ADMV7420-EVALZ [ADI]

E-Band Low Noise Downconverter SiP, 81 GHz to 86 GHz;
ADMV7420-EVALZ
型号: ADMV7420-EVALZ
厂家: ADI    ADI
描述:

E-Band Low Noise Downconverter SiP, 81 GHz to 86 GHz

文件: 总25页 (文件大小:800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
E-Band Low Noise Downconverter SiP,  
81 GHz to 86 GHz  
Data Sheet  
ADMV7420  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion gain: 10 dB typical  
Image rejection: 30 dBc typical  
Noise figure: 5 dB typical  
Input IP3: 1 dBm typical  
Input IP2: 26 dBm typical  
Input P1dB: −5 dBm typical  
GND  
IF_IP  
IF_IN  
IF_QN  
IF_QP  
GND  
1
2
3
4
5
6
7
8
9
6× LO leakage at RFIN: <−55 dBm typical  
I/Q amplitude imbalance: 0.5 dB typical  
I/Q phase imbalance: 5° typical  
Fully integrated, surface-mount, 34-terminal, 11 mm ×  
13 mm LGA_CAV package  
x6  
APPLICATIONS  
PORT 1  
RFIN  
E-band communication systems  
High capacity wireless backhauls  
Test and measurement  
GND  
GND  
Aerospace and defense  
GND  
ADMV7420  
GND 10  
Figure 1.  
GENERAL DESCRIPTION  
The ADMV7420 is a fully integrated system in package (SiP) in  
phase/quadrature (I/Q) downconverter that operates between  
an intermediate frequency (IF) output range of dc and 2 GHz  
and a radio frequency (RF) input range of 81 GHz and 86 GHz.  
The device provides a small signal conversion gain of 10 dB  
with 30 dBc of image rejection. The ADMV7420 uses a low  
noise amplifier followed by an image rejection mixer that is  
driven by a 6× local oscillator (LO) multiplier. Differential I and  
Q mixer outputs are provided for direct conversion applications.  
Alternatively, the outputs can be combined using an external  
90° hybrid and two external 180° hybrids for single-ended  
applications.  
The ADMV7420 comes in a fully integrated, surface-mount,  
34-terminal, 11 mm × 13 mm, chip array small outline no lead  
cavity (LGA_CAV) package. The ADMV7420 operates over the  
−40°C to +85°C case temperature range.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However,  
no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or  
other rights of third parties that may result from its use. Specifications subject to change without  
notice. No license is granted by implication or otherwise under any patent or patent rights of  
Analog Devices. Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
Data Sheet  
ADMV7420  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Return Loss and 6× LO Leakage .............................................. 19  
Spurious Performance ............................................................... 20  
Theory of Operation ...................................................................... 21  
Applications Information.............................................................. 22  
Power-Up Bias Sequence........................................................... 22  
Power-Down Sequence.............................................................. 22  
Layout .......................................................................................... 22  
Typical Application Circuit........................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
10/2019—Revision A: Initial Version  
Rev. A | Page 2 of 25  
 
Data Sheet  
ADMV7420  
SPECIFICATIONS  
TA = −40°C to +85°C, IF = 1 GHz, LO power = 4 dBm, VD_AMP = +4 V, VG_MIXER = −1 V, VD_MULT = +1.5 V, VD12_LNA = +2 V,  
and VD34_LNA = +4 V, unless otherwise noted. Measurements performed as a downconverter with upper sideband selected and an  
external 90° hybrid followed by two external 180° hybrids at the IF ports, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
RF  
LO  
IF Output  
81  
86  
14.6  
2
GHz  
GHz  
GHz  
dBm  
13.2  
DC  
0
LO Drive Level Range  
PERFORMANCE  
4
8
Conversion Gain  
Gain Flatness  
6
10  
2
17  
dB  
dB  
Image Rejection  
15  
30  
−5  
1
26  
−55  
0.5  
5
dBc  
Input Power for 1 dB Compression (Input P1dB)  
Input Third-Order Intercept (Input IP3)  
Input Second-Order Intercept (Input IP2)  
6× LO Leakage at the RF Input Port (RFIN)  
I/Q Amplitude Imbalance  
I/Q Phase Imbalance  
Noise Figure  
−13  
−6  
14  
dBm  
dBm  
dBm  
dBm  
dB  
−50  
3
10  
8
−10  
Degrees  
dB  
5
Return Loss  
RFIN  
10  
10  
10  
dB  
dB  
dB  
Ω
LO Input Port (LOIN)  
Baseband Output Port1  
DIFFERENTIAL BASEBAND OUTPUT PORT IMPEDANCE  
LOIN PORT IMPEDANCE  
POWER SUPPLY  
100  
50  
Ω
DC Power Dissipation  
Low Noise Amplifier Gate Voltage  
Low Noise Amplifier Drain Voltage  
First and Second Stage  
Third and Fourth Stage  
Multiplier Drain Voltage  
Multiplier Gate Voltage  
Mixer Gate Voltage  
1
1.25  
0
W
V
VG12_LNA, VG34_LNA  
−2  
VD12_LNA  
VD34_LNA  
VD_MULT  
VG_MULT  
VG_MIX  
1.9  
3.8  
1.42  
−2  
2
4
2.1  
4.2  
1.58  
0
V
V
1.5  
V
V
V
−2  
0
Low Noise Amplifier Supply Current  
Amplifier Drain Current  
Multiplier Drain Current  
IVD12_LNA and IVD34_LNA  
IVD_AMP  
IVD_MULT  
66  
175  
80  
mA  
mA  
mA  
1 Measurements taken without external hybrids at the IF ports.  
Rev. A | Page 3 of 25  
 
Data Sheet  
ADMV7420  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
VD_AMP  
VD_MULT  
4.5 V  
3 V  
VD12_LNA and VD34_LNA  
VG_AMP  
VG_MULT  
VG12_LNA and VG34_LNA  
LO Drive  
Baseband Input (IF_IP, IF_IN, IF_QP, and IF_QN)  
IF Source and Sink Current  
Nominal Junction Temperature (TA = 85°C)  
4.5 V  
θ
JC is the junction to case (or die to package) thermal resistance.  
−3 V to +0.2 V  
−3 V to +0.2 V  
−3 V to +0.2 V  
10 dBm  
4 dBm  
Table 3. Thermal Resistance1  
Package Type  
θJC  
Unit  
CE-34-2  
52.4  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P test board  
with 11 mm × 13 mm thermal vias. Refer to JEDEC standard JESD51-2 for  
additional information.  
3 mA  
137°C  
Maximum Junction Temperature (to Maintain 175°C  
3 Million Hours Mean Time to Failure  
(MTTF))  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
Maximum Peak Reflow Temperature for  
Moisture Sensitivity Level 3 (MSL3)  
−40°C to +85°C  
−55°C to +150°C  
260°C  
Thermal Humidity Bias (THB)  
Thermal Humidity Storage (THS)  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
JESD22-A1011, 2, 3  
JESD22-A1011, 3  
300 V  
500 V  
1 Samples subject to preconditioning (per J-STD-020 Level 3) prior to the start  
of the stress test. Level 3 preconditioning consists of the following: bake for  
24 hours at 125°C, unbiased soak for 192 hours at 30°C and 60% relative  
humidity (RH), and reflow of three passes through an oven with a peak  
temperature of 260°C.  
2 Results valid for 400 mW of nominal dc power dissipation for all active  
devices. Analog Devices, Inc., recommends that users perform their own THB  
test for all other bias conditions.  
3 Valid for package vent hole solder sealed or unsealed during test.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 4 of 25  
 
 
 
Data Sheet  
ADMV7420  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
34 33 32 31 30 29 28 27 26 25 24 23  
1
2
GND  
IF_IP  
IF_IN  
IF_QN  
IF_QP  
GND  
3
ADMV7420  
4
TOP VIEW  
(TERMINAL SIDE DOWN)  
Not to Scale  
5
6
PORT 1  
RFIN  
7
GND  
8
GND  
9
GND  
10  
GND  
11 12 13 14 15 16 17 18 19 20 21 22  
NOTES  
1. EXPOSED PADS. THE EXPOSED GROUND PADS  
MUST BE CONNECTED TO RF AND DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 6 to 12, 14, 16, 17, 19, 21 to 23, 25, 27, 29, 31, 34  
GND  
Ground Connections. These pins must be connected to RF and  
dc ground.  
2
IF_IP  
Positive IF In Phase Output. This pin is dc-coupled. When  
operation to dc is not required, block this pin externally  
using a series capacitor with a value chosen to pass the  
necessary frequency range. For operation to dc, this pin must  
not source or sink more than 3 mA of current or device  
malfunction and device failure may result.  
3
IF_IN  
IF_QN  
IF_QP  
Negative IF In Phase Output. This pin is dc-coupled. When  
operation to dc is not required, block this pin externally  
using a series capacitor with a value chosen to pass the  
necessary frequency range. For operation to dc, this pin must  
not source or sink more than 3 mA of current or device  
malfunction and device failure may result.  
Negative IF Quadrature Output. This pin is dc-coupled. When  
operation to dc is not required, block this pin externally  
using a series capacitor with a value chosen to pass the  
necessary frequency range. For operation to dc, this pin must  
not source or sink more than 3 mA of current or device  
malfunction and device failure may result.  
Positive IF Quadrature Output. This pin is dc-coupled. When  
operation to dc is not required, block this pin externally  
using a series capacitor with a value chosen to pass the  
necessary frequency range. For operation to dc, this pin must  
not source or sink more than 3 mA of current or device  
malfunction and device failure may result.  
4
5
13  
VD34_LNA  
Drain Voltage for the Third and Fourth Stage Low Noise  
Amplifier. See Figure 75 for the recommended external  
components.  
Rev. A | Page 5 of 25  
 
Data Sheet  
ADMV7420  
Pin No.  
Mnemonic  
Description  
15  
VG34_LNA  
Gate Voltage for the Third and Fourth Stage Low Noise  
Amplifier. See Figure 75 for the recommended external  
components.  
18  
20  
VD12_LNA  
VG12_LNA  
Drain Voltage for the First and Second Stage Low Noise  
Amplifier. See Figure 75 for the recommended external  
components.  
Gate Voltage for the First and Second Stage Low Noise  
Amplifier. See Figure 75 for the recommended external  
components.  
24  
26  
LOIN  
VG_MULT  
LO Input. This pin is dc-coupled and matched to 50 Ω.  
Gate Voltage for the LO Multiplier. See Figure 75 for the  
recommended external components.  
28  
VD_MULT  
VG_AMP  
VD_AMP  
VG_MIXER  
RFIN  
Drain Voltage for the LO Multiplier. See Figure 75 for the  
recommended external components.  
Gate Voltage for the LO Amplifier. See Figure 75 for the  
recommended external components.  
Drain Voltage for the LO Amplifier. See Figure 75 for the  
recommended external components.  
Gate Voltage for the Field Effect Transistor (FET) Mixer. See  
Figure 75 for the recommended external components.  
30  
32  
33  
PORT 1  
WR-12 Waveguide Port. This port is ac-coupled and matched  
to the waveguide input impedance.  
EPAD  
Exposed Pads. The exposed ground pads must be connected  
to RF and dc ground.  
INTERFACE SCHEMATICS  
GND  
VG12_LNA,  
VG34_LNA  
Figure 3. GND Interface Schematic  
Figure 6. VG12_LNA and VG34_LNA Interface Schematic  
IF_IP, IF_IN  
IF_QN, IF_QP  
VD_AMP,  
VD_MULT  
VG_MIXER  
VG_AMP,  
VG_MULT  
Figure 4. IF_IP, IF_IN, IF_QN, IF_QP, and VG_MIXER Interface Schematic  
Figure 7. VG_MULT, VD_MULT, VG_AMP, and VD_AMP Interface  
Schematic  
VD12_LNA, VD34_LNA  
RFIN  
Figure 5. VD12_LNA and VD34_LNA Interface Schematic  
Figure 8. RFIN Interface Schematic  
Rev. A | Page 6 of 25  
 
Data Sheet  
ADMV7420  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, IF = 1 GHz, RFIN = −20 dBm combined, LO power = +4 dBm, and upper sideband selected, unless otherwise noted.  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
6
6
+85°C  
+25°C  
–40°C  
4
4
2
2
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 9. Conversion Gain vs. RF Frequency over Temperature  
Figure 12. Conversion Gain vs. RF Frequency over LO Power  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
15  
+25°C  
–40°C  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Image Rejection vs. RF Frequency over Temperature  
Figure 13. Image Rejection vs. RF Frequency over LO Power  
10  
8
10  
8
6
6
4
4
2
2
0
0
–2  
–2  
–4  
–6  
–8  
–10  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
–4  
+25°C  
–40°C  
–6  
–8  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Input IP3 vs. RF Frequency over Temperature  
Figure 14. Input IP3 vs. RF Frequency over LO Power  
Rev. A | Page 7 of 25  
 
Data Sheet  
ADMV7420  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
15  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Input IP2 vs. RF Frequency over Temperature  
Figure 18. Input IP2 vs. RF Frequency over LO Power  
1.0  
1.0  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Amplitude Imbalance vs. RF Frequency over Temperature  
Figure 19. Amplitude Imbalance vs. RF Frequency over LO Power  
10  
8
10  
8
6
6
4
4
2
2
0
0
+85°C  
+25°C  
–40°C  
–2  
–4  
–2  
0dBm  
–4  
–6  
2dBm  
4dBm  
6dBm  
8dBm  
–6  
–8  
–8  
–10  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Phase Imbalance vs. RF Frequency over Temperature  
Figure 20. Phase Imbalance vs. RF Frequency over LO Power  
Rev. A | Page 8 of 25  
Data Sheet  
ADMV7420  
10  
9
10  
9
8
8
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
8
8
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Noise Figure vs. RF Frequency over Temperature  
Figure 23. Noise Figure vs. RF Frequency over LO Power  
0
+85°C  
+25°C  
–40°C  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
Figure 22. Input P1dB vs. RF Frequency over Temperature  
Rev. A | Page 9 of 25  
Data Sheet  
ADMV7420  
TA = 25°C, IF = 0.1 GHz, RFIN = −20 dBm combined, LO power = +4 dBm, and upper sideband selected, unless otherwise noted.  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
6
+85°C  
+25°C  
–40°C  
4
6
2
0
4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 27. Conversion Gain vs. RF Frequency over LO Power  
Figure 24. Conversion Gain vs. RF Frequency over Temperature  
50  
50  
45  
40  
35  
30  
25  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
15  
+25°C  
–40°C  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Image Rejection vs. RF Frequency over LO Power  
Figure 25. Image Rejection vs. RF Frequency over Temperature  
10  
10  
8
8
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–2  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
–4  
+25°C  
–40°C  
–6  
–8  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Input IP3 vs. RF Frequency over LO Power  
Figure 26. Input IP3 vs. RF Frequency over Temperature  
Rev. A | Page 10 of 25  
Data Sheet  
ADMV7420  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Input IP2 vs. RF Frequency over Temperature  
Figure 33. Input IP2 vs. RF Frequency over LO Power  
1.0  
1.0  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 31. Amplitude Imbalance vs. RF Frequency over Temperature  
Figure 34. Amplitude Imbalance vs. RF Frequency over LO Power  
10  
10  
8
+85°C  
+25°C  
–40°C  
8
6
6
4
4
2
2
0
0
0dBm  
–2  
–4  
–6  
–8  
–10  
–2  
–4  
2dBm  
4dBm  
6dBm  
8dBm  
–6  
–8  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 32. Phase Imbalance vs. RF Frequency over Temperature  
Figure 35. Phase Imbalance vs. RF Frequency over LO Power  
Rev. A | Page 11 of 25  
Data Sheet  
ADMV7420  
10  
9
10  
9
8
8
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
8
8
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 36. Noise Figure vs. RF Frequency over Temperature  
Figure 38. Noise Figure vs. RF Frequency over LO Power  
0
+85°C  
+25°C  
–40°C  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
Figure 37. Input P1dB vs. RF Frequency over Temperature  
Rev. A | Page 12 of 25  
Data Sheet  
ADMV7420  
TA = 25°C, IF = 0.5 GHz, RFIN = −20 dBm combined, LO power = +4 dBm, and upper sideband selected, unless otherwise noted.  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
6
+85°C  
+25°C  
–40°C  
4
6
2
0
4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 39. Conversion Gain vs. RF Frequency over Temperature  
Figure 42. Conversion Gain vs. RF Frequency over LO Power  
50  
45  
40  
35  
30  
25  
20  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
15  
+25°C  
–40°C  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Image Rejection vs. RF Frequency over Temperature  
Figure 43. Image Rejection vs. RF Frequency over LO Power  
10  
8
10  
8
6
6
4
4
2
2
0
0
–2  
–2  
–4  
–6  
–8  
–10  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
–4  
+25°C  
–40°C  
–6  
–8  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Input IP3 vs. RF Frequency over Temperature  
Figure 44. Input IP3 vs. RF Frequency over LO Power  
Rev. A | Page 13 of 25  
Data Sheet  
ADMV7420  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 45. Input IP2 vs. RF Frequency over Temperature  
Figure 48. Input IP2 vs. RF Frequency over LO Power  
1.0  
1.0  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. Amplitude Imbalance vs. RF Frequency over Temperature  
Figure 49. Amplitude Imbalance vs. RF Frequency over LO Power  
10  
8
10  
8
6
6
4
4
2
2
0
0
0dBm  
–2  
–2  
2dBm  
4dBm  
6dBm  
8dBm  
–4  
–4  
–6  
+85°C  
+25°C  
–40°C  
–6  
–8  
–8  
–10  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Phase Imbalance vs. RF Frequency over Temperature  
Figure 50. Phase Imbalance vs. RF Frequency over LO Power  
Rev. A | Page 14 of 25  
Data Sheet  
ADMV7420  
10  
9
10  
9
8
8
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
8
7
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 51. Noise Figure vs. RF Frequency over Temperature  
Figure 53. Noise Figure vs. RF Frequency over LO Power  
0
–2  
+85°C  
+25°C  
–40°C  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
Figure 52. Input P1dB vs. RF Frequency over Temperature  
Rev. A | Page 15 of 25  
Data Sheet  
ADMV7420  
TA = 25°C, IF = 2 GHz, RFIN = −20 dBm combined, LO power = +4 dBm, and upper sideband selected, unless otherwise noted.  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
6
6
+85°C  
+25°C  
–40°C  
4
4
2
2
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Conversion Gain vs. RF Frequency over LO Power  
Figure 54. Conversion Gain vs. RF Frequency over Temperature  
50  
50  
45  
40  
35  
30  
25  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
15  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Image Rejection vs. RF Frequency over LO Power  
Figure 55. Image Rejection vs. RF Frequency over Temperature  
10  
10  
8
8
6
6
4
4
2
2
0
0
–2  
–4  
–6  
–8  
–10  
–2  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
–4  
+25°C  
–40°C  
–6  
–8  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Input IP3 vs. RF Frequency over LO Power  
Figure 56. Input IP3 vs. RF Frequency over Temperature  
Rev. A | Page 16 of 25  
Data Sheet  
ADMV7420  
50  
45  
40  
35  
30  
25  
20  
15  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
10  
5
0
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Input IP2 vs. RF Frequency over Temperature  
Figure 63. Input IP2 vs. RF Frequency over LO Power  
1.0  
1.0  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
+85°C  
+25°C  
–40°C  
0.8  
0.6  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 61. Amplitude Imbalance vs. RF Frequency over Temperature  
Figure 64. Amplitude Imbalance vs. RF Frequency over LO Power  
10  
8
10  
8
6
6
4
4
2
2
+85°C  
+25°C  
–40°C  
0dBm  
0
0
–2  
2dBm  
4dBm  
–2  
–4  
6dBm  
8dBm  
–4  
–6  
–6  
–8  
–8  
–10  
–10  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 62. Phase Imbalance vs. RF Frequency over Temperature  
Figure 65. Phase Imbalance vs. RF Frequency over LO Power  
Rev. A | Page 17 of 25  
Data Sheet  
ADMV7420  
10  
9
10  
9
8
8
6
5
4
3
2
1
0
+85°C  
+25°C  
–40°C  
0dBm  
2dBm  
4dBm  
6dBm  
8dBm  
8
8
6
5
4
3
2
1
0
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 66. Noise Figure vs. RF Frequency over Temperature  
Figure 68. Noise Figure vs. RF Frequency over LO Power  
0
+85°C  
+25°C  
–40°C  
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
RF FREQUENCY (GHz)  
Figure 67. Input P1dB vs. RF Frequency over Temperature  
Rev. A | Page 18 of 25  
Data Sheet  
ADMV7420  
RETURN LOSS AND 6× LO LEAKAGE  
0
0
–2  
+85°C  
+85°C  
+25°C  
–40°C  
+25°C  
–40°C  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
–16  
–18  
–20  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
13.4  
13.6  
13.8  
14.0  
14.2  
14.4  
14.6  
RF FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 69. RF Return Loss vs. RF Frequency over Temperature,  
LO Frequency = 14.3 GHz  
Figure 71. LO Return Loss vs. LO Frequency over Temperature  
0
–50  
+85°C  
+85°C  
+25°C  
–40°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–54  
–58  
–62  
–66  
–80  
–84  
–88  
–82  
–86  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 70. IF Return Loss vs. IF Frequency over Temperature,  
LO Frequency = 14.3 GHz  
Figure 72. 6× LO Leakage at the RF Port over Temperature  
Rev. A | Page 19 of 25  
 
Data Sheet  
ADMV7420  
SPURIOUS PERFORMANCE  
TA = 25°C, IF = 1 GHz, RFIN = −20 dBm, and LO input = +4 dBm, unless otherwise noted. Mixer spurious products are measured in dBc  
from the IF output power level single-ended for frequencies below 50 GHz, with all other IF ports terminated. Spur values are (M × RF) − (N ×  
LO). N/A means not applicable.  
M × N Spurious Outputs, RF = 81 GHz, LO = 13.667 GHz  
N × LO  
0
1
2
3
4
5
6
7
8
12  
18  
0
1
2
3
4
5
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−39  
N/A  
N/A  
N/A  
N/A  
N/A  
−80  
−72  
N/A  
N/A  
N/A  
N/A  
−71  
−80  
N/A  
N/A  
N/A  
N/A  
N/A  
−79  
N/A  
N/A  
N/A  
N/A  
N/A  
−85  
N/A  
N/A  
N/A  
N/A  
N/A  
0
N/A  
−88  
N/A  
N/A  
N/A  
N/A  
N/A  
−82  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−35  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−95  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
M × RF  
M × N Spurious Outputs, RF = 83.5 GHz, LO = 14.083 GHz  
N × LO  
0
1
2
3
4
5
6
7
8
12  
18  
0
1
2
3
4
5
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−33  
N/A  
N/A  
N/A  
N/A  
N/A  
−63  
N/A  
N/A  
N/A  
N/A  
N/A  
−53  
−71  
N/A  
N/A  
N/A  
N/A  
N/A  
−78  
N/A  
N/A  
N/A  
N/A  
N/A  
−49  
N/A  
N/A  
N/A  
N/A  
N/A  
0
N/A  
−46  
N/A  
N/A  
N/A  
N/A  
N/A  
−80  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−32  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−55  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
M × RF  
M × N Spurious Outputs, RF = 86 GHz, LO = 14.5 GHz  
N × LO  
0
1
2
3
4
5
6
7
8
12  
18  
0
1
2
3
4
5
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−35  
N/A  
N/A  
N/A  
N/A  
N/A  
−81  
N/A  
N/A  
N/A  
N/A  
N/A  
−71  
−71  
N/A  
N/A  
N/A  
N/A  
N/A  
−81  
N/A  
N/A  
N/A  
N/A  
N/A  
−88  
N/A  
N/A  
N/A  
N/A  
N/A  
0
N/A  
−87  
N/A  
N/A  
N/A  
N/A  
N/A  
−83  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−37  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−96  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
M × RF  
Rev. A | Page 20 of 25  
 
Data Sheet  
ADMV7420  
THEORY OF OPERATION  
The ADMV7420 is a fully integrated SiP, I/Q low noise  
downconverter that consists of two functional blocks.  
implemented using a cascade of 3× and 2× multipliers. The LO  
buffer amplifiers are included on chip to allow a typical LO  
drive level of 4 dBm for typical performance. The LO path feeds  
a quadrature splitter followed by on-chip baluns that drive the I  
and Q mixer cores. The mixer cores comprise singly balanced  
passive mixers. The RF input of the I and Q mixers are then  
driven through an on-chip Wilkinson power splitter, which is  
then fed by the first block of the ADMV7420.  
The RFIN port of the ADMV7420 is connected to the gallium  
arsenide (GaAs), low noise amplifier that consists of four stages  
of low noise amplification that feed into the second block.  
The second block is a GaAs, I/Q downconverter with an  
integrated LO buffer and 6× multiplier. The 6× multiplier  
allows the use of a lower frequency range LO input signal,  
typically between 13.2 GHz and 14.6 GHz. The 6× multiplier is  
Rev. A | Page 21 of 25  
 
Data Sheet  
ADMV7420  
APPLICATIONS INFORMATION  
POWER-UP BIAS SEQUENCE  
POWER-DOWN SEQUENCE  
The ADMV7420 functional blocks use active multiple amplifier  
and multiplier stages that all use depletion mode pseudomorphic  
high electron mobility transistors (pHEMTs). To ensure  
transistor damage does not occur, use the following power-up  
bias sequence and do not apply RF power to the device on the  
LO or IF ports unless otherwise noted:  
To power down the ADMV7420, take the following steps:  
1. Apply a 0 V bias to VD_MULT, VD_AMP, VD12_LNA,  
and VD34_LNA.  
2. Apply a 0 V bias to VG_MIXER.  
3. Apply a 0 V bias to VG_MULT, VG_AMP, VG12_LNA,  
and VG34_LNA.  
1. Apply a −2 V bias to VG_MULT, VG_AMP, VG12_LNA,  
and VG34_LNA.  
2. Apply a −1 V bias to VG_MIXER.  
3. Apply a 2 V bias to VD12_LNA.  
4. Apply a 1.5 V bias to VD_MULT.  
5. Apply a 4 V bias to VD_AMP and VD34_LNA.  
6. Adjust VG_AMP between −2 V and 0 V to achieve a total  
LAYOUT  
Solder the exposed pad on the underside of the ADMV7420 to a  
low thermal and electrical impedance ground plane. This pad is  
typically soldered to an exposed opening in the solder mask.  
Connect these ground vias to all other ground layers to maximize  
heat dissipation from the device package.  
Figure 73 illustrates the recommended mechanical layout on the  
interface plate used to interface to the WR-12 waveguide  
opening of the ADMV7420.The recommended PCB land  
pattern footprint is shown in Figure 74.  
I
VD_AMP current of 175 mA.  
7. Adjust VG12_LNA between −2 V and 0 V to achieve a  
total IVD12_LNA current of 22 mA.  
8. Adjust VG34_LNA between −2 V and 0 V to achieve a  
total IVD34_LNA current of 44 mA.  
9. Apply a LO input signal on the LO port and adjust  
VG_MULT between −2 V and 0 V to achieve a total  
I
VD_MULT current of 80 mA.  
(Ø0.563)  
4× R0.016  
2× Ø0.0595±0.0005 THRU  
MARKED A  
2× Ø0.067±0.003 THRU  
MARKED B  
0.981  
2× 0.899  
A
B
A
NOTE: 7  
PRESS FIT ALIGNMENT PINS (QTY 2)  
TO HEIGHT SHOWN THIS SIDE  
0.761  
0.639  
2× 0.501  
0.419  
B
0.061 (1.55)  
0.122 (3.10)  
0.000  
0.000  
DETAIL A  
PART LIST  
STOCK NUMBER  
VARIOUS PIN, ALIGNMENT, FLANGE, 0.0615 DIA  
ITEM QTY VENDOR  
DESCRIPTION  
1
2
VARIOUS  
NOTES:  
1. REMOVE BURRS AND BREAK SHARP EDGES.  
2. ALL INTERNAL RADII ARE .090 UNLESS OTHERWISE NOTED.  
3. SURFACE FINISH 32 RMS UNLESS OTHERWISE SPECIFIED.  
4. DIMENSIONS APPLY AFTER PLATING.  
5. MATERIAL: ALUMINUM 6061-T6 PER QQ-A-250/11.  
6. FINISH: NONE.  
7. INSTALL DOWEL PINS.  
8. USE ELECTRONIC DATA FOR ALL GEOMETRY THAT IS NOT DIMENSIONED.  
Figure 73. Recommended Standard WR-12 Footprint  
Rev. A | Page 22 of 25  
 
 
 
 
 
Data Sheet  
ADMV7420  
PCB METAL FOOTPRINT  
PCB SOLDERMASK KEEPOUT  
0.012  
0.350  
(8.89)  
0.098  
(2.50)  
(0.30)  
0.150  
(3.80)  
0.047  
(1.20)  
0.071  
(1.80)  
Ø0.033  
(Ø0.85)  
0.128  
Ø0.028  
(0.70)  
0.016  
(3.24)  
(0.40)  
0.079  
(2.02)  
0.185  
(4.70)  
0.260  
(6.60)  
0.022  
(0.55)  
0.165  
(4.20)  
0.142  
(3.60)  
0.091  
(2.30)  
0.124  
(3.15)  
0.331  
(8.40)  
0.520  
(13.20)  
0.085  
(2.15)  
0.142  
(3.60)  
SEE DETAIL A  
0.073  
(1.85)  
0.022  
(0.55)  
0.031  
(0.80)  
0.173  
(4.40)  
0.106  
(2.69)  
PCB SOLDER PASTE MASK  
R0.010  
(R0.25)  
0.150  
(3.80)  
0.085  
0.022  
(0.57)  
(2.17)  
0.220  
(5.60)  
0.058  
(1.47)  
Ø0.026  
(Ø0.65)  
0.122  
(3.10)  
0.132 0.185  
(3.35) (4.70)  
DETAIL A  
WAVEGUIDE  
0.124  
(3.14)  
0.080  
(2.03)  
NOTES  
1. WAVEGUIDE OPENING TO BE FULLY PLATED.  
2. FILL AREA UNDER DEVICE WITH AN ARRAY OF  
0.010 VIAS (FILLED, RECOMMENDED 0.025 PITCH).  
0.014  
(0.35)  
0.060  
(1.52)  
Figure 74. PCB Land Pattern Footprint  
Rev. A | Page 23 of 25  
 
Data Sheet  
ADMV7420  
TYPICAL APPLICATION CIRCUIT  
Figure 75 shows the typical application circuit.  
VG_AMP  
VD_MULT  
+
+
4.7µF  
4.7µF  
4.7µF  
4.7µF  
+
+
VD_AMP  
VG_MULT  
LOIN  
VG_MIXER  
4.7µF  
+
1
2
OUT  
IFI_OUT  
IFOUT  
3
ADMV7420  
4
IFQ_OUT  
5
OUT  
90°  
HYBRID  
RFIN  
6
7
180°  
HYBRID  
8
9
10  
VG12_LNA  
VD12_LNA  
VD34_LNA  
VG34_LNA  
+
+
4.7µF  
4.7µF  
4.7µF  
+
+
4.7µF  
Figure 75. Typical Application Circuit  
Rev. A | Page 24 of 25  
 
 
Data Sheet  
ADMV7420  
OUTLINE DIMENSIONS  
11.15  
11.00  
10.85  
2.75  
BSC  
4.64  
4.00  
PIN 1  
2.50  
INDICATOR  
0.38  
0.38  
PIN 1  
CORNER  
10.24  
0.40 × 0.45°  
2.75 BSC  
22  
34  
VENT HOLE  
Ø 0.125  
0.82  
BSC  
1
EXPOSED  
PAD  
EXPOSED  
PAD  
EXPOSED  
PAD  
1.80  
13.15  
13.00  
12.85  
PORT 1  
(See Detail A)  
7.50  
EXPOSED  
PAD  
EXPOSED  
PAD  
0.80  
BSC  
12.24  
1.00  
BSC  
EXPOSED  
PAD  
EXPOSED  
PAD  
6.50  
BSC  
10  
1.80  
22  
11  
1.70  
1.55  
BOTTOM VIEW  
0.36  
0.30  
TOP VIEW  
0.25 BSC  
0.48  
0.42  
0.36  
2.04 BSC  
2.93  
MAX  
SIDE VIEW  
2.54 REF  
0.24  
3.15 BSC  
0.46 BSC  
1.55 BSC  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.320  
0.290  
0.260  
SEATING  
PLANE  
4.70  
BSC  
3.10  
BSC  
SECTION OF THIS DATA SHEET.  
DETAIL A  
Figure 76. 34-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
11.00 mm × 13.00 mm Body and 2.93 Maximum mm Package Height  
(CE-34-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADMV7420BCEZ  
ADMV7420-EVALZ  
−40°C to +85°C  
34-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
Evaluation Board  
CE-34-2  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D20970-0-10/19(A)  
Rev. A | Page 25 of 25  
 
 

相关型号:

ADMV7420BCEZ

E-Band Low Noise Downconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7710

Power Amplifier with Power Detector
ADI

ADMV7710-SX

Power Amplifier with Power Detector
ADI

ADMV7710CHIPS

Power Amplifier with Power Detector
ADI

ADMV7810

Amplifier with Power Detector
ADI

ADMV7810-SX

Amplifier with Power Detector
ADI

ADMV7810CHIPS

Amplifier with Power Detector
ADI

ADMV8416

6.3 GHz to 18 GHz, Tunable Band-Pass Filter
ADI

ADMV8416-EVALZ

6.3 GHz to 18 GHz, Tunable Band-Pass Filter
ADI

ADMV8416ACPZ

6.3 GHz to 18 GHz, Tunable Band-Pass Filter
ADI

ADMV8416ACPZ-R5

6.3 GHz to 18 GHz, Tunable Band-Pass Filter
ADI

ADMV8420

10 GHz to 21.7 GHz, Tunable Band-Pass Filter
ADI