figure 7. Conversion Gain vs. VCTRL at Various Temperatures and  
Settings for Various Temperatures, fBB = 100 MHz (Upper Sideband)  
fRF = 28 GHz and 39 GHz, fBB = 100 MHz  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
25  
20  
15  
10  
5
8
6
4
2
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
0
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Conversion Gain vs. RF Frequency at for Various Supply  
Figure 8. Conversion Gain vs. Baseband Frequency at  
fRF = 28 GHz and 39 GHz (Upper Sideband)  
Voltages, fBB = 100 MHz (Upper Sideband)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
6
0
4
2
–5  
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 6. Conversion Gain vs. RF Frequency at for Various LO Inputs,  
fBB = 100 MHz (Upper Sideband)  
Figure 9. Conversion Gain vs. Baseband Frequency at  
fRF = 28 GHz and 39 GHz (Lower Sideband)  
Rev. A | Page 9 of 39  
 
 
ADMV1013  
Data Sheet  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
25  
20  
15  
10  
5
0
–5  
–10  
–15  
–20  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
8
6
4
2
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 10. Output IP3 vs. RF Frequency at Maximum Gain for  
Various Temperatures, RF Amplitude = −20 dBm per Tone at 20 MHz  
Spacing, fBB = 100 MHz (Upper Sideband)  
Figure 13. Output IP3 vs. VCTRL, RF Amplitude = −20 dBm per Tone at  
20 MHz Spacing, fBB = 100 MHz at fRF = 28 GHz and 39 GHz (Upper Sideband)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
39GHz UPPER BASEBAND  
28GHz UPPER BASEBAND  
39GHz LOWER BASEBAND  
28GHz LOWER BASEBAND  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Output IP3 vs. RF Frequency at Maximum Gain for  
Supply Voltages, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,  
Figure 14. Output IP3 vs. Baseband Frequency at fRF = 28 GHz and 39 GHz  
at Maximum Gain, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing  
(Upper Sideband and Lower Sideband)  
f
BB = 100 MHz (Upper Sideband)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
24.0  
23.8  
23.6  
23.4  
23.2  
23.0  
22.8  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
22.6  
6
4
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
22.4  
2
0
23  
22.2  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
–20 –19 –18 –17 –16 –15 –14 –13 –12 –11 –10  
RF FREQUENCY (GHz)  
TOTAL INPUT POWER (dBm)  
Figure 12. Output IP3 vs. RF Frequency at Maximum Gain for  
Figure 15. Output IP3 vs. Total Input Power at 20 MHz Spacing,  
Various LO Inputs, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,  
fBB = 100 MHz, fRF = 28 GHz and 39 GHz (Upper Sideband)  
f
BB = 100 MHz (Upper Sideband)  
Rev. A | Page 10 of 39  
Data Sheet  
ADMV1013  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
40  
35  
30  
25  
20  
15  
10  
5
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
0
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 19. Noise Figure vs. VCTRL for Various Temperatures at  
RF = 28 GHz 39 GHz, fBB = 100 MHz  
Figure 16. Noise Figure vs. RF Frequency at Maximum Gain for  
Various Temperatures, fBB = 100 MHz (Upper Sideband)  
f
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
3.5V UPPER SIDEBAND  
40  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
35  
30  
25  
20  
15  
10  
5
0
0
23  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 17. Noise Figure vs. RF Frequency for Various Supply Voltages,  
BB = 100 MHz (Upper Sideband)  
Figure 20. Noise Figure vs. Baseband Frequency at  
f
f
RF = 28 GHz and 39 GHz (Upper Sideband)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
0
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Noise Figure vs. RF Frequency for Various LO Inputs, fBB = 100 MHz  
(Upper Sideband)  
Figure 21. Noise Figure vs. Baseband Frequency at  
f
RF = 28 GHz and 39 GHz (Lower Sideband)  
Rev. A | Page 11 of 39  
ADMV1013  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
0
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 25. Sideband Rejection vs. VCTRL for Various Temperatures at  
Figure 22. Sideband Rejection vs. RF Frequency at Maximum Gain for  
Various Temperatures, fBB = 100 MHz (Upper Sideband)  
f
RF = 28 GHz and 39 GHz, fBB = 100 MHz  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
10  
5
0
0
23  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 26. Sideband Rejection vs. Baseband Frequency at  
RF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)  
Figure 23. Sideband Rejection vs. RF Frequency at for Various Supply  
Voltages, fBB = 100 MHz (Upper Sideband)  
f
45  
40  
35  
30  
25  
20  
15  
10  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
5
0
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 24. Sideband Rejection vs. RF Frequency for Various LO Inputs,  
BB = 100 MHz (Upper Sideband)  
f
Rev. A | Page 12 of 39  
Data Sheet  
ADMV1013  
20  
15  
10  
5
20  
15  
10  
5
0
–5  
+85°C AT 39GHz  
0
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
–10  
–15  
–20  
–5  
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 27. Output P1dB vs. RF Frequency at Maximum Gain for Various  
Temperatures, fBB = 100 MHz (Upper Sideband)  
Figure 30. Output P1dB vs. VCTRL for Various Temperatures at  
RF = 28 GHz and 39 GHz, fBB = 100 MHz  
f
20  
15  
10  
5
20  
15  
10  
5
0
–5  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
–10  
3.5V UPPER SIDEBAND  
3.3V UPPER SIDEBAND  
0
3.1V UPPER SIDEBAND  
–15  
–20  
23  
–5  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Output P1dB vs. RF Frequency for Various Supply Voltages,  
BB = 100 MHz (Upper Sideband)  
Figure 31. Output P1dB vs. Baseband Frequency at  
f
fRF = 28 GHz and 39 GHz (Upper Sideband)  
20  
15  
20  
15  
10  
5
10  
5
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
0
–5  
–10  
–15  
–20  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
0
–5  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
BASEBAND FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 32. Output P1dB vs. Baseband Frequency at  
Figure 29. Output P1dB vs. RF Frequency for Various LO Inputs,  
BB = 100 MHz (Upper Sideband)  
fRF = 28 GHz and 39 GHz (Lower Sideband)  
f
Rev. A | Page 13 of 39  
ADMV1013  
Data Sheet  
IF MODE  
IF amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER =  
VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.  
VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.  
Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, and fIF = 3.5 GHz.  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
6
6
4
4
2
2
0
23  
0
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 36. Conversion Gain vs. IF Frequency at fRF = 28 GHz and 39 GHz at  
Maximum Gain (Upper Sideband and Lower Sideband)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
20  
10  
–40°C AT 28GHz  
0
–10  
–20  
–30  
–40  
3.5V UPPER SIDEBAND  
8
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 37. Conversion Gain vs. VCTRL at Various Temperatures at  
Figure 34. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
f
RF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Upper Sideband)  
30  
20  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
10  
0
–10  
–20  
–30  
–40  
+6dBm UPPER SIDEBAND  
8
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
6
4
2
–6dBm LOWER SIDEBAND  
0
23  
0
0.2  
0.4  
0.6  
0.8  
V
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
CTRL  
Figure 38. Conversion Gain vs. VCTRL at Various Temperatures at  
RF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Lower Sideband)  
Figure 35. Conversion Gain vs. RF Frequency at Maximum Gain for Various  
LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
f
Rev. A | Page 14 of 39  
 
Data Sheet  
ADMV1013  
25  
20  
15  
10  
5
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C UPPER SIDEBAND  
8
6
4
2
0
0
39GHz UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
–5  
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.1  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 39. Output IP3 vs. RF Frequency at Maximum Gain for Various  
Temperatures, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,  
fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 42. Output IP3 vs. VCTRL at fRF = 28 GHz and 39 GHz,  
RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz  
(Upper Sideband and Lower Sideband)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
3.5V UPPER SIDEBAND  
8
8
6
4
2
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
3.3V UPPER SIDEBAND  
6
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 43. Output IP3 vs. IF Frequency at fRF = 28 GHz and 39 GHz at  
Maximum Gain, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing  
(Upper Sideband and Lower Sideband)  
Figure 40. Output IP3 vs. RF Frequency at Maximum Gain for Various Supply  
Voltages, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,  
fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
25  
24  
23  
22  
21  
20  
19  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
18  
+6dBm UPPER SIDEBAND  
8
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
0dBm UPPER SIDEBAND  
6
–6dBm UPPER SIDEBAND  
17  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
4
2
0
16  
17  
–20 –19 –18 –17 –16 –15 –14 –13 –12 –11 –10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
TOTAL INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
Figure 41. Output IP3 vs. RF Frequency at Maximum Gain for Various  
LO Inputs, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,  
fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 44. Output IP3 vs. Total Input Power at fRF = 28 GHz and 39 GHz at  
20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Rev. A | Page 15 of 39  
ADMV1013  
Data Sheet  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
45  
40  
35  
30  
25  
20  
15  
10  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 48. Noise Figure vs. IF Frequency at fRF = 28 GHz and 39 GHz at  
Maximum Gain (Upper Sideband and Lower Sideband)  
Figure 45. Noise Figure vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
55  
50  
45  
40  
35  
50  
3.5V UPPER SIDEBAND  
45  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
40  
35  
30  
25  
20  
15  
10  
30  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
25  
20  
15  
10  
0
0.2  
0.4  
0.6  
0.8  
V
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
CTRL  
Figure 46. Noise Figure vs. RF Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 49. Noise Figure vs. VCTRL at Various Temperatures, fIF = 3.5 GHz,  
(Upper Sideband and Lower Sideband)  
50  
50  
45  
40  
35  
30  
+6dBm UPPER SIDEBAND  
45  
40  
35  
30  
25  
20  
15  
10  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
25  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
20  
15  
10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
V
CTRL  
Figure 47. Noise Figure vs. RF Frequency at Maximum Gain for Various  
LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 50. Noise Figure vs. VCTRL for Various Temperatures at fRF = 28 GHz and  
39 GHz, fIF = 3.5 GHz (Lower Sideband)  
Rev. A | Page 16 of 39  
Data Sheet  
ADMV1013  
20  
15  
10  
5
20  
15  
10  
5
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
0
–5  
0
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
–5  
–10  
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 54. Output P1dB vs. IF Frequency at fRF = 28 GHz and 39 GHz at  
Maximum Gain (Upper Sideband and Lower Sideband)  
Figure 51. Output P1dB vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
20  
15  
10  
5
20  
15  
10  
0
5
–5  
+85°C AT 39GHz  
3.5V UPPER SIDEBAND  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
–10  
0
–5  
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
–15  
–20  
–25  
–10  
23  
0
0.2  
0.4  
0.6  
0.8  
V
1.1  
(V)  
1.2  
1.4  
1.6  
1.8  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
CTRL  
Figure 52. Output P1dB vs. RF Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 55. Output P1dB vs. VCTRL for Various Temperatures at  
f
RF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Upper Sideband)  
15  
10  
5
20  
15  
10  
5
0
–5  
+85°C AT 39GHz  
+25°C AT 39GHz  
–40°C AT 39GHz  
+85°C AT 28GHz  
+25°C AT 28GHz  
–40°C AT 28GHz  
0
–10  
–15  
–20  
–25  
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
–5  
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
0.2  
0.4  
0.6  
0.8  
V
1.1  
(V)  
1.2  
1.4  
1.6  
1.8  
RF FREQUENCY (GHz)  
CTRL  
Figure 53. Output P1dB vs. RF Frequency at Maximum Gain for Various  
LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 56. Output P1dB vs. VCTRL for Various Temperatures at  
RF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Lower Sideband)  
f
Rev. A | Page 17 of 39  
ADMV1013  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+6dBm UPPER SIDEBAND  
0dBm UPPER SIDEBAND  
–6dBm UPPER SIDEBAND  
+6dBm LOWER SIDEBAND  
0dBm LOWER SIDEBAND  
–6dBm LOWER SIDEBAND  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
+85°C LOWER SIDEBAND  
+25°C LOWER SIDEBAND  
–40°C LOWER SIDEBAND  
0
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Sideband Rejection vs. RF Frequency at Maximum Gain for  
Various Temperatures, fIF = 3.5 GHz, Uncalibrated  
(Upper Sideband and Lower Sideband)  
Figure 60. Sideband Rejection vs. RF Frequency at Maximum Gain for  
Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
60  
60  
55  
50  
45  
40  
35  
30  
25  
20  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
28GHz LOWER SIDEBAND  
+85°C UPPER SIDEBAND  
+25°C UPPER SIDEBAND  
–40°C UPPER SIDEBAND  
15  
10  
5
0
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 58. Sideband Rejection vs. RF Frequency at Maximum Gain for Various  
Temperatures, fIF = 3.5 GHz, Calibrated at 25°C (Upper Sideband). Note:  
Calibrated Using LOAMP_PH_ADJ_ Q_FINE and LOAMP_PH_ADJ_I_FINE Bits  
Figure 61. Sideband Rejection vs. IF Frequency at fRF = 28 GHz and 39 GHz at  
Maximum Gain (Upper Sideband and Lower Sideband)  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
15  
3.5V UPPER SIDEBAND  
15  
10  
5
3.3V UPPER SIDEBAND  
3.1V UPPER SIDEBAND  
3.5V LOWER SIDEBAND  
3.3V LOWER SIDEBAND  
3.1V LOWER SIDEBAND  
39GHz UPPER SIDEBAND  
28GHz UPPER SIDEBAND  
39GHz LOWER SIDEBAND  
10  
28GHz LOWER SIDEBAND  
5
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
V
CTRL  
RF FREQUENCY (GHz)  
Figure 62. Sideband Rejection vs. VCTRL at fRF = 28 GHz and 39 GHz,  
fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Figure 59. Sideband Rejection vs. RF Frequency at Maximum Gain for Various  
Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)  
Rev. A | Page 18 of 39  
Data Sheet  
ADMV1013  
ENVELOPE DETECTOR PERFORMANCE  
IF and I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER =  
VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.  
Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, IF fIF = 3.5 GHz.  
Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and  
Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.  
VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.  
Envelope detector measurements made with Register 0x03, Bit 5 = 1.  
20  
10  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
200  
175  
150  
125  
100  
75  
0
VENV_N/VENV_P DELTA, P  
VENV_N/VENV_P DELTA, P  
VENV_N/VENV_P DELTA, P  
= 13dBm  
= 5dBm  
= 0dBm  
OUT  
OUT  
OUT  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
P
P
P
RF  
OUT  
OUT  
OUT  
ENVELOPE AT HD1  
ENVELOPE AT HD2  
VENV_N/VENV_P DELTA  
60  
ENVELOPE P  
ENVELOPE P  
ENVELOPE P  
, P  
= 13dBm  
= 5dBm  
= 0dBm  
OUT OUT  
40  
50  
, P  
OUT OUT  
20  
, P  
OUT OUT  
0
25  
–20 –18 –16 –14 –12 –10  
–8  
–6  
–4  
–2  
0
2
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
POWER IN TOTAL (dBm)  
RF FREQUENCY (GHz)  
Figure 65. POUT and VENV_N/VENV_P Delta vs. Power In Total for POUT RF,  
OUT Envelope HD1, POUT Envelope HD2, and VENV_N/VENV_P Delta,  
Measurements Performed with Two Tones with 100 MHz Separation,  
RF = 28 GHz, VCTRL = 1800 mV  
Figure 63. VENV_N/VENV_P Delta and Envelope POUT Delta vs. RF Frequency  
at Various Output Power Levels, Envelope Frequency = 100 MHz, VCTRL = 1800 mV,  
TA = 25°C, LO = 0 dBm, IF = 2 GHz (Upper Sideband)  
P
f
0
–5  
–10  
–15  
NORMALIZED HD1, 1×  
NORMALIZED HD2, 2×  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
ENVELOPE FREQUENCY (MHz)  
Figure 64. Output Level vs. Envelope Frequency for Normalized Harmonic  
Distortion (HD1), 1× and Normalized Harmonic Distortion(HD2), 2×,  
f
RF = 28 GHz, LO = 0 dBm at 25°C, HD1 and HD2 Measurement Performed  
with Two Tones with Delta Equal to Envelope Frequency,  
HD2 Normalized to HD1 Level at 50 MHz  
Rev. A | Page 19 of 39  
 
ADMV1013  
Data Sheet  
0
–5  
0
–10  
–20  
–30  
–40  
–50  
–60  
140  
130  
120  
110  
100  
90  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
P
P
P
ENVELOPE AT +25°C  
ENVELOPE AT +85°C  
ENVELOPE AT –40°C  
OUT  
OUT  
OUT  
80  
70  
60  
50  
P
P
ENVELOPE AT P = –10dBm  
IN  
OUT  
40  
ENVELOPE AT P = –15dBm  
OUT  
IN  
30  
VENV_N/VENV_P DELTA, P = –10dBm  
IN  
20  
VENV_N/VENV_P DELTA, P = –15dBm  
IN  
10  
0
V
(V)  
CTRL  
P
RF PER TONE (dBm)  
OUT  
Figure 66. HD1 POUT Envelope and VENV_N/VENV_P Delta vs. VCTRL at  
Various Total Input Power (PIN) Levels, Measurements Performed at 28 GHz  
with Two Input Tones with Separation of 100 MHz  
Figure 67. POUT Envelope vs. POUT RF per Tone at Various Temperatures at  
f
RF = 33 GHz, Measurement Performed at 3.5 GHz IF with Two Tones at  
100 MHz Spacing, VCTRL = 1800 mV  
Rev. A | Page 20 of 39  
Data Sheet  
ADMV1013  
RETURN LOSS AND ISOLATION  
IF and I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER =  
VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.  
Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, and fIF = 3.5 GHz.  
Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and  
Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.  
VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.  
Envelope detector measurements made with Register 0x03, Bit 5 = 1.  
0
0
–5  
–5  
I SIDE  
Q SIDE  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
–35  
0V  
0.9V  
1.8V  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
0
1
2
3
4
5
6
7
RF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 68. RF Return Loss vs. RF Frequency at Various VCTRL Voltages  
Figure 70. IF Return Loss vs. IF Frequency (Taken Without Hybrid)  
0
0
–5  
LOP  
I SIDE  
Q SIDE  
–10  
–5  
LON  
LO DIFFERENTIAL  
–10  
–15  
–20  
–25  
–30  
–35  
–15  
–20  
–25  
–30  
–35  
0
1
2
3
4
5
6
7
4
5
6
7
8
9
10  
11  
12  
FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 71. I/Q Differential Return Loss vs. Frequency  
(Taken Without Hybrids or Baluns)  
Figure 69. LO Return Loss vs. LO Frequency  
Rev. A | Page 21 of 39  
 
ADMV1013  
Data Sheet  
0
–5  
0
–5  
4× LO AT +85°C  
4× LO AT +25°C  
4× LO AT –40°C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–105  
4
5× LO LEAKAGE, V  
5× LO LEAKAGE, V  
5× LO LEAKAGE, V  
5× LO LEAKAGE, V  
5× LO LEAKAGE, V  
5× LO LEAKAGE, V  
5× LO LEAKAGE, V  
= 0mV  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
= 300mV  
= 600mV  
= 900mV  
= 1200mV  
= 1500mV  
= 1800mV  
5× LO AT +85°C  
5× LO AT +25°C  
5× LO AT –40°C  
1× LO AT +85°C  
1× LO AT +25°C  
1× LO AT –40°C  
6
8
10  
12  
4
5
6
7
8
9
10  
11  
12  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 72. LO to RF Leakage vs. LO Frequency for 4× LO, 5× LO, and 1× LO at  
Various Temperatures (Uncalibrated)  
Figure 75. 5× LO Leakage vs. LO Frequency at Different VCTRL Settings  
(Uncalibrated)  
0
0
4× LO LEAKAGE, V  
4× LO LEAKAGE, V  
4× LO LEAKAGE, V  
= 0mV  
= 300mV  
= 600mV  
CTRL  
CTRL  
CTRL  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
1× LO LEAKAGE, V  
1× LO LEAKAGE, V  
1× LO LEAKAGE, V  
1× LO LEAKAGE, V  
1× LO LEAKAGE, V  
1× LO LEAKAGE, V  
= 0mV  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
= 300mV  
= 600mV  
= 900mV  
= 1200mV  
= 1500mV  
= 1800mV  
1× LO LEAKAGE, V  
CTRL  
4× LO LEAKAGE, V  
4× LO LEAKAGE, V  
4× LO LEAKAGE, V  
= 900mV  
CTRL  
CTRL  
CTRL  
= 1200mV  
= 1500mV  
= 1800mV  
4× LO LEAKAGE, V  
CTRL  
4
5
6
7
8
9
10  
11  
12  
4
5
6
7
8
9
10  
11  
12  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 73. 1× LO Leakage vs. LO Frequency at Different VCTRL Settings  
(Uncalibrated)  
Figure 76. 4× LO Leakage vs. LO Frequency at Different VCTRL Settings  
(Uncalibrated)  
0
0
V
V
V
V
V
V
= 0V  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
CTRL  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 0.4V  
= 0.8V  
= 1.2V  
= 1.4V  
= 1.8V  
–10  
–40°C  
+25°C  
+85°C  
–20  
–30  
–40  
–50  
–60  
–70  
80  
4
5
6
7
8
9
10  
11  
12  
4
5
6
7
8
9
10  
11  
12  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 74. 4× LO to RF Leakage vs. LO Frequency at Various Temperatures  
(Calibrated). Note: Calibrated at Each Frequency Using MXER_OFF_ADJ_I_N,  
MXER_OFF_ADJ_I_P, MXER_OFF_ADJ_Q_N, and MXER_OFF_ADJ_Q_P Bits  
at TA = 25°C  
Figure 77. 4× LO to RF Leakage vs. LO Frequency at Various VCTRL (Calibrated)  
Note: Calibrated at Each Frequency Using MXER_OFF_ADJ_I_N,  
MXER_OFF_ADJ_I_P, MXER_OFF_ADJ_Q_N, and MXER_OFF_ADJ_Q_P Bits  
at VCTRL = 1800 mV  
Rev. A | Page 22 of 39  
Data Sheet  
ADMV1013  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
+25°C, I_P  
–40°C, I_P  
+85°C, I_P  
+25°C, I_N  
–40°C, I_N  
+85°C, I_N  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+25°C, Q_N  
–40°C, Q_N  
+85°C, Q_N  
+25°C, Q_P  
–40°C, Q_P  
+85°C, Q_P  
–40°C, IF_I  
+25°C, IF_I  
+85°C, IF_I  
–40°C, IF_Q  
+25°C, IF_Q  
+85°C, IF_Q  
4
5
6
7
8
9
10  
11  
12  
4
5
6
7
8
9
10  
11  
12  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 78. LO Leakage vs. LO Frequency at Various Temperatures at I_N, I_P,  
Q_N, and Q_P (Taken Without Hybrid(s))  
Figure 80. LO Leakage vs. LO Frequency at Various Temperatures at IF_I and  
IF_Q Ports(Taken Without Hybrid)  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
0
1
2
3
4
5
FREQUENCY (GHz)  
Figure 79. Envelope Detector Differential Return Loss vs. Frequency  
Rev. A | Page 23 of 39  
ADMV1013  
Data Sheet  
IF Mode  
fIF = 3.5 GHz at −20 dBm, LO = 6.125 GHz at +6 dBm, and  
M × N SPURIOUS PERFORMANCE  
Mixer spurious products are measured in dBc from the RF  
output power level. Spurious frequencies are calculated by  
fRF = 28 GHz.  
N × LO  
4
|(M × IF) + (N × LO) | (for IF Mode)  
|(M × IQ) + (N × LO) | (for IQ Mode)  
0
1
2
3
5
6
7
8
−2 76  
−1 68  
117 120 109 77  
92 90 84 45  
46 56 53 44  
34 24 20 30  
N/A means not applicable. Blank cells in the spurious  
performance tables indicate that the frequency is above 50 GHz  
and is not measured. REF stands for reference RF output signal.  
90  
80  
71  
58  
75  
77  
26  
18  
70  
23  
9
M × IF  
0
N/A 71  
+1 76  
+2 68  
92  
84  
REF 24 32 61  
58 80 82 75  
The LO frequencies are referred from the frequencies applied to  
the ADMV1013. IF and I/Q amplitude = −20 dBm.  
fIF = 3.5 GHz at −20 dBm, LO = 8.875 GHz at +6 dBm, and  
RF = 39 GHz.  
VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV =  
VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG =  
VCC_QUAD = 3.3 V, DVDD = VC C _V VA = 1. 8 V, T A = 25°C,  
and set Register 0x0A to 0xE700, unless otherwise noted.  
f
N × LO  
3
0
1
2
4
5
6
83  
69  
N/A  
83  
69  
132  
95  
69  
89  
114  
109  
76  
44  
24  
93  
96 68  
54 25  
53 16  
33 REF  
98 75  
99 107  
57 83  
52  
−2  
Measurements in IF mode performed with a 90° hybrid,  
Register 0x03, Bit 7 = 1, and fIF = 3.5 GHz.  
−1  
0
M × IF  
Measurements in I/Q mode are measured as a composite of the  
I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0,  
and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q  
58  
+1  
+2  
fIF = 3.5 GHz at −20 dBm, LO = 7.875 GHz at +6 dBm, and  
f
BB = 100 MHz.  
fRF = 28 GHz.  
VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the  
VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise  
specified.  
N × LO  
0
1
2
3
4
5
6
7
82  
65  
140 115 107 69  
99  
97 95  
46  
−2  
−1  
I/Q Mode  
120 91  
41  
52  
70  
REF 47  
fBB = 100 MHz at −20 dBm, LO = 6.975 GHz at +6 dBm.  
N/A 82  
75  
60  
23  
26  
49  
56  
M × IF  
0
N × LO  
82  
65  
94  
75  
+1  
+2  
0
1
2
3
4
5
6
7
120 107 111 93  
115  
93  
93  
105 103 122 79  
109 89 108  
−2  
−1  
0
fIF = 3.5 GHz at −20 dBm, LO = 10.5 GHz at +6 dBm, and  
95  
85  
72  
74  
57  
53  
32  
91  
26  
20  
65  
61  
53 110  
35 73  
37 84  
91 83  
fRF = 39 GHz.  
N/A 80  
M × IQ  
N × LO  
3
93  
93  
96  
REF 41  
57 89  
+1  
+2  
0
1
2
4
5
107 86  
96  
80  
N/A  
97  
79  
122  
85  
83  
95  
113  
99  
28  
34  
45  
88  
91  
26  
43  
49  
103  
70  
REF  
16  
41  
102  
94  
64  
−2  
−1  
0
fBB = 100 MHz at −20 dBm, LO = 9.725 GHz at +6 dBm, and  
RF = 39 GHz.  
f
M × IF  
N × LO  
3
+1  
+2  
0
1
2
4
5
97  
116  
100  
77  
95  
37  
40  
18  
80  
116  
62  
63  
36  
99  
89  
26  
20  
REF  
64  
113  
90  
77  
68  
103  
−2  
−1  
0
101  
N/A  
97  
M × IQ  
91  
+1  
+2  
101  
118  
Rev. A | Page 24 of 39  
 
Data Sheet  
ADMV1013  
THEORY OF OPERATION  
The ADMV1013 is a wideband microwave upconverter optimized  
for microwave radio designs operating in the 24 GHz to 44 GHz  
RF frequency range. See Figure 1 for a functional block diagram  
of the device. The ADMV1013 digital settings are controlled via the  
SPI. The ADMV1013 has two modes of operation:  
LO INPUT PATH  
The LO input path operates from 5.4 GHz to 10.25 GHz with  
an LO amplitude range of −6 dBm to +6 dBm. The LO has an  
internal quadrupler (×4) and a programmable band-pass filter.  
The LO band-pass filter is programmable using the QUAD_  
FILTERS bits (Register 0x09, Bits[3:0]). See the Performance at  
Different Quad Filter Settings section for more information on  
the QUAD_FILTERS settings.  
Baseband quadrature modulation (I/Q mode)  
Single-sideband upconversion (IF mode)  
START-UP SEQUENCE  
The LO path can operate either differentially or single ended.  
LOP and LON are the inputs to the LO path. The LO path can  
switch from differential to single-ended operation by setting the  
QUAD_SE_MODE bits (Register 0x09, Bits[9:6]). See the  
Performance Between Differential vs. Single-Ended LO Input  
section for more information. When using the LO as single  
ended, the unused LO input pin must be terminated with a  
50 Ω load.  
To use the voltage control RF VVA1 and RF VVA2, the  
VCC_VVA (1.8 V) supply must be on. The VCTRL1 pin and  
VCTRL2 pin control the gain of the RF VVA1 and the RF  
VVA2. Similarly, to use the SPI control, it is necessary to first  
turn on DVDD and then perform a hard reset by toggling the  
RST pin to logic low and then to logic high.  
The ADMV1013 SPI settings require the default settings to be  
changed during startup for optimum performance.  
Figure 81 shows a block diagram of the LO path.  
Set Register 0x0A to 0xE700 after each power-up or reset.  
BASEBAND QUADRATURE MODULATION  
(I/Q MODE)  
In I/Q mode, the input impedance of the baseband pins (I_P,  
I_N, Q_P, and Q_N) are 100 Ω differential. These inputs can be  
loaded with a dc-coupled 100 Ω differential load. I_P and I_N  
are the differential baseband I inputs, and Q_P and Q_N are the  
differential baseband Q inputs. These inputs can operate from a  
LON  
LOP  
4 × LON  
4 × LOP  
×4  
AMP  
V
CM of 0 V to 2.6 V. The baseband I/Q ports can operate from  
Figure 81. LO Path Block Diagram  
dc to 6.0 GHz at each I and Q channel.  
Enable the quadrupler by setting the QUAD_PD bits  
(Register 0x03, Bits[13:11]) to 0x0. To power down the  
quadrupler, set these bits to 0x7.  
To set the ADMV1013 in I/Q mode, set MIXER_IF_EN bit  
(Register 0x03, Bit 7) to 0.  
When changing the external VCM, the internal mixer gate  
voltage also must be changed. To make this change, set the  
MIXER_VGATE bits (Register 0x05, Bits[6:0]). The MIXER_  
VGATE value follows the VCM such as, that for a 0 V to 1.8 V  
SIDEBAND SUPPRESSION OPTIMIZATION  
Unwanted sideband can be upconverted from the quadrature  
error by generating the quadrature LO signals and the external  
quadrature inputs. Deviation from ideal quadrature (that is,  
total sideband rejection and no sideband tone upconverts) on  
these signals limits the amount of achievable sideband rejection.  
V
CM, MIXER_VGATE = 23.89 VCM + 81, and for a >1.8 V to  
2.6 V VCM, MIXER_VGATE = 23.75 VCM + 1.25.  
SINGLE-SIDEBAND UPCONVERSION (IF MODE)  
The ADMV1013 offers approximately 25° of quadrature phase  
adjustment in the LO path quadrature signals to suppress the  
sideband. Make these adjustments through the LOAMP_PH_  
ADJ_I_FINE bits (Register 0x05, Bits[13:7]) and the LOAMP_  
PH_ADJ_Q_FINE bits (Register 0x06, Bits[13:7]). These bits  
reject the unwanted sideband signal. To achieve the required  
sideband suppression, it may be necessary to adjust the  
amplitude difference between the quadrature inputs, as well  
externally.  
The ADMV1013 features the ability to upconvert a real IF input  
anywhere from 0.8 GHz to 6.0 GHz while suppressing the  
unwanted sideband by typically better than 26 dBc. The IF  
inputs are quadrature to each other, 50 Ω single ended, and are  
internally dc-coupled. IF_I and IF_Q are the quadrature IF inputs.  
An external 90° hybrid is required to select the appropriate  
sideband. To configure the ADMV1013 in IF mode, set the  
MIXER_IF_EN bit (Register 0x03, Bit 7) to 1. The MIXER_IF_EN  
bit defaults to IF mode on SPI startup and reset.  
In I/Q mode, the recommendation is to adjust the sideband  
suppression through the external transceiver digital-to-analog  
converter (DAC).  
In addition, the baseband pins (I_P, I_N, Q_P, and Q_N) must  
see an open load for optimum performance in IF mode.  
Rev. A | Page 25 of 39  
 
 
 
 
 
 
 
ADMV1013  
Data Sheet  
CARRIER FEEDTHROUGH NULLING  
POWER DOWN AND RESET  
Carrier feedthrough results from minute dc offsets that occur  
on the internal mixer. In an I/Q modulator, nonzero differential  
offsets mix with the LO and result in carrier feedthrough to the  
RF output. In addition to this effect, some of the signal power at  
the LO input couples directly to the RF output (this may be  
because of the bond wire to bond wire coupling or coupling  
through the silicon substrate). The net carrier feedthrough at  
the RF output is the vector combination of the signals that appear  
at the output because of these two effects.  
The SPI of the ADMV1013 allows the user to power down the  
device circuits and reduce power consumption to typically 77 mW.  
To turn off the entire chip, set the BG_PD bit (Register 0x03,  
Bit 10) to 1. In addition, individual blocks of the circuit can be  
powered down individually. To power down the quadrupler,  
set the QUAD_PD bits (Register 0x03, Bits[13:11]) to 0x7. To  
power down the VGA, set the VGA_PD bit (Register 0x03,  
Bit 15) to 1. To power down the mixer, set the MIXER_PD bit  
(Register 0x03, Bit 14) to 1. To power down the detector, set the  
DET_EN bit (Register 0x03, Bit 5) to 0.  
The ADMV1013 offers, in IF mode, LO feedthrough offset  
calibration adjustment in the LO path. Make these adjustments  
through the MXER_OFF_ADJ_I_N bits (Register 0x07,  
Bits[8:2], the MXER_OFF_ADJ_I_P bits (Register 0x07,  
Bits[15:9]), the MXER_OFF_ADJ_Q_N bits (Register 0x08,  
Bits[8:2]), and the MXER_OFF_ADJ_Q_P bits (Register 0x08,  
Bits[15:9] in order to reject the unwanted LO signal.  
SERIAL PORT INTERFACE (SPI)  
The SPI of the ADMV1013 allows the user to configure the device  
for specific functions or operations via a 4-wire SPI port. This  
interface provides users with added flexibility and customization.  
The SPI consists of four control lines: SCLK, SDI, SDO, and  
SEN SEN2 SEN  
SEN2  
active low chip select lines,  
connected together.  
/
.
and  
must be  
For I/Q mode, the LO feedthrough offset amplitude and phase  
calibration optimization can be adjusted externally through a  
transceiver DAC.  
The ADMV1013 protocol consists of a write/read bit followed  
by six register address bits, 16 data bits, and a parity bit. Both  
the address and data fields are organized MSB first and end with  
the LSB. For a write, set the first bit to 0. For a read, set the first  
bit to 1.  
ENVELOPE DETECTOR  
The ADMV1013 features an envelope detector with a pseudo  
differential voltage output. The envelope detector output pins  
are VENV_P and VENV_N. The ADMV1013 turns on with the  
envelope detector turned off. To turn on the envelope detector,  
set the DET_EN bit (Bit 5, Register 0x03). The differential voltage  
output of the envelope detector rises linearly to the square of  
the input envelope voltage to the detector. The detector output  
ranges from −45 dBm to −20 dBm when the input two tone  
power ranges from −20 dBm to 0 dBm. The envelope detector  
has 350 MHz, 3 dB envelope bandwidth and 1 GHz, 10 dB  
envelope bandwidth. The envelope detector precedes the VVA  
and the output driver of the ADMV1013.  
The write cycle sampling must be performed on the rising edge.  
The 16 bits of the serial write data are shifted in, MSB to lower  
sideband. The ADMV1013 input logic level for the write cycle  
supports a 1.8 V interface.  
For a read cycle, up to 16 bits of serial read data are shifted out,  
MSB first. After the 16 bits of data shift out, the parity bit shifts  
out. The output logic level for a read cycle is 1.8 V.  
The parity bit always follows the direction of the data. If parity  
is not used, the transmitting end transmits zero instead of parity.  
The parity is odd, which means that the total number of ones  
transmitted during a command, including the read/write bit,  
the address bit, the data bit, and the parity bit, must be odd.  
Figure 82 and Figure 83 show the SPI write and read protocol,  
respectively.  
SEN/SEN2  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
SDI  
R/W  
A5  
A4  
A3  
A2  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
Figure 82. SPI Write Timing Diagram  
Rev. A | Page 26 of 39  
 
 
 
 
 
Data Sheet  
ADMV1013  
SEN/SEN2  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
R/W A5  
A4  
A3  
A2  
A1  
A0  
SDI  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
SDO  
Figure 83. SPI Read Timing Diagram  
Rev. A | Page 27 of 39  
 
ADMV1013  
Data Sheet  
APPLICATIONS INFORMATION  
BASEBAND QUADRATURE MODULATION FROM  
LOW FREQUENCIES  
Figure 86 shows the 4× LO to RF leakage vs. 4× LO frequency at  
different quad filter settings.  
0
Figure 84 shows the I/Q mode performance at low baseband  
input frequencies. The measurements were performed at 28 GHz,  
−10 dBm input power, VCM = 0 V, Register 0x03, Bit 7 = 0, 0 dBm  
LO input power, and TA = 25°C.  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
45  
40  
35  
QUAD FILTERS = 0  
QUAD FILTERS = 5  
QUAD FILTERS = 10  
–40  
SIDEBAND REJECTION  
CONVERSION GAIN  
30  
–45  
QUAD FILTERS = 15  
–50  
25  
20  
15  
10  
5
–55  
–60  
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48  
4× LO FREQUENCY (GHz)  
Figure 86.4× LO to RF Leakage vs. 4× LO Frequency for Four Different  
QUAD_FILTERS Settings  
0
VVA TEMPERATURE COMPENSATION  
1
10  
100  
1k  
10k  
100k  
1M 10M  
100M  
BASEBAND FREQUENCY (Hz)  
Figure 87 shows the conversion gain vs. RF frequency at two  
different Register 0x0A settings, the recommended setting  
(0xE700) and a setting for higher gain, and three different  
temperatures for IF mode. The recommended value suggested  
in the Start-Up Sequence section provides the least variation in  
conversion gain over temperature. If the priority is to increase  
the conversion gain, Register 0x0A can be set to 0xFA00.  
However, at this value, the conversion gain variation over  
temperature can increase by 2 dB.  
Figure 84. Conversion Gain and Sideband Rejection vs. Baseband Frequency  
PERFORMANCE AT DIFFERENT QUAD FILTER  
SETTINGS  
Figure 85 shows the conversion gain vs. RF frequency in  
IF mode at TA = 25°C and LO input power = 0 dBm for  
different QUAD_FILTERS settings.  
24  
22  
20  
18  
16  
14  
12  
10  
26  
24  
22  
20  
18  
16  
14  
12  
QUAD FILTERS = 0  
QUAD FILTERS = 5  
QUAD FILTERS = 10  
QUAD FILTERS = 15  
8
6
4
2
–40°C, 0xFA00  
+25°C, 0xFA00  
0
10  
–2  
–4  
–6  
–8  
–10  
+85°C, 0xFA00  
–40°C, 0xE700  
+25°C, 0xE700  
+85°C, 0xE700  
8
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
Figure 85. Conversion Gain vs. RF Frequency for Four Different  
QUAD_FILTERS Settings, fIF = 3.5 GHz (Upper Sideband)  
RF FREQUENCY (GHz)  
Figure 87. Conversion Gain vs. RF Frequency at Maximum Gain for  
Various Temperatures and Register 0x0A Settings (Recommended and  
Higher Gain Setting), fIF = 3.5 GHz  
Rev. A | Page 28 of 39  
 
 
 
 
 
 
 
 
Data Sheet  
ADMV1013  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
Figure 88 shows the conversion gain vs. RF frequency at two  
different Register 0x0A settings, the recommended setting and  
the default setting, and three different temperatures for IF mode.  
The default values provides slightly less gain and a larger gain  
variation across temperature compared to the recommended  
setting.  
SINGLE-ENDED POSITIVE SIDE DISABLE  
SINGLE-ENDED NEGATIVE SIDE DISABLE  
DIFFERENTIAL  
28  
26  
24  
22  
20  
18  
16  
14  
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
12  
10  
8
–40°C, 0xE700  
+25°C, 0xE700  
+85°C, 0xE700  
–40°C, 0x0000  
+25°C, 0x0000  
+85°C, 0x0000  
RF FREQUENCY (GHz)  
Figure 90. Output IP3 vs. RF Frequency for Three Different LO Mode Settings,  
RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz  
(Upper Sideband)  
6
4
40  
2
0
35  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
SINGLE-ENDED POSITIVE SIDE DISABLE  
30  
25  
20  
15  
10  
5
SINGLE-ENDED NEGATIVE SIDE DISABLE  
DIFFERENTIAL  
RF FREQUENCY (GHz)  
Figure 88. Conversion Gain vs. RF Frequency at Maximum Gain for  
Various Temperatures and Register 0x0A Settings (Default and  
Recommended Register 0x0A Settings), fIF = 2 GHz  
PERFORMANCE BETWEEN DIFFERENTIAL vs.  
SINGLE-ENDED LO INPUT  
Figure 89 to Figure 91 show the conversion gain, output IP3, and  
sideband rejection performance for operating the ADMV1013 LO  
input as differential vs. single ended. The measurements were  
performed with 0 dBm LO input power, IF mode, with an IF  
frequency of 3.5 GHz, upper sideband, and TA = 25°C.  
28  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 91. Sideband Rejection vs. RF Frequency for Three Different LO Mode  
Settings, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing,  
fIF = 3.5 GHz (Upper Sideband)  
SINGLE-ENDED POSITIVE SIDE DISABLE  
SINGLE-ENDED NEGATIVE SIDE DISABLE  
DIFFERENTIAL  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 89. Conversion Gain vs. RF Frequency for Three Different LO Mode  
Settings, fIF = 3.5 GHz (Upper Sideband)  
Rev. A | Page 29 of 39  
 
 
 
 
ADMV1013  
Data Sheet  
Figure 94 and Figure 95 show the conversion gain vs. RF  
PERFORMANCE ACROSS RF FREQUENCY AT FIXED  
INPUT FREQUENCIES  
frequency in I/Q mode for multiple baseband (BB) frequencies  
(TA = 25°C, LO = 0 dBm) for upper sideband and lower  
sideband, respectively.  
The ADMV1013 quadrupler operates from 21.6 GHz to 41 GHz.  
When using the lower sideband, the conversion gain starts  
rolling off gradually after the quadrupler frequency reaches  
41 GHz. When using the upper sideband, the conversion gain  
starts rolling off when the quadrupler frequency is 21.6 GHz.  
28  
26  
24  
22  
20  
18  
Figure 92 and Figure 93 show the conversion gain vs. RF frequency  
in IF mode for fixed IF frequencies (TA = 25°C, LO = 0 dBm) for  
the upper sideband and lower sideband, respectively.  
I/Q, 0.8GHz  
I/Q, 1GHz  
16  
14  
12  
10  
8
I/Q, 2GHz  
I/Q, 3GHz  
I/Q, 4GHz  
I/Q, 5GHz  
I/Q, 6GHz  
28  
0.8GHz UPPER SIDEBAND  
26  
1GHz UPPER SIDEBAND  
2GHz UPPER SIDEBAND  
24  
3GHz UPPER SIDEBAND  
4GHz UPPER SIDEBAND  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 94. Conversion Gain vs. RF Frequency for Multiple Baseband  
Frequency Settings (Upper Sideband)  
6
28  
26  
24  
22  
20  
18  
5GHz UPPER SIDEBAND  
4
6GHz UPPER SIDEBAND  
7GHz UPPER SIDEBAND  
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
I/Q, 0.8GHz  
I/Q, 1GHz  
Figure 92. Conversion Gain vs. RF Frequency for Multiple IF Frequency  
Settings (Upper Sideband)  
16  
14  
12  
10  
8
I/Q, 2GHz  
I/Q, 3GHz  
I/Q, 4GHz  
I/Q, 5GHz  
I/Q, 6GHz  
28  
0.8GHz LOWER SIDEBAND  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
1GHz LOWER SIDEBAND  
2GHz LOWER SIDEBAND  
3GHz LOWER SIDEBAND  
4GHz LOWER SIDEBAND  
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 95. Conversion Gain vs. RF Frequency at Multiple Baseband Frequency  
Settings (Lower Sideband)  
6
5GHz LOWER SIDEBAND  
6GHz LOWER SIDEBAND  
7GHz LOWER SIDEBAND  
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 93. Conversion Gain vs. RF Frequency at Multiple IF Frequency  
Settings (Lower Sideband)  
Rev. A | Page 30 of 39  
 
 
 
 
 
Data Sheet  
ADMV1013  
PERFORMANCE ACROSS COMMON-MODE  
VOLTAGE IN I/Q MODE  
OPERATING VCTRL1 AND VCTRL2 INDEPENDENTLY  
The data shown in the Specifications section and the Typical  
Performance Characteristics section is based on the VCTRL1  
and VCTRL2 voltages being equal. Finer gain regulation can be  
obtained if VCTRL1 and VCTRL2 are used separately. Operating  
VCTRL1 and VCTRL2 also allows either maintaining IP3 or  
noise figure performance while attenuating the RF output.  
Figure 96, Figure 97, and Figure 98 show the performance at  
various common-mode voltages in I/Q mode. For each  
common-mode voltage, the mixer gate voltage was changed  
based on the equation described in the Baseband Quadrature  
Modulation (I/Q Mode) section.  
30  
Figure 99, Figure 102, and Figure 105 show the conversion gain,  
input IP3, and noise figure vs. the RF frequency, respectively (IF =  
2 GHz, upper sideband, LO = 0 dBm at TA = 25°C), when  
VCTRL1 is equal to VCTRL2.  
25  
20  
Figure 100, Figure 103, and Figure 106 show the conversion  
gain, input IP3, and noise figure vs. the RF frequency, respectively  
(IF = 2 GHz, upper sideband, LO = 0 dBm at TA = 25°C), when  
VCTRL2 is held at a minimum attenuation and VCTRL1 is  
changed.  
0V  
0.4V  
15  
1.0V  
1.2V  
1.4V  
1.8V  
10  
5
2.0V  
2.4V  
2.6V  
Figure 101, Figure 104, and Figure 107 show the conversion  
gain, input IP3, and noise figure vs. the RF frequency, respectively  
(IF = 2 GHz, upper sideband, LO = 0 dBm at TA = 25°C), when  
VCTRL1 is held at minimum attenuation and VCTRL2  
is changed.  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 96. Conversion Gain vs. RF Frequency at Multiple Common-Mode  
Voltages in I/Q Mode (fBB = 100 MHz, LO = 0 dBm, TA = 25°C)  
30  
28  
20  
10  
26  
24  
22  
20  
0
0V  
0.4V  
18  
–10  
1.0V  
1.2V  
1.4V  
1.8V  
2.0V  
2.4V  
2.6V  
16  
14  
12  
10  
8
–20  
VCTRL1 = 0V, VCTRL2 = 0V  
VCTRL1 = 0.1V, VCTRL2 = 0.1V  
VCTRL1 = 0.2V, VCTRL2 = 0.2V  
VCTRL1 = 0.3V, VCTRL2 = 0.3V  
VCTRL1 = 0.4V, VCTRL2 = 0.4V  
VCTRL1 = 0.5V, VCTRL2 = 0.5V  
VCTRL1 = 0.6V, VCTRL2 = 0.6V  
VCTRL1 = 0.7V, VCTRL2 = 0.7V  
VCTRL1 = 0.8V, VCTRL2 = 0.8V  
VCTRL1 = 0.9V, VCTRL2 = 0.9V  
VCTRL1 = 1.0V, VCTRL2 = 1.0V  
VCTRL1 = 1.1V, VCTRL2 = 1.1V  
–30  
VCTRL1 = 1.2V, VCTRL2 = 1.2V  
VCTRL1 = 1.3V, VCTRL2 = 1.3V  
VCTRL1 = 1.4V, VCTRL2 = 1.4V  
VCTRL1 = 1.5V, VCTRL2 = 1.5V  
VCTRL1 = 1.6V, VCTRL2 = 1.6V  
VCTRL1 = 1.7V, VCTRL2 = 1.7V  
VCTRL1 = 1.8V, VCTRL2 = 1.8V  
–40  
–50  
–60  
6
4
2
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 99. Conversion Gain vs. RF Frequency at Various VCTRL Voltages  
(VCTRL1 = VCTRL2), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
Figure 97. Output IP3 vs. RF Frequency at Multiple Common-Mode Voltages  
in I/Q Mode (fBB = 100 MHz, LO = 0 dBm, TA = 25°C)  
30  
20  
10  
20  
18  
16  
14  
12  
10  
0
VCTRL1 = 0V  
VCTRL1 = 0.1V  
–10  
0V  
1.4V  
1.6V  
1.8V  
2.0V  
2.2V  
2.4V  
2.6V  
VCTRL1 = 0.2V  
VCTRL1 = 0.3V  
VCTRL1 = 0.4V  
VCTRL1 = 0.5V  
VCTRL1 = 0.6V  
VCTRL1 = 0.7V  
VCTRL1 = 0.8V  
VCTRL1 = 0.9V  
VCTRL1 = 1.0V  
VCTRL1 = 1.1V  
8
6
4
2
0
0.2V  
0.4V  
0.6V  
0.8V  
1.0V  
1.2V  
VCTRL1 = 1.2V  
VCTRL1 = 1.3V  
VCTRL1 = 1.4V  
VCTRL1 = 1.5V  
VCTRL1 = 1.6V  
VCTRL1 = 1.7V  
VCTRL1 = 1.8V  
–20  
–30  
–40  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 100. Conversion Gain vs. RF Frequency at Various VCTRL1 Voltages  
(VCTRL2 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
Figure 98. Output P1dB vs. RF Frequency at Multiple Common-Mode  
Voltages in I/Q Mode (fBB = 100 MHz, LO = 0 dBm, TA = 25°C)  
Rev. A | Page 31 of 39  
 
 
 
 
 
ADMV1013  
Data Sheet  
30  
20  
15  
10  
5
20  
10  
0
VCTRL2 = 0V  
VCTRL2 = 0.1V  
VCTRL2 = 0.2V  
VCTRL2 = 0.3V  
VCTRL2 = 0.4V  
VCTRL2 = 0.5V  
VCTRL2 = 0.6V  
VCTRL2 = 0.7V  
VCTRL2 = 0.8V  
VCTRL2 = 0.9V  
VCTRL2 = 1.0V  
VCTRL2 = 1.1V  
–10  
–20  
–30  
–40  
VCTRL2 = 0V  
VCTRL2 = 0.9V  
VCTRL2 = 1.0V  
VCTRL2 = 1.1V  
VCTRL2 = 1.2V  
VCTRL2 = 1.3V  
VCTRL2 = 1.4V  
VCTRL2 = 1.5V  
VCTRL2 = 1.6V  
VCTRL2 = 1.7V  
VCTRL2 = 0.1V  
VCTRL2 = 0.2V  
VCTRL2 = 0.3V  
VCTRL2 = 0.4V  
VCTRL2 = 0.5V  
VCTRL2 = 0.6V  
VCTRL2 = 0.7V  
VCTRL2 = 0.8V  
0
VCTRL2 = 1.2V  
VCTRL2 = 1.3V  
VCTRL2 = 1.4V  
VCTRL2 = 1.5V  
VCTRL2 = 1.6V  
VCTRL2 = 1.7V  
VCTRL2 = 1.8V  
–5  
–10  
VCTRL2 = 1.8V  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 101. Conversion Gain vs. RF Frequency at Various VCTRL2 Voltages  
(VCTRL1 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
Figure 104. Input IP3 vs. RF Frequency at Various VCTRL2 Voltages (VCTRL1 =  
1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
60  
55  
50  
45  
40  
35  
30  
25  
20  
20  
15  
10  
5
VCTRL1 = 0V, VCTRL2 = 0V  
VCTRL1 = 0.9V, VCTRL2 = 0.9V  
VCTRL1 = 1.0V, VCTRL2 = 1.0V  
VCTRL1 = 1.1V, VCTRL2 = 1.1V  
VCTRL1 = 1.2V, VCTRL2 = 1.2V  
VCTRL1 = 1.3V, VCTRL2 = 1.3V  
VCTRL1 = 1.4V, VCTRL2 = 1.4V  
VCTRL1 = 1.5V, VCTRL2 = 1.5V  
VCTRL1 = 1.6V, VCTRL2 = 1.6V  
VCTRL1 = 1.7V, VCTRL2 = 1.7V  
VCTRL1 = 1.8V, VCTRL2 = 1.8V  
0
–5  
VCTRL1 = 0V, VCTRL2 = 0V  
VCTRL1 = 0.9V, VCTRL2 = 0.9V  
VCTRL1 = 1.0V, VCTRL2 = 1.0V  
VCTRL1 = 1.1V, VCTRL2 = 1.1V  
VCTRL1 = 1.2V, VCTRL2 = 1.2V  
VCTRL1 = 1.3V, VCTRL2 = 1.3V  
VCTRL1 = 1.4V, VCTRL2 = 1.4V  
VCTRL1 = 1.5V, VCTRL2 = 1.5V  
VCTRL1 = 1.6V, VCTRL2 = 1.6V  
VCTRL1 = 1.7V, VCTRL2 = 1.7V  
VCTRL1 = 1.8V, VCTRL2 = 1.8V  
VCTRL1 = 0.1V, VCTRL2 = 0.1V  
VCTRL1 = 0.2V, VCTRL2 = 0.2V  
VCTRL1 = 0.3V, VCTRL2 = 0.3V  
VCTRL1 = 0.4V, VCTRL2 = 0.4V  
VCTRL1 = 0.5V, VCTRL2 = 0.5V  
VCTRL1 = 0.6V, VCTRL2 = 0.6V  
VCTRL1 = 0.7V, VCTRL2 = 0.7V  
VCTRL1 = 0.8V, VCTRL2 = 0.8V  
VCTRL1 = 0.1V, VCTRL2 = 0.1V  
VCTRL1 = 0.2V, VCTRL2 = 0.2V  
VCTRL1 = 0.3V, VCTRL2 = 0.3V  
VCTRL1 = 0.4V, VCTRL2 = 0.4V  
VCTRL1 = 0.5V, VCTRL2 = 0.5V  
VCTRL1 = 0.6V, VCTRL2 = 0.6V  
VCTRL1 = 0.7V, VCTRL2 = 0.7V  
VCTRL1 = 0.8V, VCTRL2 = 0.8V  
15  
10  
5
0
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 105. Noise Figure vs. RF Frequency at Various VCTRL Voltages (VCTRL1 =  
VCTRL2), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
Figure 102. Input IP3 vs. RF Frequency at Various VCTRL Voltages (VCTRL1 =  
VCTRL2), I IF Mode, IF Frequency = 2 GHz, Upper Sideband  
60  
20  
15  
10  
5
VCTRL1 = 0V  
VCTRL1 = 0.9V  
VCTRL1 = 1.0V  
VCTRL1 = 1.1V  
VCTRL1 = 1.2V  
VCTRL1 = 1.3V  
VCTRL1 = 1.4V  
VCTRL1 = 1.5V  
VCTRL1 = 1.6V  
VCTRL1 = 1.7V  
VCTRL1 = 0.1V  
VCTRL1 = 0.2V  
VCTRL1 = 0.3V  
VCTRL1 = 0.4V  
VCTRL1 = 0.5V  
VCTRL1 = 0.6V  
VCTRL1 = 0.7V  
VCTRL1 = 0.8V  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCTRL1 = 1.8V  
VCTRL1 = 0V,  
VCTRL1 = 0.1V  
VCTRL1 = 0.2V  
VCTRL1 = 0.3V  
VCTRL1 = 0.4V  
VCTRL1 = 0.5V  
VCTRL1 = 0.6V  
VCTRL1 = 0.7V  
VCTRL1 = 0.8V  
VCTRL1 = 0.9V  
VCTRL1 = 1.0V  
VCTRL1 = 1.1V  
VCTRL1 = 1.2V  
VCTRL1 = 1.3V  
VCTRL1 = 1.4V  
VCTRL1 = 1.5V  
VCTRL1 = 1.6V  
VCTRL1 = 1.7V  
VCTRL1 = 1.8V  
0
–5  
0
–10  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 106. Noise Figure vs. RF Frequency at Various VCTRL1 Voltages  
(VCTRL2 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
Figure 103. Input IP3 vs. RF Frequency at Various VCTRL1 Voltages (VCTRL2 =  
1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
Rev. A | Page 32 of 39  
Data Sheet  
ADMV1013  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCTRL2 = 0V  
VCTRL2 = 0.9V  
VCTRL2 = 1.0V  
VCTRL2 = 1.1V  
VCTRL2 = 1.2V  
VCTRL2 = 1.3V  
VCTRL2 = 1.4V  
VCTRL2 = 1.5V  
VCTRL2 = 1.6V  
VCTRL2 = 1.7V  
VCTRL2 = 1.8V  
VCTRL2 = 0.1V  
VCTRL2 = 0.2V  
VCTRL2 = 0.3V  
VCTRL2 = 0.4V  
VCTRL2 = 0.5V  
VCTRL2 = 0.6V  
VCTRL2 = 0.7V  
VCTRL2 = 0.8V  
0
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
RF FREQUENCY (GHz)  
Figure 107. Noise Figure vs. RF Frequency at Various VCTRL2 Voltages  
(VCTRL1 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband  
RECOMMENDED LAND PATTERN  
Solder the exposed pad on the underside of the ADMV1013 to a  
low thermal and electrical impedance ground plane. This pad is  
typically soldered to an exposed opening in the solder mask on  
the evaluation board. Connect these ground vias to all other  
ground layers on the evaluation board to maximize heat  
dissipation from the device package.  
Figure 108. Evaluation Board Layout for the LGA Package  
EVALUATION BOARD INFORMATION  
For more information about the ADMV1013 evaluation board,  
refer to the ADMV1013-EVALZ user guide.  
Rev. A | Page 33 of 39  
 
 
ADMV1013  
Data Sheet  
REGISTER SUMMARY  
Table 6.  
Reg.  
Bit 15  
Bit 7  
Bit 14  
Bit 6  
Bit 13  
Bit 5  
Bit 12  
Bit 4  
Bit 11 Bit 10  
Bit 3 Bit 2  
Bit 9 Bit 8  
Bit 1 Bit 0  
(Hex) Register Name  
Bits  
Reset  
R/W  
00  
01  
SPI_CONTROL  
ALARM  
[15:8] PARITY_EN  
SPI_SOFT_  
RESET  
RESERVED  
CHIP_ID  
0x00A4  
R/W  
[7:0]  
CHIP_ID  
REVISION  
RESERVED  
[15:8] PARITY_  
ERROR  
TOO_FEW_ TOO_MANY_ ADDRESS_  
ERRORS  
0x0000  
0xFFFF  
R
ERRORS  
RANGE_  
ERROR  
[7:0]  
RESERVED  
02  
ALARM_MASKS  
[15:8] PARITY_  
ERROR_  
TOO_FEW_ TOO_MANY_ ADDRESS_  
ERRORS_  
MASK  
RESERVED  
R/W  
ERRORS_  
MASK  
RANGE_  
ERROR_MASK  
MASK  
[7:0]  
RESERVED  
QUAD_PD  
03  
05  
ENABLE  
[15:8] VGA_PD  
MIXER_PD  
BG_PD  
RESERVED  
0x01D7 R/W  
[7:0]  
[15:8]  
[7:0]  
MIXER_IF_EN RESERVED  
RESERVED  
DET_EN  
RESERVED  
LO_AMP_I  
LOAMP_PH_ADJ_I_FINE  
MIXER_VGATE  
0x5051  
R/W  
LOAMP_  
PH_ADJ_  
I_FINE  
06  
LO_AMP_Q  
[15:8]  
[7:0]  
RESERVED  
LOAMP_PH_ADJ_Q_FINE  
RESERVED  
0x5000  
R/W  
LOAMP_  
PH_ADJ_  
Q_FINE  
07  
08  
OFFSET_ADJUST_I  
OFFSET_ADJUST_Q  
QUAD  
[15:8]  
MXER_OFF_ADJ_I_P  
MXER_OFF_ADJ_I_N  
MXER_OFF_ 0xFFFC  
ADJ_I_N  
R/W  
R/W  
[7:0]  
RESERVED  
[15:8]  
MXER_OFF_ADJ_Q_P  
MXER_OFF_ 0xFFFC  
ADJ_Q_N  
[7:0]  
[15:8]  
[7:0]  
MXER_OFF_ADJ_Q_N[5:0]  
RESERVED  
RESERVED  
QUAD_SE_MODE  
QUAD_FILTERS  
09  
0A  
0x5700  
0x0000  
R/W  
R/W  
QUAD_SE_MODE  
RESERVED  
VVA_TEMPERATURE_ [15:8]  
COMPENSATION  
VVA_TEMPERATURE_COMPENSATION  
VVA_TEMPERATURE_COMPENSATION  
[7:0]  
Rev. A | Page 34 of 39  
 
Data Sheet  
ADMV1013  
REGISTER DETAILS  
Address: 0x00, Reset: 0x00A4, Name: SPI_CONTROL  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
[15] PARITY_EN (R/W)  
[3:0] REVISION (R)  
Enable the Parity for Write Execution  
Revision ID  
[14] SPI_SOFT_RESET (R/W)  
[11:4] CHIP_ID (R)  
SPI Soft Reset  
Chip ID  
[13:12] RESERVED  
Table 7. Bit Descriptions for SPI_CONTROL  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
15  
PARITY_EN  
SPI_SOFT_RESET  
RESERVED  
CHIP_ID  
Enable the Parity for Write Execution  
R/W  
R/W  
R
14  
SPI Soft Reset  
Reserved  
0x0  
[13:12]  
[11:4]  
[3:0]  
0x0  
Chip ID  
0xA  
0x4  
R
REVISION  
Revision ID  
R
Address: 0x01, Reset: 0x0000, Name: ALARM  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15] PARITY_ERROR (R)  
[11:0] RESERVED  
Parity Error  
[12] ADDRESS_RANGE_ERROR (R)  
[14] TOO_FEW_ERRORS (R)  
Address Range Error  
Too Few Errors  
[13] TOO_MANY_ERRORS (R)  
Too Many Errors  
Table 8. Bit Descriptions for ALARM  
Bits  
15  
14  
Bit Name  
Settings Description  
Reset  
0x0  
0x0  
Access  
PARITY_ERROR  
TOO_FEW_ERRORS  
TOO_MANY_ERRORS  
ADDRESS_RANGE_ERRO  
R
Parity Error  
Too Few Errors  
Too Many Errors  
R
R
R
R
13  
12  
0x0  
0x0  
Address Range Error  
[11:0] RESERVED  
Reserved  
0x0  
R
Address: 0x02, Reset: 0xFFFF, Name: ALARM_MASKS  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[15] PARITY_ERROR_MASK (R/W)  
[11:0] RESERVED  
Parity Error Mask  
[12] ADDRESS_RANGE_ERROR_MASK (R/W)  
[14] TOO_FEW_ERRORS_MASK (R/W)  
Address Range Error Mask  
Too Few Errors Mask  
[13] TOO_MANY_ERRORS_MASK (R/W)  
Too Many Errors Mask  
Table 9. Bit Descriptions for ALARM_MASKS  
Bits  
15  
Bit Name  
Settings Description  
Reset  
0x1  
Access  
R/W  
R/W  
R/W  
R/W  
R
PARITY_ERROR_MASK  
TOO_FEW_ERRORS_MASK  
TOO_MANY_ERRORS_MASK  
ADDRESS_RANGE_ERROR_MASK  
Parity Error Mask  
14  
13  
Too Few Errors Mask  
Too Many Errors Mask  
0x1  
0x1  
12  
Address Range Error Mask  
Reserved  
0x1  
0xFFF  
[11:0] RESERVED  
Rev. A | Page 35 of 39  
 
ADMV1013  
Data Sheet  
Address: 0x03, Reset: 0x01D7, Name: ENABLE  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
1
1
[15] VGA_PD (R/W)  
[4:0] RESERVED  
Power Down the VGA Circuit  
[5] DET_EN (R/W)  
[14] MIXER_PD (R/W)  
Enable the Envelope Detector  
Power Down the Mixer Circuit  
[6] RESERVED  
[13:11] QUAD_PD (R/W)  
Power Down the Quad  
0: Enable LO Quad Circuit.  
111: Disable LO Quad Circuit.  
[7] MIXER_IF_EN (R/W)  
Enable the IF Mode  
[10] BG_PD (R/W)  
Power Down the Transmitter Band Gap  
[9:8] RESERVED  
Table 10. Bit Descriptions for ENABLE  
Bits  
15  
Bit Name  
VGA_PD  
Settings  
Description  
Power Down the VGA Circuit  
Reset  
0x0  
Access  
R/W  
14  
[13:11]  
MIXER_PD  
QUAD_PD  
Power Down the Mixer Circuit  
Power Down the Quad  
0x0  
0x0  
R/W  
R/W  
000 Enable LO Quad Circuit  
111 Disable LO Quad Circuit  
10  
[9:8]  
7
BG_PD  
Power Down the Transmitter Band Gap  
Reserved  
Enable the IF Mode  
Reserved  
Enable the Envelope Detector  
Reserved  
0x0  
0x0  
0x1  
0x1  
0x0  
0x17  
R/W  
R
R/W  
R
R/W  
R
RESERVED  
MIXER_IF_EN  
RESERVED  
DET_EN  
6
5
[4:0]  
RESERVED  
Address: 0x05, Reset: 0x5051, Name: LO_AMP_I  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
1
[15:14] RESERVED  
[6:0] MIXER_VGATE (R/W)  
Control Mixer Gate Voltage. For 0 V to 1.8  
V, MIXER_VGATE = 23.89 x Common-Mode  
Voltage +81, and for 1.8 V to 2.6 V, MIXER_VGATE  
= 23.75 x Common-Mode Voltage +1.25.  
[13:7] LOAMP_PH_ADJ_I_FINE (R/W)  
Mixer Image Rejection Calibration  
Table 11. Bit Descriptions for LO_AMP_I  
Bits  
Bit Name  
Settings Description  
Reset Access  
[15:14] RESERVED  
Reserved.  
0x1  
R
[13:7]  
[6:0]  
LOAMP_PH_ADJ_I_FINE  
MIXER_VGATE  
Mixer Image Rejection Calibration.  
0x20  
0x51  
R/W  
R/W  
Control Mixer Gate Voltage. For 0 V to 1.8 V, MIXER_VGATE = 23.89 ×  
Common-Mode Voltage + 81, and for 1.8 V to 2.6 V, MIXER_VGATE =  
23.75 × Common-Mode Voltage + 1.25.  
Address: 0x06, Reset: 0x5000, Name: LO_AMP_Q  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
[15:14] RESERVED  
[6:0] RESERVED  
[13:7] LOAMP_PH_ADJ_Q_FINE (R/W)  
Mixer Image Rejection Calibration  
Table 12. Bit Descriptions for LO_AMP_Q  
Bits  
Bit Name  
Settings Description  
Reset  
0x1  
Access  
R
[15:14] RESERVED  
Reserved  
[13:7]  
[6:0]  
LOAMP_PH_ADJ_Q_FINE  
RESERVED  
Mixer Image Rejection Calibration  
Reserved  
0x20  
0x0  
R/W  
R
Rev. A | Page 36 of 39  
Data Sheet  
ADMV1013  
Address: 0x07, Reset: 0xFFFC, Name: OFFSET_ADJUST_I  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
[15:9] MXER_OFF_ADJ_I_P (R/W)  
LO Feedthrough Offset Calibration  
I Positive for IF Mode  
[1:0] RESERVED  
[8:2] MXER_OFF_ADJ_I_N (R/W)  
LO Feedthrough Offset Calibration  
I Negative for IF Mode  
Table 13. Bit Descriptions for OFFSET_ADJUST_I  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
R/W  
R/W  
R
[15:9] MXER_OFF_ADJ_I_P  
LO Feedthrough Offset Calibration I Positive for IF Mode  
LO Feedthrough Offset Calibration I Negative for IF Mode  
Reserved  
0x7F  
0x7F  
0x0  
[8:2]  
[1:0]  
MXER_OFF_ADJ_I_N  
RESERVED  
Address: 0x08, Reset: 0xFFFC, Name: OFFSET_ADJUST_Q  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
[15:9] MXER_OFF_ADJ_Q_P (R/W)  
LO Feedthrough Offset Calibration  
Q Positive for IF Mode  
[1:0] RESERVED  
[8:2] MXER_OFF_ADJ_Q_N (R/W)  
LO Feedthrough Offset Calibration  
Q Negative for IF Mode  
Table 14. Bit Descriptions for OFFSET_ADJUST_Q  
Bits  
Bit Name  
Settings Description  
Reset  
0x7F  
0x7F  
0x0  
Access  
R/W  
R/W  
R
[15:9] MXER_OFF_ADJ_Q_P  
LO Feedthrough Offset Calibration Q Positive for IF Mode  
LO Feedthrough Offset Calibration Q Negative for IF Mode  
Reserved  
[8:2]  
[1:0]  
MXER_OFF_ADJ_Q_N  
RESERVED  
Address: 0x09, Reset: 0x5700, Name: QUAD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
[15:10] RESERVED  
[9:6] QUAD_SE_MODE (R/W)  
[3:0] QUAD_FILTERS (R/W)  
LO Filters Bandwidth Selection  
0000: LO Frequency Bandwidth: 8.62 GHz to 10.25  
Switch Differential/Single-Ended Modes  
GHz.  
0110: Single Ended Mode, N Side Disable.  
1001: Single Ended Mode, P Side Disable.  
1100: Differential Mode.  
0101: LO Frequency Bandwidth: 6.6 GHz to 9.2  
GHz.  
1010: LO Frequency Bandwidth: 5.4 GHz to 8 GHz.  
1111: LO Frequency Bandwidth: 5.4 GHz to 7 GHz.  
[5:4] RESERVED  
Table 15. Bit Descriptions for QUAD  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[15:10] RESERVED  
Reserved.  
0x15  
0xC  
R
[9:6]  
QUAD_SE_MODE  
Switch Differential/Single-Ended Modes.  
0110 Single-Ended Mode, Negative Side Disable.  
1001 Single-Ended Mode, Positive Side Disable.  
1100 Differential Mode.  
R/W  
[5:4]  
[3:0]  
RESERVED  
QUAD_FILTERS  
Reserved.  
LO Filters Bandwidth Selection.  
0x0  
0x0  
R
R/W  
0000 LO Frequency Bandwidth: 8.62 GHz to 10.25 GHz.  
0101 LO Frequency Bandwidth: 6.6 GHz to 9.2 GHz.  
1010 LO Frequency Bandwidth: 5.4 GHz to 8 GHz.  
1111 LO Frequency Bandwidth: 5.4 GHz to 7 GHz.  
Rev. A | Page 37 of 39  
ADMV1013  
Data Sheet  
Address: 0x0A, Reset: 0x0000, Name: VVA_TEMPERATURE_COMPENSATION  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:0] VVA_TEMPERATURE_COMPENSATION (R/W)  
VVA Temperature Compensation. PARITY_EN  
must be disabled when updating the VVA  
temperature compensation  
Table 16. Bit Descriptions for VVA_TEMPERATURE_COMPENSATION  
Bits Bit Name Settings Description  
[15:0] VVA_TEMPERATURE_COMPENSATION  
Reset Access  
VVA Temperature Compensation. PARITY_EN must be  
disabled when updating the VVA temperature  
compensation. Set to 0xE700 on startup.  
0x0  
R/W  
Rev. A | Page 38 of 39  
Data Sheet  
ADMV1013  
OUTLINE DIMENSIONS  
6.10  
6.00  
5.90  
0.32  
0.27  
0.22  
1.06 BSC  
SQ  
0.40  
0.35  
0.30  
PIN 1  
INDICATOR  
PIN 1  
CORNER AREA  
40  
1
31  
30  
4.50 REF  
SQ  
4.77 BSC  
2.22 BSC  
SQ  
0.50  
BSC  
21  
10  
11  
20  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
0.750  
BSC  
0.275  
0.165  
BSC  
BSC  
0.52  
0.45  
0.38  
0.75 MAX  
0.67 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.25  
0.22  
0.19  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 109. 40-Terminal Land Grid Array Package [LGA]  
6 mm × 6 mm Body and 0.67 mm Package Height  
(CC-40-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADMV1013ACCZ  
ADMV1013ACCZ-R7  
ADMV1013-EVALZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CC-40-5  
CC-40-5  
40-Terminal Land Grid Array Package [LGA]  
40-Terminal Land Grid Array Package [LGA]  
Evaluation Board  
1 Z = RoHS-Compliant Part.  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17267-0-4/19(A)  
Rev. A | Page 39 of 39  
 
 

相关型号:

ADMV1014

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014-EVALZ

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014ACCZ

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV1014ACCZ-R7

24 GHz to 44 GHz, Wideband, Microwave Downconverter
ADI

ADMV4420

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420-EVALZ

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ-R2

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ-RL7

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4540

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540-EVALZ

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540ACCZ

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI