ADMV7310BCEZ [ADI]

E-Band Upconverter SiP, 71 GHz to 76 GHz;
ADMV7310BCEZ
型号: ADMV7310BCEZ
厂家: ADI    ADI
描述:

E-Band Upconverter SiP, 71 GHz to 76 GHz

文件: 总29页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
E-Band Upconverter SiP,  
71 GHz to 76 GHz  
ADMV7310  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Maximum conversion gain: 35 dB typical  
Gain tuning range: 40 dB minimum  
The ADMV7310 is a fully integrated system in package (SiP),  
in phase/quadrature (I/Q) upconverter that operates between  
an intermediate frequency (IF) input range of dc to 2 GHz and a  
radio frequency (RF) output range of 71 GHz to 76 GHz. The  
device uses an image rejection mixer that is driven by a 6× local  
oscillator (LO) multiplier. The mixer RF output is followed by a  
variable gain amplifier (VGA) and a power amplifier (PA),  
providing a conversion gain of 35 dB typical. Differential I and  
Q mixer inputs are provided and can be driven with differential  
I and Q baseband waveforms for direct conversion applications.  
Alternatively, the inputs can be driven using an external 90° hybrid  
and two external 180° hybrids for single-ended applications.  
PSAT: 26 dBm typical for a gain = 23.5 dB and 19.5 dB  
OIP3: 31 dBm typical for a gain = 23.5 dB and POUT  
16.5 dBm per tone  
OP1dB: 25 dBm typical for a gain = 23.5 dB and 19.5 dB  
Built-in power detector  
Built-in envelope detector for LO nulling  
Fully integrated, surface-mount, 50-terminal, 16.00 mm ×  
14.00 mm LGA_CAV package  
=
APPLICATIONS  
E-band communication systems  
High capacity wireless backhauls  
Test and measurement  
The ADMV7310 comes in a fully integrated, surface-mount,  
50-terminal, 16.00 mm × 14.00 mm, chip array small outline no  
lead cavity (LGA_CAV) package. The ADMV7310 operates  
over the −40°C to +85°C temperature range.  
Aerospace and defense  
FUNCTIONAL BLOCK DIAGRAM  
1
2
3
4
5
6
7
8
GND  
IF_IP  
×6  
IF_IN  
IF_QN  
IF_QP  
ADMV7310  
GND  
PORT 1  
RFOUT  
VGA_VG12  
GND  
VGA  
PA  
VGA_VD12  
ENV_DET  
VGA_CTL12  
GND  
9
10  
11  
12  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADMV7310  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 23  
Mixer and LO Path..................................................................... 23  
Envelope Detector, VGA, and Power Detector ...................... 23  
Power Amplifier and Power Detector ..................................... 23  
Applications Information.............................................................. 25  
Power-Up Bias Sequence........................................................... 25  
Power-Down Bias Sequence ..................................................... 25  
LO Nulling................................................................................... 25  
Gain Tuning Procedure ............................................................. 26  
Layout .......................................................................................... 27  
Typical Application Circuit........................................................... 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Interface Schematics..................................................................... 8  
Typical Performance Characteristics ............................................. 9  
Detector Performance................................................................ 19  
Return Loss Performance.......................................................... 21  
Spurious Performance................................................................ 22  
REVISION HISTORY  
10/2019—Revision A: Initial Version  
Rev. A | Page 2 of 29  
 
Data Sheet  
ADMV7310  
SPECIFICATIONS  
TA = −40°C to +85°C, IF = 1 GHz, LO power = 4 dBm, VD_AMP = +4 V, VGA_CTL12 = −5 V, VG_MIXER = −1 V, VD_MULT = +1.5 V,  
VGA_VD12 = VGA_VD345 = VGA_VD6 = +4 V, and PA_VD1 = PA_VD2 = +4 V, unless otherwise noted. Measurements performed as  
upconverter with lower sideband selected and an external 90° hybrid followed by two external 180° hybrids at the IF ports.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
OPERATING CONDITIONS  
Frequency Range  
Output RF  
71  
76  
12.7  
2
GHz  
GHz  
GHz  
dBm  
dBm  
LO  
Input IF  
11.8  
DC  
0
LO Drive Level Range  
Input Signal Level  
PERFORMANCE  
Maximum Conversion Gain  
Gain Tuning Range  
Gain Flatness  
4
−4  
8
Total baseband power  
−20 dBm input  
24.5 35  
40  
44.5  
dB  
dB  
dB  
dBc  
3
20  
Sideband Rejection  
Output Power for 1 dB Compression (OP1dB)  
−4 dBm input  
15  
Gain = 23.5 dB  
Gain = 19.5 dB  
Gain = 10.5 dB  
Gain = 3.5 dB  
21.5 25  
21.5 25  
16.5 20  
dBm  
dBm  
dBm  
dBm  
9.5  
13  
Saturated Output Power (PSAT  
Noise Figure (NF)  
)
Gain = 23.5 dB  
Gain = 19.5 dB  
Gain = 10.5 dB  
Gain = 3.5 dB  
23  
23  
26  
26  
dBm  
dBm  
dBm  
dBm  
17.5 23  
10.5 16  
Gain = 23.5 dB  
Gain = 19.5 dB  
Gain = 10.5 dB  
Gain = 3.5 dB  
26  
26  
29  
31  
dB  
dB  
dB  
dB  
6× LO to RF Rejection  
RF port uncalibrated  
Gain = 23.5 dB  
Gain = 19.5 dB  
Gain = 10.5 dB  
Gain = 3.5 dB  
5
5
5
5
18  
18  
18  
18  
dBc  
dBc  
dBc  
dBc  
Output Third-Order Intercept (OIP3)  
Gain = 23.5 dB, output power (POUT) =  
16.5 dBm per tone  
27  
31  
dBm  
Gain = 19.5 dB, POUT = 12.5 dBm per tone  
Gain = 10.5 dB, POUT = 3.5 dBm per tone  
Gain = 3.5 dB, POUT = −3.5 dBm per tone  
26  
22  
16  
29  
25  
20  
6
dBm  
dBm  
dBm  
dB  
Output Waveguide Port Return Loss  
Baseband Input Return Loss  
LO Port Return Loss  
10  
10  
dB  
dB  
Rev. A | Page 3 of 29  
 
ADMV7310  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
Minimum Power Amplifier Detector Sensitivity  
−5 dBm ≤ POUT ≤ 0 dBm  
0 dBm ≤ POUT ≤ 23 dBm  
0.5  
2
mV/dB  
mV/dB  
Power Amplifier Detector Voltage  
Minimum (DET2_REF − DET2_OUT)  
Maximum (DET2_REF − DET2_OUT)  
DET2_REF  
−5 dBm ≤ POUT ≤ 0 dBm  
0 dBm ≤ POUT ≤ 23 dBm  
−5 dBm ≤ POUT ≤ 23 dBm  
−5 dBm ≤ POUT ≤ 23 dBm  
3
600  
0.9  
mV  
mV  
V
0
−1  
2.5  
2.5  
DET2_OUT  
V
Envelope Detector  
Minimum AC Detected Signal  
3 dB Bandwidth  
Load resistance (RLOAD) = 200 Ω  
−4 dBm ≤ input power (PIN) ≤ 9.5 dBm  
45  
750  
24  
mV p-p  
MHz  
dBc  
Second Harmonic  
DIFFERENTIAL BASEBAND INPUT PORT IMPEDANCE  
LO INPUT PORT IMPEDANCE  
POWER SUPPLY  
100  
50  
DC Power Dissipation  
5
4
W
V
V
V
V
V
mA  
mA  
mA  
mA  
PA (PA_VD1 and PA_VD2) Drain Voltage  
PA (PA_VG1 and PA_VG2) Gate Voltage  
VGA (VGA_VG12, VGA_VG345, and VGA_VG6) Gate Voltage  
Multiplier Drain Voltage (VD_MULT)  
VGA Voltage Control (VGA_CTL12)  
PA (IPA_VD1 and IPA_VD2) Drain Current  
VGA (IVGA_VD12, IVGA_VD345, and IVGA_VD6) Drain Current  
3.88  
−2  
−2  
4.12  
+0.2  
+0.2  
1.55  
0
1.46 1.5  
−5  
800  
250  
175  
80  
Amplifier Drain (VD_AMP) Current (IVD_AMP  
Multiplier Drain (VD_MULT) Current (IVD_MULT  
)
)
Rev. A | Page 4 of 29  
Data Sheet  
ADMV7310  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
VD_AMP  
VD_MULT  
4.5 V  
3 V  
VGA_VD12, VGA_VD345, and VGA_VD6  
PA_VD1 and PA_VD2  
VG_AMP  
4.5 V  
4.5 V  
θJC is the junction to case (or die to package) thermal resistance.  
Table 3. Thermal Resistance1  
−3 V to +0.2 V  
−3 V to +0.2 V  
−3 V to +0.2 V  
−3 V to +0.2 V  
−6 V to 0 V  
10 dBm  
Package Type  
θJC  
Unit  
VG_MULT  
VGA_VG12, VGA_VG345, and VGA_VG6  
PA_VG1 and PA_VG2  
VGA_CTL12  
CE-50-2  
15  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P test board  
with 16 mm × 14 mm thermal vias. Refer to JEDEC standard JESD51-2 for  
additional information.  
LO Drive  
Baseband Input (IF_IP, IF_IN, IF_QP, and  
IF_QN)  
4 dBm  
ESD CAUTION  
IF Source and Sink Current  
3 mA  
Nominal Junction Temperature (TA = 85°C) 160°C  
Maximum Junction Temperature  
(to Maintain 1 Million Hours Mean Time  
to Failure (MTTF))  
190°C  
Maximum Junction Temperature  
(to Maintain 3 Million MTTF)  
175°C  
Operating Temperature Range  
Storage Temperature Range  
Maximum Peak Reflow Temperature  
(Moisture Sensitivity Level 3 (MSL3))  
−40°C to +85°C  
−55°C to +150°C  
260°C  
Thermal Humidity Bias (THB)  
Thermal Humidity Storage (THS)  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
JESD22-A1011, 2, 3  
JESD22-A1011, 3  
200 V  
300 V  
1 Samples subject to preconditioning (per J-STD-020 Level 3) prior to the start  
of the stress test. Level 3 preconditioning consists of the following: bake for  
24 hours at 125°C, unbiased soak for 192 hours at 30°C and 60% relative  
humidity (RH), and reflow of three passes through an oven with a peak  
temperature of 260°C.  
2 Results valid for 600 mW of nominal dc power dissipation for all active  
devices. Analog Devices, Inc., recommends that users perform their own THB  
test for all other bias conditions.  
3 Valid for package vent hole solder sealed or unsealed during test.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 5 of 29  
 
 
 
ADMV7310  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
GND  
IF_IP  
3
IF_IN  
4
IF_QN  
5
IF_QP  
ADMV7310  
6
GND  
PORT 1  
RFOUT  
TOP VIEW  
7
VGA_VG12  
GND  
(Not to Scale)  
8
9
VGA_VD12  
ENV_DET  
VGA_CTL12  
GND  
10  
11  
12  
NOTES  
1. EXPOSED PADS. THE EXPOSED GROUND PADS MUST BE CONNECTED  
TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 6, 8, 12 to 15, 18, 23, 25, 27, 30 to 34, 36,  
38, 39, 41, 43, 45, 47, 50  
GND  
Ground Connections. These pins must be connected to RF and dc ground.  
2
3
4
5
IF_IP  
Positive IF In Phase Input. This pin is dc-coupled. When operation to dc is not  
required, block this pin externally using a series capacitor with a value  
chosen to pass the necessary frequency range. For operation to dc, this pin  
must not source or sink more than 3 mA of current or device malfunction  
and device failure may result.  
Negative IF In Phase Input. This pin is dc-coupled. When operation to dc is  
not required, block this pin externally using a series capacitor with a value  
chosen to pass the necessary frequency range. For operation to dc, this pin  
must not source or sink more than 3 mA of current or device malfunction  
and device failure may result.  
Negative IF Quadrature Input. This pin is dc-coupled. When operation to dc is  
not required, block this pin externally using a series capacitor with a value  
chosen to pass the necessary frequency range. For operation to dc, this pin  
must not source or sink more than 3 mA of current or device malfunction  
and device failure may result.  
Positive IF Quadrature Input. This pin is dc-coupled. When operation to dc is  
not required, block this pin externally using a series capacitor with a value  
chosen to pass the necessary frequency range. For operation to dc, this pin  
must not source or sink more than 3 mA of current or device malfunction  
and device failure may result.  
IF_IN  
IF_QN  
IF_QP  
7
VGA_VG12  
VGA_VD12  
ENV_DET  
Gate Control for the First and Second Stage Variable Gain Amplifier. See  
Figure 86 for the recommended external components.  
Drain Voltage for the First and Second Stage Variable Gain Amplifier. See  
Figure 86 for the recommended external components.  
9
10  
Envelope Detector. See Figure 86 for the recommended external components.  
Rev. A | Page 6 of 29  
 
Data Sheet  
ADMV7310  
Pin No.  
Mnemonic  
Description  
11  
VGA_CTL12  
Gain Control Voltage for the First and Second Stage Variable Gain Amplifier.  
See Figure 86 for the recommended external components.  
16  
17  
19  
20  
21  
VGA_VG345  
VGA_VD345  
VGA_VG6  
Gate Control for the Third, Fourth, and Fifth Stage Variable Gain Amplifier.  
See Figure 86 for the recommended external components.  
Drain Voltage for the Third, Fourth, and Fifth Stage Variable Gain Amplifier.  
See Figure 86 for the recommended external components.  
Gate Control for the Sixth Stage Variable Gain Amplifier. See Figure 86 for the  
recommended external components.  
Drain Voltage for the Sixth Stage Variable Gain Amplifier. See Figure 86 for  
the recommended external components.  
VGA_VD6  
DET1_REF  
Reference Voltage for the VGA Power Detector. DET1_REF is the dc bias of  
the diode biased through an external resistor used for the temperature  
compensation of DET1_OUT.  
22  
DET1_OUT  
Detector Voltage for the VGA Power Detector. DET1_OUT is the dc voltage  
representing the RF output power rectified by the diode, which is biased  
through an external resistor.  
24  
26  
28  
PA_VG1  
PA_VG2  
DET2_REF  
Gate Voltage for the First Power Amplifier. See Figure 86 for the  
recommended external components.  
Gate Voltage for the Second Power Amplifier. See Figure 86 for the  
recommended external components.  
Reference Voltage for the PA Power Detector. DET2_REF is the dc bias of the  
diode biased through an external resistor used for the temperature  
compensation of DET2_OUT.  
29  
DET2_OUT  
Detector Voltage for the VGA Power Detector. DET2_OUT is the dc voltage  
representing the RF output power rectified by the diode, which is biased  
through an external resistor.  
35  
37  
PA_VD2  
PA_VD1  
Drain Voltage for the Second Power Amplifier. See Figure 86 for the  
recommended external components.  
Drain Voltage for the First Power Amplifier. See Figure 86 for the  
recommended external components.  
40  
42  
LOIN  
VG_MULT  
LO Input. This pin is dc-coupled and matched to 50 Ω.  
Gate Voltage for the LO Multiplier. See Figure 86 for the recommended  
external components.  
44  
VD_MULT  
VG_AMP  
VD_AMP  
VG_MIXER  
RFOUT  
Drain Voltage for the LO Multiplier. See Figure 86 for the recommended  
external components.  
Gate Voltage for the LO Amplifier. See Figure 86 for the recommended  
external components.  
Drain Voltage for the LO Amplifier. See Figure 86 for the recommended  
external components.  
Gate Voltage for the Field Effect Transistor (FET) Mixer. See Figure 86 for the  
recommended external components.  
46  
48  
49  
PORT 1  
WR-12 Waveguide Port. This port is ac-coupled and matched to the waveguide  
output impedance.  
EPAD  
Exposed Pads. The exposed ground pads must be connected to RF and dc  
ground.  
Rev. A | Page 7 of 29  
ADMV7310  
Data Sheet  
INTERFACE SCHEMATICS  
DET1_REF  
DET2_REF  
DET1_OUT  
DET2_OUT  
GND  
Figure 3. GND Interface Schematic  
Figure 9. DET1_REF, DET2_REF, DET1_OUT, and DET2_OUT Interface  
Schematic  
IF_IP, IF_IN  
IF_QN, IF_QP  
VG_MIXER  
PA_VG1,  
PA_VG2  
Figure 4. IF_IP, IF_IN, IF_QN, IF_QP, and VG_MIXER Interface Schematic  
Figure 10. PA_VG1, PA_VG2 Interface Schematic  
PA_VD1  
PA_VD2  
VGA_VG12  
VGA_VG345  
VGA_VG6  
Figure 5. VGA_VG12, VGA_VG345, and VGA_VG6 Interface Schematic  
Figure 11. PA_VD1, PA_VD2 Interface Schematic  
VGA_VD12  
VGA_VD345  
VGA_VD6  
LOIN  
Figure 6. VGA_VD12, VGA_VD345, and VGA_VD6 Interface Schematic  
Figure 12. LOIN Interface Schematic  
VD_AMP,  
VD_MULT  
VG_AMP,  
VG_MULT  
ENV_DET  
Figure 7. ENV_DET Interface Schematic  
Figure 13. VD_AMP, VD_MULT, VG_AMP, and VG_MULT Interface  
Schematic  
VGA_CTL12  
RFOUT  
Figure 8. VGA_CTL12 Interface Schematic  
Figure 14. RFOUT Interface Schematic  
Rev. A | Page 8 of 29  
 
Data Sheet  
ADMV7310  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, IF = 1 GHz, IF input power = −4 dBm combined, LO power = +4 dBm, gain adjusted per Applications Information section,  
and lower sideband selected, unless otherwise noted.  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Maximum Conversion Gain vs. RF Frequency over Temperature,  
IF Input Power = −20 dBm  
Figure 18. Maximum Conversion Gain vs. RF Frequency over LO Power,  
IF Input Power = −20 dBm  
40  
38  
36  
34  
32  
30  
28  
40  
38  
36  
34  
32  
30  
28  
2dBm  
26  
26  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
24  
22  
20  
24  
22  
20  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Output IP3 vs. RF Frequency over Temperature, Gain = 23.5 dB  
Figure 19. Output IP3 vs. RF Frequency over LO Power, Gain = 23.5 dB  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
15  
10  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
15  
10  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Sideband Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
Figure 20. Sideband Rejection vs. RF Frequency over LO Power,  
Gain = 23.5 dB  
Rev. A | Page 9 of 29  
 
ADMV7310  
Data Sheet  
32  
28  
24  
20  
16  
12  
8
32  
28  
24  
20  
16  
12  
8
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
4
4
0
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. 6× LO Rejection vs. RF Frequency over LO Power,  
Gain = 23.5 dB  
Figure 21. 6× LO Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
36  
30  
29  
28  
27  
26  
25  
24  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23  
+85°C  
+25°C  
–40°C  
22  
21  
20  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Output IP3 vs. RF Frequency at Various Gains  
Figure 22. Output P1dB vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
40  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
35  
30  
25  
20  
15  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
+85°C  
+25°C  
–40°C  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. PSAT vs. RF Frequency over Temperature, Gain = 23.5 dB  
Figure 26. Sideband Rejection vs. RF Frequency at Various Gains  
Rev. A | Page 10 of 29  
Data Sheet  
ADMV7310  
40  
35  
30  
25  
20  
15  
10  
5
32  
28  
24  
20  
16  
12  
8
MAXIMUM GAIN  
VGA_CTL12 = –1V, VGA_VD345 + VGA_VD6 = 30mA  
VGA_CTL12 = –1V, VGA_VD345 + VGA_VD6 = 30mA,  
PA_VD1 = 80mA, PA_VD2 = 80mA  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
0
–5  
–10  
–15  
–20  
VGA_CTL12 = –1V  
VGA_CTL12 = –1V, VGA_VD345 + VGA_VD6 = 30mA,  
PA_VD1 = 80mA  
4
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Conversion Gain vs. RF Frequency at Various Gain Tuning Modes  
Figure 27. 6× LO to RF Rejection vs. RF Frequency at Various Gains  
30  
28  
26  
24  
22  
40  
38  
36  
34  
32  
30  
20  
18  
16  
14  
12  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
28  
71.0GHz  
26  
73.5GHz  
76.0GHz  
24  
22  
20  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
–5.0  
–4.5  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
RF FREQUENCY (GHz)  
VGA CONTROL VOLTAGE (V)  
Figure 31. Conversion Gain vs. VGA Control Voltage at Various RF  
Frequencies  
Figure 28. Output P1dB vs. RF Frequency at Various Gains  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
71.0GHz  
8
73.5GHz  
76.0GHz  
6
4
2
0
23.5dB  
19.5dB  
10.5dB  
3.5dB  
–2  
–4  
500  
550  
600  
650  
700  
750  
800  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
PA CURRENT (mA)  
RF FREQUENCY (GHz)  
Figure 32. Conversion Gain vs. PA Current at Various RF Frequencies,  
VGA_CTL12 = −1 V, VGA_VD12 = 75 mA, VGA_VD345 = 75 mA, VGA_VD6 =  
75 mA  
Figure 29. PSAT vs. RF Frequency at Various Gains  
Rev. A | Page 11 of 29  
ADMV7310  
Data Sheet  
30  
25  
20  
15  
10  
5
850  
800  
750  
700  
650  
600  
550  
500  
450  
71.0GHz  
73.5GHz  
76.0GHz  
71GHz  
73.5GHz  
76GHz  
0
70  
90  
110  
130  
150  
170  
190  
210  
230  
250  
–0.80 –0.75 –0.70 –0.65 –0.60 –0.55 –0.50 –0.45 –0.40  
VGA DRAIN CURRENT (mA)  
VGA_VG345 + VGA_VG6 VOLTAGE (V)  
Figure 33. Conversion Gain vs. VGA Current at Various RF Frequencies,  
VGA_CTL12 = −1 V  
Figure 35. PA Drain Current vs. VGA_VG345 + VGA_VG6 Voltage at Various  
Frequencies  
250  
71.0GHz  
73.5GHz  
76.0GHz  
230  
210  
190  
170  
150  
130  
110  
90  
70  
50  
–0.80 –0.75 –0.70 –0.65 –0.60 –0.55 –0.50 –0.45 –0.40  
VGA_VG345 + VGA_VG6 VOLTAGE (V)  
Figure 34. VGA Drain Current vs. VGA_VG345 + VGA_VG6 Voltage at Various  
Frequencies  
Rev. A | Page 12 of 29  
Data Sheet  
ADMV7310  
TA = 25°C, IF = 0.1 GHz, IF input power = −4 dBm combined, LO power = 4 dBm, gain adjusted per Applications Information section,  
and lower sideband selected, unless otherwise noted.  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. 6× LO Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
Figure 36. Maximum Conversion Gain vs. RF Frequency over Temperature, IF  
Input Power = −20 dBm  
30  
29  
28  
27  
26  
25  
24  
40  
38  
36  
34  
32  
30  
28  
23  
26  
+85°C  
+85°C  
22  
21  
20  
+25°C  
–40°C  
24  
22  
20  
+25°C  
–40°C  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 37. Output IP3 vs. RF Frequency over Temperature, Gain = 23.5 dB  
Figure 40. Output P1dB vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
40  
35  
30  
25  
20  
15  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 38. Sideband Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
Figure 41. PSAT vs. RF Frequency over Temperature, Gain = 23.5 dB  
Rev. A | Page 13 of 29  
ADMV7310  
Data Sheet  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 42. Output IP3 vs. RF Frequency at Various Gains  
Figure 45. Output P1dB vs. RF Frequency at Various Gains  
40  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
35  
30  
25  
20  
15  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. PSAT vs. RF Frequency at Various Gains  
Figure 43. Sideband Rejection vs. RF Frequency at Various Gains  
32  
38  
24  
20  
16  
12  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
8
4
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
Figure 44. 6× LO to RF Rejection vs. RF Frequency at Various Gains  
Rev. A | Page 14 of 29  
Data Sheet  
ADMV7310  
TA = 25°C, IF = 0.5 GHz, IF input power = −4 dBm combined, LO power = 4 dBm, gain adjusted per Applications Information section,  
and lower sideband selected, unless otherwise noted.  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
40  
35  
30  
25  
20  
15  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Maximum Conversion Gain vs. RF Frequency over Temperature,  
IF Input Power = −20 dBm  
Figure 50. 6× LO Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
40  
38  
36  
34  
32  
30  
28  
30  
28  
26  
24  
22  
20  
18  
26  
16  
+85°C  
+85°C  
24  
22  
20  
+25°C  
–40°C  
14  
12  
10  
+25°C  
–40°C  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Output IP3 vs. RF Frequency over Temperature, Gain = 23.5 dB  
Figure 51. Output P1dB vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
42  
38  
34  
30  
26  
22  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
18  
14  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Sideband Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
Figure 52. PSAT vs. RF Frequency over Temperature, Gain = 23.5 dB  
Rev. A | Page 15 of 29  
ADMV7310  
Data Sheet  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Output IP3 vs. RF Frequency at Various Gains  
Figure 56. Output P1dB vs. RF Frequency at Various Gains  
42  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
38  
34  
30  
26  
22  
18  
14  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Sideband Rejection vs. RF Frequency at Various Gains  
Figure 57. PSAT vs. RF Frequency at Various Gains  
32  
28  
24  
20  
16  
12  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
8
4
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
Figure 55. 6× LO to RF Rejection vs. RF Frequency at Various Gains  
Rev. A | Page 16 of 29  
Data Sheet  
ADMV7310  
TA = 25°C, IF = 2 GHz, IF input power = −4 dBm combined, LO power = 4 dBm, gain adjusted per Applications Information section, and  
lower sideband selected, unless otherwise noted.  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
32  
28  
24  
20  
16  
12  
8
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
4
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Maximum Conversion Gain vs. RF Frequency over Temperature,  
IF Input Power = −20 dBm  
Figure 61. 6× LO Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
40  
38  
36  
34  
32  
30  
28  
30  
29  
28  
27  
26  
25  
24  
26  
23  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
24  
22  
20  
22  
21  
20  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Output IP3 vs. RF Frequency over Temperature, Gain = 23.5 dB  
Figure 62. Output P1dB vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
40  
35  
30  
25  
20  
15  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
10  
5
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 63. PSAT vs. RF Frequency over Temperature, Gain = 23.5 dB  
Figure 60. Sideband Rejection vs. RF Frequency over Temperature,  
Gain = 23.5 dB  
Rev. A | Page 17 of 29  
ADMV7310  
Data Sheet  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. Output IP3 vs. RF Frequency at Various Gains  
Figure 67. Output P1dB vs. RF Frequency at Various Gains  
42  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
38  
34  
30  
26  
22  
18  
14  
10  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 68. PSAT vs. RF Frequency at Various Gains  
Figure 65. Sideband Rejection vs. RF Frequency at Various Gains  
32  
28  
24  
20  
16  
12  
23.5dB  
19.5dB  
10.5dB  
3.5dB  
8
4
0
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
Figure 66. 6× LO to RF Rejection vs. RF Frequency at Various Gains  
Rev. A | Page 18 of 29  
Data Sheet  
ADMV7310  
DETECTOR PERFORMANCE  
0.40  
1
10MHz  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
100MHz  
240MHz  
490MHz  
740MHz  
990MHz  
0.1  
0.01  
0.001  
+85°C  
+25°C  
–40°C  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
–5  
0
5
10  
15  
20  
25  
TOTAL INPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 69. Envelope Detector Output Voltage vs. Total Input Power at Various  
Input Tone Spacings, RF = 71 GHz  
Figure 72. PA Detector Output Voltage (DET2_REF − DET2_OUT) vs. Output  
Power over Temperatures, RF = 71 GHz  
0.40  
1
10MHz  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
100MHz  
240MHz  
490MHz  
740MHz  
990MHz  
0.1  
0.01  
+85°C  
+25°C  
–40°C  
0.001  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
–5  
0
5
10  
15  
20  
25  
TOTAL INPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 70. Envelope Detector Output Voltage vs. Total Input Power at Various  
Input Tone Spacings, RF = 73.5 GHz  
Figure 73. PA Detector Output Voltage (DET2_REF − DET2_OUT) vs. Output  
Power over Temperatures, RF = 73.5 GHz  
0.35  
1
10MHz  
100MHz  
240MHz  
490MHz  
740MHz  
990MHz  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1  
0.01  
+85°C  
+25°C  
–40°C  
0.001  
–5  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
0
5
10  
15  
20  
25  
TOTAL INPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 71. Envelope Detector Output Voltage vs. Total Input Power at Various  
Input Tone Spacings, RF = 76 GHz  
Figure 74. PA Detector Output Voltage (DET2_REF − DET2_OUT) vs. Output  
Power over Temperatures, RF = 76 GHz  
Rev. A | Page 19 of 29  
 
ADMV7310  
Data Sheet  
1000  
100  
10  
1000  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
100  
10  
1
1
0.1  
0.1  
–5  
0
5
10  
15  
20  
25  
–5  
0
5
10  
15  
20  
25  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 75. PA Detector Sensitivity vs. Output Power over Temperature,  
RF = 71 GHz  
Figure 77. PA Detector Sensitivity vs. Output Power over Temperature,  
RF = 76 GHz  
1000  
+85°C  
+25°C  
–40°C  
100  
10  
1
0.1  
-5  
0
5
10  
15  
20  
25  
OUTPUT POWER (dBm)  
Figure 76. PA Detector Sensitivity vs. Output Power over Temperature,  
RF = 73.5 GHz  
Rev. A | Page 20 of 29  
Data Sheet  
ADMV7310  
RETURN LOSS PERFORMANCE  
0
0
–2  
+85°C  
+85°C  
+25°C  
–40°C  
+25°C  
–40°C  
–2  
–4  
–6  
–4  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
11.8  
12.0  
12.2  
12.4  
12.6  
12.8  
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 80. IF Return Loss vs. IF Frequency over Temperature  
Figure 78. LO Return Loss vs. LO Frequency over Temperature  
0
+85°C  
+25°C  
–40°C  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0  
RF FREQUENCY (GHz)  
Figure 79. RF Return Loss vs. RF Frequency over Temperature  
Rev. A | Page 21 of 29  
 
ADMV7310  
Data Sheet  
SPURIOUS PERFORMANCE  
TA = 25°C, IF = 1 GHz, IF input power = −4 dBm, and LO power = 4 dBm, unless otherwise noted. Mixer spurious products are measured  
in dBc from the RF output power for 60 GHz to 90 GHz due to the waveguide bandwidth. Spur values are (M × IF) + (N × LO). N/A means not  
applicable.  
M × N Spurious Outputs, RF = 71 GHz, LO = 12 GHz  
N × LO  
5
6
7
N/A  
−79  
−72  
−47  
−41  
0
−73  
−72  
−71  
−68  
−67  
−71  
−72  
−68  
−69  
−66  
−67  
−5  
−4  
−3  
−2  
−1  
0
N/A  
N/A  
N/A  
N/A  
−73  
<−80  
<−80  
<−80  
<−80  
<−80  
−18  
−23  
−49  
−62  
−78  
−77  
M × IF  
+1  
+2  
+3  
+4  
+5  
M × N Spurious Outputs, RF = 73.5 GHz, LO = 12.417 GHz  
N × LO  
5
6
7
N/A  
<−80  
−79  
−56  
−46  
0
−72  
−71  
−70  
−71  
−69  
−68  
−66  
−68  
−68  
N/A  
N/A  
−5  
−4  
−3  
−2  
−1  
0
N/A  
N/A  
<−80  
−75  
−74  
−20  
−27  
−58  
−74  
−73  
−73  
M × IF  
<−80  
<−80  
<−80  
<−80  
<−80  
+1  
+2  
+3  
+4  
+5  
M × N Spurious Outputs, RF = 76 GHz, LO = 12.833 GHz  
N × LO  
5
6
7
N/A  
<−80  
−69  
−56  
−40  
0
−71  
−69  
−69  
−69  
−67  
−65  
N/A  
N/A  
N/A  
N/A  
N/A  
−5  
−4  
−3  
−2  
−1  
0
<−80  
<−80  
<−80  
−73  
−68  
−13  
−26  
−59  
−73  
−71  
−70  
M × IF  
−80  
+1  
+2  
+3  
+4  
+5  
<−80  
<−80  
<−80  
<−80  
Rev. A | Page 22 of 29  
 
Data Sheet  
ADMV7310  
THEORY OF OPERATION  
The ADMV7310 is a fully integrated SiP, I/Q upconverter that is  
made up of three functional blocks: a mixer and LO path, an  
envelope detector, a VGA, and a power detector, and a power  
amplifier and power detector.  
The preamp is followed by the first voltage variable attenuator in  
the signal path. Then, a second stage amplifier provides additional  
gain and isolation before driving the second variable attenuator  
block. Three cascaded gain stages follow the second variable  
attenuator.  
MIXER AND LO PATH  
At the output of the second stage, another coupler taps off a  
small portion of the output signal. The coupled signal is  
presented to an on-chip diode detector for external monitoring  
of the output power. A matched reference diode, Detector 1  
(DET1), is included to help correct for detector temperature  
dependencies. A typical application circuit for the power  
detector is shown in Figure 83.  
The first functional block is a gallium arsenide (GaAs) I/Q  
upconverter driven by a 6× LO multiplier. The 6× multiplier  
allows the use of a lower frequency range LO input signal between  
11.8 GHz and 12.7 GHz. The 6× multiplier is implemented using  
a cascade of 3× and 2× multipliers. LO buffer amplifiers are  
included on chip to allow a typical LO drive level of 4 dBm for  
typical performance. The LO path feeds a quadrature splitter  
followed by on-chip baluns that drive the I and Q mixer cores.  
The mixer cores comprise of singly balanced passive mixers.  
The RF outputs of the I and Q mixers are then summed through  
an on-chip Wilkinson power combiner, which is then fed into  
the second functional block.  
See the Applications Information section for further details on  
biasing the different blocks. The output of the VGA then feeds  
into the third functional block of the ADMV7310.  
POWER AMPLIFIER AND POWER DETECTOR  
The third block is a power amplifier that uses four cascaded  
gain stages to form the amplifier (see Figure 82). At the output  
of the last stage, a coupler taps off a small portion of the output  
signal. The coupled signal is presented to an on-chip diode  
detector for external monitoring of the output power. A matched  
reference diode, Detector 2 (DET2), is included to help correct  
for detector temperature dependencies.  
ENVELOPE DETECTOR, VGA, AND POWER  
DETECTOR  
The second functional block is a VGA (see Figure 81). The  
VGA utilizes multiple gain stages and staggered voltage variable  
attenuation stages to form a low noise, high linearity variable  
gain amplifier. The first stage of the VGA is a low noise preamp.  
A portion of the signal is coupled away and further amplified  
before driving an on-chip envelope detector. The envelope  
detector provides an output that is proportional to the peak  
envelope power of the incoming signal.  
INPUT  
OUTPUT  
ENVELOPE  
DETECTOR  
DET1_REF DET1_OUT  
ENV_DET VGA_CTL12  
Figure 81. Variable Gain Amplifier Circuit Architecture  
INPUT  
OUTPUT  
DET2_REF DET2_OUT  
Figure 82. Power Amplifier Circuit Architecture  
Rev. A | Page 23 of 29  
 
 
 
 
 
 
ADMV7310  
Data Sheet  
DET1_REF DET1_OUT  
OR OR  
DET2_REF DET2_OUT  
A typical application circuit for the power detector is shown in  
Figure 83. See the Applications Information section for further  
details on biasing the different blocks.  
+4V  
100kΩ 100kΩ  
+4V  
10kΩ  
10kΩ  
V
= DET2_REF – DET2_OUT  
OUT  
10kΩ  
10kΩ  
OR  
DET1_REFDET1_OUT  
–4V  
SUGGESTED INTERFACE CIRCUIT  
Figure 83. Typical Application Circuit for Power Detector  
Rev. A | Page 24 of 29  
 
Data Sheet  
ADMV7310  
APPLICATIONS INFORMATION  
POWER-UP BIAS SEQUENCE  
LO NULLING  
The ADMV7310 functional blocks use active multiple amplifier  
and multiplier stages that all use depletion mode pseudomorphic  
high electron mobility transistors (pHEMTs). To ensure  
transistor damage does not occur, use the following power-up  
bias sequence and do not apply RF power to the device on the  
LO or IF ports before powering up the device:  
LO nulling is required to achieve optimal overall RF  
performance, especially for LO to RF rejection. This nulling is  
achieved by applying dc voltages (VDC) between −0.2 V and  
0.2 V to the IF_IN, IF_IP, IF_QN, and IF_QP ports to suppress  
the 6× LO signal at the RFOUT port across the RF frequency  
band by approximately 40 dBc. To suppress the 6× LO signal at  
the RFOUT port, use the following nulling sequence:  
1. Apply −2 V bias to VG_MULT, VG_AMP, VGA_VG12,  
VGA_VG345, VGA_VG6, PA_VG1, and PA_VG2.  
2. Apply −1 V bias to VG_MIXER.  
3. Apply between −5 V (minimum attenuation) and −1 V  
(maximum attenuation) bias to VGA_CTL12.  
4. Apply −1.5 V bias to VD_MULT.  
5. Apply a 4 V bias to VD_AMP, VGA_VD12, VGA_VD345,  
VGA_VD6, PA_VD1, PA_VD2, DET1_REF_BIAS,  
DET1_OUT_BIAS, DET2_REF_BIAS, and  
1. Adjust IF_IN VDC between −0.2 V and +0.2 V. Monitor the  
6× LO leakage on the RFOUT port. When the desired or  
maximum level of suppression is achieved, proceed to  
Step 2.  
2. Adjust IF_IP VDC between −0.2 V and +0.2 V. Monitor the  
6× LO leakage on the RFOUT port. When the desired or  
maximum level of suppression is achieved, proceed to  
Step 3.  
DET2_OUT_BIAS (see Figure 86).  
6. Adjust VG_AMP between −2 V and 0 V to achieve a total  
3. Adjust IF_QN VDC input between −0.2 V and +0.2 V.  
Monitor the 6× LO leakage on the RFOUT port. When the  
desired or maximum level of suppression is achieved,  
proceed to Step 4.  
4. Adjust IF_QP VDC between −0.2 V and +0.2 V. Monitor the  
6× LO leakage on the RFOUT port. When the desired or  
maximum level of suppression is achieved, proceed to  
Step 5.  
I
VD_AMP current of 175 mA.  
7. Adjust VGA_VG12 between −2 V and 0 V to achieve a  
total IVGA_VD12 current of 50 mA.  
8. Adjust VGA_VG345 and VGA_VG6 between −2 V and 0 V  
to achieve a total IVGA_VD345 and IVGA_VD6 current of 200 mA.  
9. Adjust PA_VG1 between −2 V and 0 V to achieve a total  
I
PA_VD1 current of 400 mA.  
10. Adjust PA_VG2 between −2 V and 0 V to achieve a total  
PA_VD2 current of 400 mA.  
5. If the desired level of the 6× LO signal on the RFOUT port  
is still not achieved, further tune each dc voltage to the  
IF_IN, IF_IP, IF_QN, and IF_QP ports by repeating Step 1  
through Step 4. The resolution of the voltage changed on  
the dc voltage of the inputs must be in the millivolt.  
6. To ensure that the mixer core is not damaged during the  
LO nulling, limit each current to IF_IN, IF_IP, IF_QN, and  
IF_QP to 3 mA.  
7. LO nulling must be conducted with any change in input  
LO frequency, temperature change, or when Gain Tuning  
Order 1 is conducted. The level of suppression changes as  
those conditions vary.  
I
11. Apply a LO input signal on the LO port and adjust  
VG_MULT between −2 V and 0 V to achieve a total  
I
VD_MULT current of 80 mA.  
POWER-DOWN BIAS SEQUENCE  
To power-down the ADMV7310, take the following steps:  
1. Apply a 0 V bias to VD_MULT, VD_AMP, VGA_VD12,  
VGA_VD345, VGA_VD6, PA_VD1, PA_VD2,  
DET1_REF_BIAS, DET1_OUT_BIAS, DET2_REF_BIAS,  
and DET2_OUT_BIAS supply voltage per application  
circuit.  
2. Apply a 0 V bias to VGA_CTL12.  
3. Apply a 0 V bias to VG_MIXER.  
4. Apply a 0 V bias to VG_MULT, VG_AMP, VGA_VG12,  
VGA_VG345, VGA_VG6, PA_VG1, and PA_VG2.  
Rev. A | Page 25 of 29  
 
 
 
 
ADMV7310  
Data Sheet  
current consumption. The third mechanism is to lower the  
PA_VD1 current consumption via PA_VG1 from the nominal  
PA_VG1 voltage to achieve the nominal IPA_VD1 + IPA_VD2 current  
GAIN TUNING PROCEDURE  
I
The ADMV7310 features three different mechanisms to control  
the total gain of the transmitter. The first mechanism is the  
variable gain control of the variable gain control amplifier of the  
transmitter. The variable gain control is controlled by the  
VGA_CTL12 pin. The voltage control range to achieve maximum  
and minimum gain from the VGA is −5 V to −1 V. The second  
mechanism for further gain control is to lower the IVGA_VD345 and  
consumption.  
See Table 5 for additional details as to which gain control  
mechanism to use per the desired gain control range required.  
The settings detailed in Table 5 are guidelines for a gain control  
approach and may need adjustment depending on application  
requirements over temperature and frequency.  
I
VGA_VD6 current consumption via the VGA_VG345 and  
VGA_VG6 pins from the nominal VGA_VG345 + VGA_VG6  
voltage to achieve the nominal IVGA_VD12 + IVGA_VD345 + IVGA_VD6  
Follow the gain tuning order to control the gain to achieve the  
correct gain level for optimal performance.  
Table 5. Recommended Gain Settings  
Gain  
Tuning  
Order  
Gain  
Reduction  
Range (dB)  
Recommended  
Gain Tuning  
Voltage Range (V)  
Gain Tuning  
Description of Gain Tuning Procedure  
1
0 to 10  
VGA_CTL12  
−5 to −1  
To achieve maximum gain, set VGA_CTL12 to −5 V. To achieve a gain  
reduction between 0 dB and 10 dB, adjust VGA_CTL12 between −5 V  
and −1 V (−1 V is the typical minimum gain for the VGA). For both of  
these conditions, follow the bias procedure in the Theory of Operation  
section to bias the ADMV7310 to the normal operating currents.  
2
10 to 25  
VGA_VG345 + −2 to 0  
VGA_VG6  
To achieve greater than 10 dB to 25 dB gain reduction, adjust VGA_CTL12  
between −5 V and −1 V. If further gain reduction is required to achieve  
25 dB gain reduction after conducting Gain Tuning Order 1, lower  
IVGA_VD345 + IVGA_VD6 by adjusting VGA_VG345 + VGA_VG6 between −2 V  
and 0 V to achieve the correct gain level. The total current consumption of  
I
VGA_VD345 + IVGA_VD6 while adjusting the VGA_VG345 + VGA_VG6 to drop  
to 25 mA (nominal IVGA_VD345 + IVGA_VD6 is 200 mA).  
3
25 to 40  
PA_VG1  
−2 to 0  
To achieve greater than 25 dB to 40 dB gain reduction, adjust VGA_CTL12  
to −1 V and adjust the total current consumption of IVGA_VD345 + IVGA_VD6  
between 200 mA and 25 mA per Gain Tuning Order 2. If further gain  
reduction is needed to achieve 40 dB gain reduction after conducting  
Gain Tuning Order 2, lower IPA_VD1 by adjusting PA_VG1 between −2 V  
and 0 V to achieve the correct gain level. The total current consumption  
of IPA_VD1 while adjusting PA_VG1 must not drop below 80 mA (nominal  
I
PA_VD1 is 400 mA).  
Rev. A | Page 26 of 29  
 
 
Data Sheet  
ADMV7310  
Figure 84 illustrates the recommended mechanical layout on the  
interface plate used to interface to the WR-12 waveguide  
opening of the ADMV7310. The recommended PCB land  
pattern footprint is shown in Figure 85.  
LAYOUT  
Solder the exposed pad on the underside of the ADMV7310 to a  
low thermal and electrical impedance ground plane. This pad  
is typically soldered to an exposed opening in the solder mask.  
Connect these ground vias to all other ground layers to  
maximize heat dissipation from the device package.  
(Ø0.563)  
4× R0.016  
2× Ø0.0595±0.0005 THRU  
MARKED A  
2× Ø0.067±0.003 THRU  
MARKED B  
0.981  
2× 0.899  
A
B
A
NOTE: 7  
PRESS FIT ALIGNMENT PINS (QTY 2)  
TO HEIGHT SHOWN THIS SIDE  
0.761  
0.639  
2× 0.501  
0.419  
B
0.061 (1.55)  
0.122 (3.10)  
0.000  
0.000  
DETAIL A  
PART LIST  
ITEM QTY VENDOR  
STOCK NUMBER  
VARIOUS  
DESCRIPTION  
PIN, ALIGNMENT, FLANGE, 0.0615 DIA  
1
2
VARIOUS  
NOTES:  
1. REMOVE BURRS AND BREAK SHARP EDGES.  
2. ALL INTERNAL RADII ARE 0.090 UNLESS OTHERWISE NOTED.  
3. SURFACE FINISH 32 RMS UNLESS OTHERWISE SPECIFIED.  
4. DIMENSIONS APPLY AFTER PLATING.  
5. MATERIAL: ALUMINUM 6061-T6 PER QQ-A-250/11.  
6. FINISH: NONE.  
7. INSTALL DOWEL PINS.  
8. USE ELECTRONIC DATA FOR ALL GEOMETRY THAT IS NOT DIMENSIONED.  
Figure 84. Recommended Standard WR-12 Footprint  
PCB SOLDERMASK KEEPOUT  
0.124  
(3.15)  
0.012  
(0.30)  
0.041  
(1.05)  
PCB METAL FOOTPRINT  
0.546  
(13.88)  
0.225  
(5.73)  
0.016  
(0.40)  
0.079  
(2.00)  
0.185  
(4.70)  
0.031  
(0.80)  
0.124  
(3.15)  
0.280  
(7.10)  
0.061  
(1.55)  
0.102  
(2.60)  
0.186  
(4.73)  
0.085  
(2.15)  
0.559  
(14.20)  
0.372  
(9.45)  
0.110  
(2.80)  
0.173  
(4.40)  
0.022  
(0.55)  
SEE  
DETAIL A  
PCB SOLDER PASTE MASK  
0.061  
(1.55)  
0.014  
(0.36)  
0.120  
(3.05)  
R0.010  
(R.25)  
0.208  
(5.29)  
0.037  
(0.95)  
0.319  
(8.10)  
0.122  
(3.10)  
0.185  
(4.70)  
0.132  
(3.35)  
DETAIL A  
WAVEGUIDE  
0.124  
(3.14)  
0.044  
(1.11)  
NOTES  
1. WAVEGUIDE OPENING TO BE FULLY EDGE PLATED.  
2. FILL AREA UNDER DEVICE WITH AN ARRAY OF  
0.049  
(1.24)  
0.014  
(0.35)  
0.010 INCH VIAS (FILLED, RECOMMENDED 0.025 INCH PITCH).  
Figure 85. PCB Land Pattern Footprint  
Rev. A | Page 27 of 29  
 
 
 
ADMV7310  
Data Sheet  
TYPICAL APPLICATION CIRCUIT  
Figure 86 shows the typical application circuit.  
4.7µF 4.7µF 4.7µF 4.7µF 4.7µF  
4.7µF 4.7µF  
+
+
+
+
+
+
+
LOIN  
180°  
COUPLER  
IN  
90°  
COUPLER  
IFI_IN  
IFIN  
1
2
IF_IP  
IF_IN  
180°  
COUPLER  
IFQ_IN  
3
IF_QN  
IF_QP  
IN  
4
5
RFOUT  
6
ADMV7310  
VGA_VG12  
TOP VIEW  
7
(Not to Scale)  
8
VGA_VD12  
9
ENV_DET  
10  
11  
12  
VGA_CTL12  
+
+
+
4.7µF  
4.7µF  
4.7µF  
1MF  
150Ω  
3.48kΩ  
+
+
+
4.7µF  
+
+
+
4.7µF  
4.7µF 4.7µF  
4.7µF  
4.7µF  
Figure 86. Typical Application Circuit  
Rev. A | Page 28 of 29  
 
 
Data Sheet  
ADMV7310  
OUTLINE DIMENSIONS  
16.15  
16.00  
15.85  
2.75  
BSC  
9.74  
PIN 1  
0.38  
0.38  
3.15  
INDICATOR  
15.24  
BSC  
9.00  
0.40 × 0.45°  
32  
50  
1
2.80  
BSC  
1.05  
EXPOSED  
PAD  
14.15  
14.00  
13.85  
EXPOSED  
PAD  
EXPOSED  
PAD  
EXPOSED  
PAD  
PORT 1  
(See Detail A)  
8.40  
EXPOSED  
PAD  
EXPOSED  
PAD  
EXPOSED  
PAD  
13.24  
BSC  
0.80  
BSC  
EXPOSED  
PAD  
EXPOSED  
PAD  
EXPOSED  
PAD  
VENT HOLE  
Ø 0.125  
7.00  
BSC  
EXPOSED  
PAD  
12  
13  
1.80  
31  
1.70  
1.55  
BOTTOM VIEW  
0.36  
TOP VIEW  
0.25 BSC  
0.48  
0.42  
0.36  
1.93 BSC  
0.30  
0.24  
2.93  
MAX  
SIDE VIEW  
2.54 REF  
3.15 BSC  
0.46 BSC  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.55 BSC  
0.320  
0.290  
0.260  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
4.70  
BSC  
3.10  
BSC  
DETAIL A  
Figure 87. 50-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
16.00 mm × 14.00 mm Body and 2.93 mm Package Height  
(CE-50-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADMV7310BCEZ  
ADMV7310-EVALZ  
−40°C to +85°C  
50-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
Evaluation Board  
CE-50-2  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D20977-0-10/19(A)  
Rev. A | Page 29 of 29  
 
 

相关型号:

ADMV7320

E-Band Upconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7320-EVALZ

E-Band Upconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7320BCEZ

E-Band Upconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7410

E-Band Low Noise Downconverter SiP, 71 GHz to 76 GHz
ADI

ADMV7410-EVALZ

E-Band Low Noise Downconverter SiP, 71 GHz to 76 GHz
ADI

ADMV7410BCEZ

E-Band Low Noise Downconverter SiP, 71 GHz to 76 GHz
ADI

ADMV7420

E-Band Low Noise Downconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7420-EVALZ

E-Band Low Noise Downconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7420BCEZ

E-Band Low Noise Downconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7710

Power Amplifier with Power Detector
ADI

ADMV7710-SX

Power Amplifier with Power Detector
ADI

ADMV7710CHIPS

Power Amplifier with Power Detector
ADI