ADN2530YCPZ-REEL7 [ADI]

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver; 11.3 Gbps的,主动背向端接,差分VCSEL驱动器
ADN2530YCPZ-REEL7
型号: ADN2530YCPZ-REEL7
厂家: ADI    ADI
描述:

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
11.3 Gbps的,主动背向端接,差分VCSEL驱动器

驱动器 驱动程序和接口 接口集成电路
文件: 总20页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11.3 Gbps, Active Back-Termination,  
Differential VCSEL Driver  
ADN2530  
FEATURES  
GENERAL DESCRIPTION  
Up to 11.3 Gbps operation  
−40°C to +100°C operation  
Very low power: ISUPPLY = 65 mA  
Typical 26 ps rise/fall times  
Full back-termination of output transmission lines  
Crosspoint adjust function  
PECL-/CML-compatible data inputs  
Bias current range: 2 mA to 25 mA  
Differential modulation current range: 2.2 mA to 23 mA  
Automatic laser shutdown (ALS)  
3.3 V operation  
Compact 3 mm × 3 mm LFCSP  
Voltage-input control for bias and modulation currents  
XFP-compliant bias current monitor  
The ADN2530 laser diode driver is designed for direct modula-  
tion of packaged VCSELs with a differential resistance ranging  
from 35 Ω to 140 Ω. The active back-termination technique  
provides excellent matching with the output transmission lines  
while reducing the power dissipation in the output stage. The  
back-termination in the ADN2530 absorbs signal reflections  
from the TOSA end of the output transmission lines, enabling  
excellent optical eye quality to be achieved even when the  
TOSA end of the output transmission lines is significantly  
misterminated. The small package provides the optimum  
solution for compact modules where laser diodes are packaged  
in low pin count optical subassemblies.  
The modulation and bias currents are programmable via the  
MSET and BSET control pins. By driving these pins with  
control voltages, the user has the flexibility to implement  
various average power and extinction ratio control schemes,  
including closed-loop control and look-up tables. The eye  
crosspoint in the output eye diagram is adjustable via the  
crosspoint adjust (CPA) control voltage input. The automatic  
laser shutdown (ALS) feature allows the user to turn on/off the  
bias and modulation currents by driving the ALS pin with the  
proper logic levels. The product is available in a space-saving  
3 mm × 3 mm LFCSP specified from −40°C to +100°C.  
APPLICATIONS  
10 Gb Ethernet optical transceivers  
10G-BASE-LRM optical transceivers  
8× and 10× Fibre Channel optical transceivers  
XFP/X2/XENPAK/MSA 300 optical modules  
SONET OC-192/SDH STM-64 optical transceivers  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
CPA  
ALS  
VCC  
ADN2530  
VCC  
IMODP  
IMODN  
50  
50Ω  
100Ω  
IMOD  
VCC  
GND  
DATAP  
DATAN  
CROSS  
POINT  
ADJUST  
IBMON  
IBIAS  
800Ω  
800Ω  
200Ω  
200Ω  
200Ω  
10Ω  
MSET  
GND  
BSET  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
ADN2530  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Automatic Laser Shutdown (ALS) ........................................... 11  
Modulation Current................................................................... 11  
Load Mistermination................................................................. 13  
Crosspoint Adjust....................................................................... 13  
Power Consumption .................................................................. 13  
Applications Information.............................................................. 15  
Typical Application Circuit....................................................... 15  
Layout Guidelines....................................................................... 15  
Design Example.......................................................................... 16  
Headroom Calculations ........................................................ 16  
BSET and MSET Pin Voltage Calculation .......................... 16  
IBIAS Monitor Accuracy Calculations................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Package Thermal Specifications ................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
Input Stage................................................................................... 10  
Bias Current ................................................................................ 10  
REVISION HISTORY  
8/06—Rev. 0 to Rev. A  
Changes to Figure 1.......................................................................... 1  
Changes to Table 3............................................................................ 5  
Changes to Figure 24...................................................................... 10  
Changes to Figure 30...................................................................... 11  
Changes to Modulation Current Section .................................... 12  
Changes to Typical Application Circuit Section......................... 15  
10/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ADN2530  
SPECIFICATIONS  
VCC = VCCMIN to VCCMAX, TA = −40°C to +100°C, 100 Ω differential load impedance, crosspoint adjust disabled, unless otherwise noted.  
Typical values are specified at 25°C and IMOD = 10 mA with crosspoint adjust disabled, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BIAS CURRENT (IBIAS)  
Bias Current Range  
Bias Current While ALS Asserted  
Compliance Voltage1  
2
25  
50  
VCC – 1.3  
VCC – 0.8  
mA  
μA  
V
ALS = high  
IBIAS = 25 mA  
IBIAS = 2 mA  
0.55  
0.55  
V
MODULATION CURRENT (IMODP, IMODN)  
Modulation Current Range  
2.2  
2.2  
23  
19  
mA diff  
mA diff  
μA diff  
%
ps  
ps  
RLOAD = 35 Ω to 100 Ω differential  
RLOAD = 140 Ω differential  
ALS = high  
Modulation Current While ALS Asserted  
Crosspoint Adjust (CPA) Range2  
Rise Time (20% to 80%)2, 3, 4  
250  
65  
32.5  
34.7  
32.5  
33.7  
35  
26  
26.4  
26  
26.5  
<0.5  
<0.5  
5.4  
5.8  
5.4  
5.8  
−5  
CPA disabled  
CPA 35% to 65%  
CPA disabled  
CPA 35% to 65%  
CPA disabled  
CPA 35% to 65%  
10.7 Gbps, CPA disabled  
10.7 Gbps, CPA 35% to 65%  
11.3 Gbps, CPA disabled  
11.3 Gbps, CPA 35% to 65%  
5 GHz < f < 10 GHz, Z0 = 100 Ω differential  
f < 5 GHz, Z0 = 100 Ω differential  
Fall Time (20% to 80%)2, 3, 4  
Random Jitter2, 3, 4  
ps  
ps  
ps rms  
ps rms  
ps p-p  
ps p-p  
ps p-p  
ps p-p  
dB  
Deterministic Jitter2, 4, 5  
Deterministic Jitter 2, 4, 6  
Differential |S22|  
8.2  
8.2  
8.2  
8.2  
−13.6  
dB  
Compliance Voltage1  
DATA INPUTS (DATAP, DATAN)  
Input Data Rate  
Differential Input Swing  
Differential |S11|  
Input Termination Resistance  
BIAS CONTROL INPUT (BSET)  
BSET Voltage to IBIAS Gain  
BSET Input Resistance  
VCC − 0.7  
VCC + 0.7  
V
11.3  
1.6  
Gbps  
NRZ  
0.4  
85  
V p-p diff Differential ac-coupled  
dB  
Ω
−15  
100  
f < 10 GHz, Z0 = 100 Ω differential  
Differential  
115  
15  
800  
20  
1000  
24  
1200  
mA/V  
Ω
MODULATION CONTROL INPUT (MSET)  
MSET Voltage to IMOD Gain  
MSET Input Resistance  
14  
800  
19  
1000  
23  
1200  
mA/V  
Ω
BIAS MONITOR (IBMON)  
IBMON to IBIAS Ratio  
50  
μA/mA  
Accuracy of IBIAS to IBMON Ratio  
−5.0  
−4.3  
−3.5  
−3.0  
−2.5  
+5.0  
+4.3  
+3.5  
+3.0  
+2.5  
%
%
%
%
%
IBIAS = 2 mA, RIBMON = 750 Ω  
IBIAS = 4 mA, RIBMON = 750 Ω  
IBIAS = 8 mA, RIBMON = 750 Ω  
IBIAS = 14 mA, RIBMON = 750 Ω  
IBIAS = 25 mA, RIBMON = 750 Ω  
AUTOMATIC LASER SHUTDOWN (ALS)  
VIH  
VIL  
IIL  
2.4  
V
V
μA  
μA  
0.8  
+20  
200  
−20  
0
IIH  
Rev. A | Page 3 of 20  
 
 
ADN2530  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ALS Assert Time  
2
μs  
Rising edge of ALS to fall of IBIAS and IMOD  
below 10% of nominal; see Figure 2  
ALS Negate Time  
10  
μs  
Falling edge of ALS to rise of IBIAS and IMOD  
above 90% of nominal; see Figure 2  
POWER SUPPLY  
VCC  
3.07  
3.3  
27  
65  
3.53  
32  
76  
V
mA  
mA  
7
ICC  
VBSET = VMSET = 0 V  
VBSET = VMSET = 0 V  
8
ISUPPLY  
1 The voltage between the pin with the specified compliance voltage and GND.  
2 Specified for TA = −40°C to +85°C due to test equipment limitation. See the Typical Performance Characteristics section for data on performance for TA = −40°C to +100°C.  
3 The pattern used is composed of a repetitive sequence of eight 1s followed by eight 0s at 10.7 Gbps.  
4 Measured using the high speed characterization circuit shown in Figure 3.  
5 The pattern used is K28.5 (00111110101100000101) at 10.7 Gbps rate.  
6 The pattern used is K28.5 (00111110101100000101) at 11.3 Gbps rate.  
7 Only includes current in the ADN2530 VCC pins.  
8 Includes current in ADN2530 VCC pins and dc current in IMODP and IMODN pull-up inductors. See the Power Consumption section for total supply current calculation.  
PACKAGE THERMAL SPECIFICATIONS  
Table 2.  
Parameter  
Min  
65  
2.6  
Typ  
72.2  
5.8  
Max  
79.4  
10.7  
125  
Unit  
°C/W  
°C/W  
°C  
Conditions/Comments  
θJ-TOP  
θJ-PAD  
Thermal resistance from junction to top of package.  
Thermal resistance from junction to bottom of exposed pad.  
IC Junction Temperature  
ALS  
NEGATE TIME  
ALS  
t
IBIAS  
AND IMOD  
90%  
10%  
t
ALS  
ASSERT TIME  
Figure 2. ALS Timing Diagram  
VEE  
VEE  
750Ω  
VEE  
GND  
10Ω  
VBSET  
10nF  
TP1  
TP2  
GND  
BSET IBMON IBIAS GND  
GND  
VCC  
VCC  
GND  
BIAS TEE  
GND  
GND  
50Ω  
ADN2530  
Z
= 50Ω  
Z
= 50Ω  
= 50Ω  
Z
Z
= 50Ω  
0
0
0
0
DC-BLOCK  
DC-BLOCK  
ADAPTER ATTENUATOR  
ADAPTER ATTENUATOR  
J2  
DATAP  
IMODP  
GND  
= 50Ω  
GND  
GND  
= 50Ω  
GND  
OSCILLOSCOPE  
Z
Z
0
0
J3  
DATAN  
VCC  
IMODN  
VCC  
50Ω  
GND  
GND  
GND  
GND  
GND  
BIAS TEE  
GND  
GND  
GND  
MSET CPA ALS GND  
BIAS TEE: PICOSECOND PULSE LABS MODEL 5542-219  
VMSET  
GND  
VEE  
ADAPTER: PASTERNACK PE-9436 2.92mm FEMALE-TO-FEMALE ADAPTER  
ATTENUATOR: PASTERNACK PE-7046 2.92mm 10dB ATTENUATOR  
DC-BLOCK: AGILENT BLOCKING CAPACITOR 11742A  
10nF  
VEE  
VCPA  
VEE  
J8  
J5  
10μF  
VEE  
GND GND  
GND  
Figure 3. High Speed Characterization Circuit  
Rev. A | Page 4 of 20  
 
 
 
ADN2530  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage—VCC to GND  
IMODP, IMODN to GND  
DATAP, DATAN to GND  
All Other Pins  
Junction Temperature  
Storage Temperature Range  
−0.3 V to +4.2 V  
VCC − 1.5 V to +4.5 V  
VCC − 1.8 V to VCC − 0.4 V  
−0.3 V to VCC + 0.3 V  
150°C  
−65°C to +150°C  
300°C  
Soldering Temperature  
(Less than 10 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 20  
 
ADN2530  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12 BSET  
11 IBMON  
10 IBIAS  
MSET  
CPA  
ALS  
1
2
3
4
PIN 1  
INDICATOR  
ADN2530  
TOP VIEW  
(Not to Scale)  
GND  
9 GND  
NOTES:  
THERE IS AN EXPOSED PAD ON THE  
BOTTOM OF THE PACKAGE THAT MUST BE  
CONNECTED TO THE VCC OR GND PLANE.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
MSET  
CPA  
ALS  
GND  
I/O  
Description  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Input  
Input  
Input  
Modulation Current Control Input  
Crosspoint Adjust Control Input  
Automatic Laser Shutdown  
Negative Power Supply  
Power  
Power  
Output  
Output  
Power  
Power  
Output  
Output  
Input  
Power  
Input  
Input  
Power  
Power  
VCC  
Positive Power Supply  
IMODN  
IMODP  
VCC  
Modulation Current Negative Output  
Modulation Current Positive Output  
Positive Power Supply  
Negative Power Supply  
Bias Current Output  
Bias Current Monitoring Output  
Bias Current Control Input  
Positive Power Supply  
Data Signal Positive Input  
Data Signal Negative Input  
Positive Power Supply  
GND  
IBIAS  
IBMON  
BSET  
VCC  
DATAP  
DATAN  
VCC  
Exposed Pad  
Pad  
Connect to GND or VCC  
Rev. A | Page 6 of 20  
 
ADN2530  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VCC = 3.3 V, crosspoint adjust disabled, unless otherwise noted.  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
10.7Gbps  
11.3Gbps  
0
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DIFFERENTIAL MODULATION CURRENT (mA)  
DIFFERENTIAL MODULATION CURRENT (mA)  
Figure 5. Rise Time vs. IMOD  
Figure 8. Deterministic Jitter vs. IMOD  
30  
25  
20  
15  
10  
5
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
JITTER BELOW EQUIPMENT  
MEASUREMENT CAPABILITY  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DIFFERENTIAL MODULATION CURRENT (mA)  
DIFFERENTIAL MODULATION CURRENT (mA)  
Figure 6. Fall Time vs. IMOD  
Figure 9. Random Jitter vs. IMOD  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Differential |S11|  
Figure 10. Differential |S22|  
Rev. A | Page 7 of 20  
 
 
 
ADN2530  
35  
30  
25  
20  
15  
10  
5
10  
9
8
7
6
5
4
3
2
1
0
10.7Gbps  
11.3Gbps  
0
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Rise Time vs. Temperature (Worse-Case Conditions, CPA Disabled)  
Figure 14. Deterministic Jitter vs. Temperature  
(Worse-Case Conditions, CPA Disabled)  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
VCC = [3.07, 3.3, 3.53]  
0
–40  
–20  
0
20  
40  
60  
80  
100  
1.00  
1.25  
1.50  
1.75  
2.00  
2.25  
2.50  
TEMPERATURE (°C)  
CPA VOLTAGE (V)  
Figure 12. Fall Time vs. Temperature (Worst-Case Conditions, CPA Disabled)  
Figure 15. IMOD Eye Diagram Crosspoint vs. CPA Voltage and VCC  
(IMOD = 10 mA)  
1.0  
80  
70  
60  
50  
0.8  
0.6  
0.4  
0.2  
0
40  
+100°C  
–40°C  
+85°C  
30  
20  
+25°C  
–40  
–20  
0
20  
40  
60  
80  
100  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
2.25  
2.50  
TEMPERATURE (°C)  
CPA VOLTAGE (V)  
Figure 16. IMOD Eye Diagram Crosspoint vs. CPA Voltage and Temperature  
(IMOD = 10 mA)  
Figure 13. Random Jitter vs. Temperature  
(Worst-Case Conditions, CPA Disabled [Worst-Case IMOD = 2.2 mA])  
Rev. A | Page 8 of 20  
 
 
ADN2530  
140  
120  
100  
80  
IBIAS = 25mA  
IBIAS = 10mA  
1 LEVEL  
1 LEVEL  
IBIAS = 2mA  
CROSSING  
60  
40  
0 LEVEL  
0 LEVEL  
20  
0
0
5
10  
15  
20  
25  
DIFFERENTIAL MODULATION CURRENT (mA)  
Figure 17. Total Supply Current vs. IMOD  
Figure 20. Electrical Eye Diagram  
(IMOD = 10 mA, PRBS31 Pattern at 10.3125 Gbps)  
25  
20  
15  
10  
5
0
26  
27  
28  
29  
30  
31  
RISE TIME (ps)  
Figure 18. Worst-Case Rise Time Distribution  
Figure 21. Filtered 10G Ethernet Optical Eye Using AOC HFE6192-562 VCSEL  
(PRBS31 Pattern at 10.3125 Gbps, 3 dB Optical Attenuator)  
25  
20  
15  
10  
5
0
26  
27  
28  
29  
30  
31  
FALL TIME (ps)  
Figure 19. Worst-Case Fall Time Distribution  
Rev. A | Page 9 of 20  
ADN2530  
THEORY OF OPERATION  
As shown in Figure 1, the ADN2530 consists of an input  
stage and two voltage-controlled current sources for bias and  
modulation. The bias current is available at the IBIAS pin. It is  
controlled by the voltage at the BSET pin and can be monitored  
at the IBMON pin. The differential modulation current is  
available at the IMODP and IMODN pins. It is controlled by  
the voltage at the MSET pin. The output stage implements the  
active back-termination circuitry for proper transmission line  
matching and power consumption reduction. The ADN2530  
can drive a load with differential resistance ranging from 35 Ω  
to 140 Ω. The excellent back-termination in the ADN2530  
absorbs signal reflections from the TOSA end of the output  
transmission lines, enabling excellent optical eye quality to be  
achieved even when the TOSA end of the output transmission  
lines is significantly misterminated.  
ADN2530  
50Ω  
50Ω  
C
C
DATAP  
DATAN  
DATA SIGNAL SOURCE  
Figure 23. AC Coupling the Data Source to the ADN2530 Data Inputs  
BIAS CURRENT  
The bias current is generated internally using a voltage-to-current  
converter consisting of an internal operational amplifier and a  
transistor, as shown in Figure 24.  
VCC  
INPUT STAGE  
ADN2530  
The input stage of the ADN2530 converts the data signal applied  
to the DATAP and DATAN pins to a level that ensures proper  
operation of the high speed switch. The equivalent circuit of the  
input stage is shown in Figure 22.  
IBMON  
BSET  
IBMON  
IBIAS  
800  
200Ω  
IBIAS  
VCC  
200Ω  
10Ω  
DATAP  
VCC  
GND  
50Ω  
Figure 24. Voltage-to-Current Converter Used to Generate IBIAS  
The BSET to IBIAS voltage-to-current conversion factor is  
set at 20 mA/V by the internal resistors, and the bias current is  
monitored at the IBMON pin using a current mirror with a gain  
equal to 1/20. By connecting a 750 Ω resistor between IBMON  
and GND, the bias current can be monitored as a voltage across  
the resistor. A low temperature coefficient precision resistor  
must be used for the IBMON resistor (RIBMON). Any error in  
the value of RIBMON due to tolerances or drift in its value over  
temperature contributes to the overall error budget for the IBIAS  
monitor voltage. If the IBMON voltage is being connected to an  
ADC for A/D conversion, RIBMON should be placed close to the  
ADC to minimize errors due to voltage drops on the ground  
plane. See the Design Example section for example calculations  
of the accuracy of the IBIAS monitor as a percentage of the  
nominal IBIAS value.  
VCC  
50Ω  
DATAN  
Figure 22. Equivalent Circuit of the Input Stage  
The DATAP and DATAN pins are terminated internally with a  
100 Ω differential termination resistor. This minimizes signal  
reflections at the input that could otherwise lead to degradation  
in the output eye diagram. It is not recommended to drive the  
ADN2530 with single-ended data signal sources.  
The ADN2530 input stage must be ac-coupled to the signal  
source to eliminate the need for matching between the common-  
mode voltages of the data signal source and the input stage of  
the driver (see Figure 23). The ac-coupling capacitors should  
have an impedance less than 50 Ω over the required frequency  
range. Generally, this is achieved using 10 nF to 100 nF  
capacitors.  
Rev. A | Page 10 of 20  
 
 
 
 
ADN2530  
See the Headroom Calculations section for examples.  
The equivalent circuits of the BSET, IBIAS, and IBMON pins  
are shown in Figure 25 to Figure 27.  
The function of Inductor L is to isolate the capacitance of the  
IBIAS output from the high frequency signal path. For  
recommended components, see Table 6.  
VCC  
VCC  
BSET  
AUTOMATIC LASER SHUTDOWN (ALS)  
800Ω  
The ALS pin is a digital input that enables/disables both the bias  
and modulation currents, depending on the logic state applied,  
as shown in Table 5.  
200Ω  
Figure 25. Equivalent Circuit of the BSET Pin  
Table 5.  
ALS Logic State  
IBIAS and IMOD  
Disabled  
Enabled  
IBIAS  
VCC  
2kΩ  
High  
Low  
VCC  
Floating  
Enabled  
100Ω  
The ALS pin is compatible with 3.3 V CMOS and TTL logic  
levels. Its equivalent circuit is shown in Figure 29.  
10Ω  
Figure 26. Equivalent Circuit of the IBIAS Pin  
VCC  
VCC  
100Ω  
35kΩ  
VCC  
VCC  
500Ω  
ALS  
2kΩ  
Figure 29. Equivalent Circuit of the ALS Pin  
MODULATION CURRENT  
100Ω  
VCC  
The modulation current can be controlled by applying a dc  
voltage to the MSET pin. This voltage is converted into a dc  
current by using a voltage-to-current converter that uses an  
operational amplifier and a bipolar transistor, as shown in  
Figure 30.  
IBMON  
Figure 27. Equivalent Circuit of the IBMON Pin  
The recommended configuration for BSET, IBIAS, and IBMON  
is shown in Figure 28.  
VCC  
TO LASER CATHODE  
IMODP  
L
IBIAS  
100IMOD  
IMODN  
IBIAS  
ADN2530  
FROM CPA STAGE  
BSET  
IBMON  
MSET  
R
IBMON  
750Ω  
800Ω  
GND  
VBSET  
Figure 28. Recommended Configuration for BSET, IBIAS, and IBMON Pins  
200Ω  
ADN2530  
The circuit used to drive the BSET voltage must be able to drive  
the 1 kΩ input resistance of the BSET pin. For proper operation  
of the bias current source, the voltage at the IBIAS pin must be  
between the compliance voltage specifications for this pin over  
supply, temperature, and bias current range (see Table 1). The  
maximum compliance voltage is specified for only two bias  
current levels (2 mA and 25 mA), but it can be calculated for  
any bias current by  
GND  
Figure 30. Generation of Modulation Current on the ADN2530  
This dc current is switched by the data signal applied to the  
input stage (DATAP and DATAN pins) and gained up by the  
output stage to generate the differential modulation current at  
the IMODP and IMODN pins. The output stage also generates  
the active back-termination, which provides proper transmission  
line termination. Active back-termination uses feedback around  
an active circuit to synthesize a broadband termination resistance.  
V
COMPLIANCE (V) = VCC (V) − 0.75 − 22 × IBIAS (A)  
Rev. A | Page 11 of 20  
 
 
 
 
 
 
 
ADN2530  
45  
40  
35  
30  
25  
20  
15  
10  
This provides excellent transmission line termination while  
dissipating less power than a traditional resistor passive back-  
termination. No portion of the modulation current flows in the  
active back-termination resistance. All of the preset modulation  
current IMOD, the range specified in Table 1, flows in the  
external load. The equivalent circuits for MSET, IMODP, and  
IMODN are shown in Figure 31 and Figure 32. The two 50 Ω  
resistors in Figure 32 are not real resistors. They represent the  
active back-termination resistance.  
MAX  
TYP  
MIN  
VCC  
VCC  
MSET  
800Ω  
200Ω  
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
DIFFERENTIAL LOAD RESISTANCE  
Figure 34. MSET Voltage to Modulation Current Ratio vs.  
Differential Load Resistance  
Figure 31. Equivalent Circuit of the MSET Pin  
Using the resistance of the TOSA, the user can calculate the  
voltage range that should be applied to the MSET pin to  
generate the required modulation current range (see the  
example in the Applications Information section).  
VCC  
50Ω  
VCC  
50Ω  
IMODN  
IMODP  
The circuit used to drive the MSET voltage must be able to  
drive the 1 kΩ resistance of the MSET pin. To be able to drive  
23 mA modulation currents through the differential load, the  
output stage of the ADN2530 (IMODP and IMODN pins)  
must be ac-coupled to the load. The voltages at these pins  
have a dc component equal to VCC and an ac component with  
single-ended peak-to-peak amplitude of IMOD × 50 Ω. This  
is the case when the load impedance (RTOSA) is less than  
100 Ω differential because the transmission line characteristic  
impedance sets the peak-to-peak amplitude. For the case where  
15Ω  
15Ω  
Figure 32. Equivalent Circuit of the IMODP and IMODN Pins  
The recommended configuration of the MSET, IMODP, and  
IMODN pins is shown in Figure 33. See Table 6 for recom-  
mended components. When the voltage on DATAP is greater  
than the voltage on DATAN, the modulation current flows into  
the IMODP pin and out of the IMODN pin, generating an  
optical Logic 1 level at the TOSA output when the TOSA is  
connected as shown in Figure 33.  
RTOSA is greater than 100 Ω, the single-ended, peak-to-peak  
amplitude is IMOD × RTOSA ÷ 2. For proper operation of the  
output stage, the voltages at the IMODP and IMODN pins must  
be between the compliance voltage specifications for this pin  
over supply, temperature, and modulation current range, as  
shown in Figure 35. See the Headroom Calculations section for  
examples of headroom calculations.  
IBIAS  
VCC  
L
L
ADN2530  
Z
Z
= 50Ω  
= 50Ω  
Z
Z
= 50Ω  
= 50Ω  
0
0
C
C
V
V
IMODP, IMODN  
IMODP  
TOSA  
0
0
IMODN  
VCC + 0.7V  
VCC  
MSET  
GND  
VMSET  
L
L
NORMAL OPERATION REGION  
VCC VCC  
Figure 33. Recommended Configuration for the  
MSET, IMODP, and IMODN Pins  
VCC – 0.7V  
The ratio between the voltage applied to the MSET pin and the  
differential modulation current available at the IMODP and  
IMODN pins is a function of the load resistance value, as shown  
in Figure 34.  
Figure 35. Allowable Range for the Voltage at IMODP and IMODN  
Rev. A | Page 12 of 20  
 
 
 
 
 
ADN2530  
LOAD MISTERMINATION  
POWER CONSUMPTION  
Due to its excellent S22 performance, the ADN2530 can drive  
differential loads that range from 35 Ω to 140 Ω. In practice,  
many TOSAs have differential resistance not equal to 100 Ω. In  
this case, with 100 Ω differential transmission lines connecting  
the ADN2530 to the load, the load end of the transmission lines  
are misterminated. This mistermination leads to signal reflections  
back to the driver. The excellent back-termination in the  
ADN2530 absorbs these reflections, preventing their reflection  
back to the load. This enables excellent optical eye quality to  
be achieved even when the load end of the transmission lines is  
significantly misterminated. The connection between the load  
and the ADN2530 must be made with 100 Ω differential (50 Ω  
single-ended) transmission lines so that the driver end of the  
transmission lines is properly terminated.  
The power dissipated by the ADN2530 is given by  
V
MSET  
P = VCC ×  
+ ISUPPLY + V  
× (IBIAS ×1.2)  
IBIAS  
50  
where:  
VCC is the power supply voltage.  
IBIAS is the bias current generated by the ADN2530.  
MSET is the voltage applied to the MSET pin.  
SUPPLY is the sum of the current that flows into the VCC,  
V
I
IMODP, and IMODN pins of the ADN2530 when IBIAS =  
IMOD = 0 expressed in amps (see Table 1).  
V
IBIAS is the average voltage on the IBIAS pin.  
Considering VBSET/IBIAS = 50 as the conversion factor from  
BSET to IBIAS, the dissipated power becomes  
CROSSPOINT ADJUST  
V
The crossing level in the output electrical eye diagram can be  
adjusted between 35% and 65% using the crosspoint adjust (CPA)  
control input. This can be used to compensate for asymmetry in  
the VCSEL response and optimizes the optical eye mask margin.  
The CPA input is a voltage control input, and a plot of eye cross-  
point vs. CPA control voltage is shown in Figure 15 and Figure 16  
in the Typical Performance Characteristics section. The equivalent  
circuit for the CPA pin is shown in Figure 36. To disable the  
crosspoint adjust function and set the eye crossing to 50%, the  
CPA pin should be tied to VCC.  
V
V
BSET  
MSET  
P = VCC ×  
+ ISUPPLY +V  
×
×1.2  
IBIAS  
50  
50  
To ensure long-term reliable operation, the junction tempera-  
ture of the ADN2530 must not exceed 125°C, as specified in  
Table 2. For improved heat dissipation, the module’s case can be  
used as a heat sink, as shown in Figure 37.  
THERMAL COMPOUND  
MODULE CASE  
T
TOP  
DIE  
T
100Ω  
THERMO-COUPLE  
J
PACKAGE  
T
PAD  
VCC  
PCB  
CPA  
COPPER PLANE  
VIAS  
Figure 36. Equivalent Circuit for CPA Pin  
Figure 37. Typical Optical Module Structure  
Rev. A | Page 13 of 20  
 
 
 
ADN2530  
T
TOP  
A compact optical module is a complex thermal environment,  
and calculations of device junction temperature using the  
package θJA (junction-to-ambient thermal resistance) do not  
yield accurate results. The following equation, derived from the  
model in Figure 38, can be used to estimate the IC junction  
temperature:  
T
θJ-TOP  
TOP  
T
J
P
θJ-PAD  
T
PAD  
T
PAD  
P ×  
(
θJ PAD × θJ TOP  
)
+ TTOP × θJ PAD + TPAD × θJ TOP  
TJ =  
θJ PAD + θJ TOP  
Figure 38. Electrical Model for Thermal Calculations  
where:  
TTOP and TPAD can be determined by measuring the temperature  
at points inside the module, as shown in Figure 37. The thermo-  
couples should be positioned to obtain an accurate measurement of  
the package top and paddle temperatures. θJ-TOP and θJ-PAD are  
given in Table 2.  
T
TOP is the temperature at top of package in degrees Celsius.  
PAD is the temperature at package exposed paddle in degrees  
T
Celsius.  
TJ is the IC junction temperature in degrees Celsius.  
P is the ADN2530 power dissipation in watts.  
θJ-TOP is the thermal resistance from IC junction to package top.  
θJ-PAD is the thermal resistance from IC junction to package  
exposed pad.  
Rev. A | Page 14 of 20  
 
ADN2530  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
LAYOUT GUIDELINES  
Figure 39 shows the typical application circuit for the  
Due to the high frequencies at which the ADN2530 operates,  
care should be taken when designing the PCB layout to obtain  
optimum performance. Controlled impedance transmission  
lines must be used for the high speed signal paths. The length  
of the transmission lines must be kept to a minimum to reduce  
losses and pattern-dependent jitter. The PCB layout must be  
symmetrical both on the DATAP and DATAN inputs and on  
the IMODP and IMODN outputs to ensure a balance between  
the differential signals. All VCC and GND pins must be connected  
to solid copper planes by using low inductance connections.  
When the connections are made through vias, multiple vias can  
be connected in parallel to reduce the parasitic inductance.  
Each GND pin must be locally decoupled to VCC with high  
quality capacitors, see Figure 39. If proper decoupling cannot be  
achieved using a single capacitor, the user can use multiple  
capacitors in parallel for each GND pin. A 20 μF tantalum  
capacitor must be used as the general decoupling capacitor for  
the entire module. For recommended PCB layouts, including  
those suitable for XFP modules, contact sales. For guidelines on  
the surface-mount assembly of the ADN2530, consult the  
Amkor Technology® Application Notes for Surface Mount  
Assembly of Amkors MicroLeadFrame® (MLF®) Packages.”  
ADN2530. The dc voltages applied to the BSET and MSET pins  
control the bias and modulation currents. The bias current can  
be monitored as a voltage drop across the 750 Ω resistor connected  
between the IBMON pin and GND. The dc voltage applied to  
the CPA pin controls the crosspoint in the output eye diagram.  
By tying the CPA pin to VCC, the CPA function is disabled. The  
ALS pin allows the user to turn on/off the bias and modulation  
currents depending on the logic level applied to the pin. The  
data signal source must be connected to the DATAP and DATAN  
pins of the ADN2530 using 50 Ω transmission lines. The  
modulation current outputs, IMODP and IMODN, must be  
connected to the load (TOSA) using 100 Ω differential (50 Ω  
single-ended) transmission lines. Table 6 shows recommended  
components for the ac-coupling interface between the ADN2530  
and TOSA. For additional application information and optical  
eye diagram performance data, see the application notes and  
reference design for the ADN2530 at www.analog.com.  
Table 6.  
Component  
Value  
110 Ω  
300 Ω  
100 nF  
Description  
R1, R2  
R3, R4  
C3, C4  
0603 size resistor  
0603 size resistor  
0402 size capacitor,  
Phycomp 223878719849  
L6, L7  
160 nH  
0603 size inductor,  
Murata LQW18ANR16  
L2, L3  
0603 size chip ferrite bead,  
Murata BLM18HG601  
L1, L4, L5, L8  
10 μH  
0805 size inductor,  
Murata LQM21FN100M70L  
C8  
100nF  
VCC  
GND  
R5  
V
CC  
GND  
750Ω  
C5  
10nF  
BSET  
TP1  
L1  
L2  
R1 L8  
R4  
VCC  
BSET IBMON IBIAS GND  
VCC  
= 50Ω  
VCC  
VCC  
VCC  
L7  
Z
Z
Z
Z
= 50Ω  
Z
Z
= 50Ω  
= 50Ω  
0
0
0
0
DATAP  
DATAN  
DATAP  
IMODP  
C1  
C4  
GND  
= 50Ω  
ADN2530  
TOSA  
= 50Ω  
0
0
DATAN  
VCC  
IMODN  
VCC  
C2  
C3  
L6  
GND  
L3  
VCC  
VCC  
MSET CPA ALS GND  
VCC  
L4  
R2 L5  
R3  
C6  
MSET  
+3.3V  
10nF  
VCC  
GND  
C7  
20μF  
CPA ALS  
VCC  
VCC  
GND  
Figure 39. Typical ADN2530 Application Circuit  
Rev. A | Page 15 of 20  
 
 
 
 
ADN2530  
Assuming the dc voltage drop across L1, L2, L3, and L4 = 0 V  
and IMOD = 10 mA, the minimum voltage at the modulation  
output pins is equal to  
DESIGN EXAMPLE  
This design example covers:  
Headroom calculations for IBIAS, IMODP, and IMODN pins.  
VCC − (IMOD × 50)/2 = VCC − 0.25  
Calculation of the typical voltage required at the BSET  
and MSET pins to produce the desired bias and  
modulation currents.  
VCC − 0.25 > VCC − 0.7 V, which satisfies the requirement  
The maximum voltage at the modulation output pins is equal to  
VCC + (IMOD × 50)/2 = VCC + 0.25  
Calculations of the IBIAS monitor accuracy over the IBIAS  
current range.  
VCC + 0.25 < VCC + 0.7 V, which satisfies the requirement  
This design example assumes that the impedance of the  
TOSA is 60 Ω, the forward voltage of the VCSEL at low current  
is VF = 1.2 V, IBIAS = 10 mA, IMOD = 10 mA, and VCC = 3.3 V.  
Headroom calculations must be repeated for the minimum and  
maximum values of the required IBIAS and IMOD ranges to  
ensure proper device operation over all operating conditions.  
Headroom Calculations  
BSET and MSET Pin Voltage Calculation  
To ensure proper device operation, the voltages on the IBIAS,  
IMODP, and IMODN pins must meet the compliance voltage  
specifications in Table 1.  
To set the desired bias and modulation currents, the BSET and  
MSET pins of the ADN2530 must be driven with the appropriate  
dc voltage. The voltage range required at the BSET pin to generate  
the required IBIAS range can be calculated using the BSET voltage  
to IBIAS gain specified in Table 1. Assuming that IBIAS = 10 mA  
and the typical IBIAS/VBSET ratio of 20 mA/V, the BSET voltage  
is given by  
Considering the typical application circuit shown in Figure 39,  
the voltage at the IBIAS pin can be written as  
V
IBIAS = VCC VF − (IBIAS × RTOSA) − VLA  
where:  
IBIAS(mA)  
20 mA/V  
10  
20  
VBSET  
=
=
= 0.5 V  
VCC is the supply voltage.  
VF is the forward voltage across the laser at low current.  
The BSET voltage range can be calculated using the required  
IBIAS range and the minimum and maximum BSET voltage to  
IBIAS gain values specified in Table 1.  
R
TOSA is the resistance of the TOSA.  
LA is the dc voltage drop across L5, L6, L7, and L8.  
V
For proper operation, the minimum voltage at the IBIAS pin  
should be greater than 0.55 V, as specified by the minimum  
IBIAS compliance specification in Table 1.  
The voltage required at the MSET pin to produce the desired  
modulation current can be calculated using  
IMOD  
K
VMSET  
=
Assuming that the voltage drop across the 50 Ω transmission lines  
is negligible and that VLA = 0 V, VF = 1.2 V, and IBIAS = 10 mA,  
where K is the MSET voltage to IMOD ratio.  
V
V
IBIAS = 3.3 − 1.2 − (0.01 × 60) = 1.5 V  
The value of K depends on the actual resistance of the TOSA  
and can be obtained from Figure 34. For a TOSA resistance of  
60 Ω, the typical value of K = 24 mA/V. Assuming that IMOD =  
10 mA and using the preceding equation, the MSET voltage is  
given by  
IBIAS = 1.5 V > 0.55 V, which satisfies the requirement  
The maximum voltage at the IBIAS pin must be less than the  
maximum IBIAS compliance specification as described by  
V
COMPLIANCE_MAX = VCC − 0.75 − 22 × IBIAS (A)  
For this example,  
VCOMPLIANCE_MAX = VCC – 0.75 − 22 × 0.01 = 2.33 V  
IBIAS = 1.5 V < 2.33 V, which satisfies the requirement  
IMOD (mA)  
24 mA/V  
10  
24  
VMSET  
=
=
= 0.42 V  
The MSET voltage range can be calculated using the required  
IMOD range and the minimum and maximum K values. These can  
be obtained from the minimum and maximum curves in Figure 34.  
V
To calculate the headroom at the modulation current pins  
(IMODP and IMODN), the voltage has a dc component equal  
to VCC due to the ac-coupled configuration and a swing equal  
to IMOD × 50 Ω, as RTOSA < 100 Ω. For proper operation of the  
ADN2530, the voltage at each modulation output pin should be  
within the normal operation region shown in Figure 35.  
Rev. A | Page 16 of 20  
 
 
 
ADN2530  
Referring to Figure 40, the IBMON output current accuracy is  
4.3% for the minimum IBIAS of 4 mA and 3.0% for the  
maximum IBIAS value of 14 mA.  
IBIAS Monitor Accuracy Calculations  
6
5
4
3
2
1
0
The accuracy of the IBMON output current as a percentage of  
the nominal IBIAS is given by  
4.3 100  
100 8 mA  
IBMON _ AccuracyMIN = 4 mA  
×
= ± 2.15%  
for the minimum IBIAS value, and by  
3.0 100  
100 8 mA  
IBMON _ AccuracyMAX = 14 mA  
×
= ± 5.25%  
for the maximum IBIAS value. This gives a worse-case accuracy  
for the IBMON output current of 5.25% of the nominal IBIAS  
value over all operating conditions. The IBMON output current  
accuracy numbers can be combined with the accuracy numbers  
for the 750 Ω IBMON resistor (RIBMON) and any other error  
sources to calculate an overall accuracy for the IBMON voltage.  
0
5
10  
15  
20  
25  
IBIAS (mA)  
Figure 40. Accuracy of IBIAS to IBMON Ratio  
This example assumes that the nominal value of IBIAS is 8 mA  
and that the IBIAS range for all operating conditions is 4 mA to  
14 mA. The accuracy of the IBIAS to IBMON ratio is given in  
the Table 1 and is plotted in Figure 40.  
Rev. A | Page 17 of 20  
 
 
ADN2530  
OUTLINE DIMENSIONS  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
*
1.65  
13  
12  
16  
1
0.45  
1.50 SQ  
1.35  
PIN 1  
INDICATOR  
2.75  
BSC SQ  
TOP  
VIEW  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4
9
8
5
0.50  
BSC  
0.25 MIN  
1.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.90  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2  
EXCEPT FOR EXPOSED PAD DIMENSION.  
Figure 41. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
3 mm × 3 mm Body, Very Thin Quad  
(CP-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADN2530YCPZ-WP1  
ADN2530YCPZ-R21  
ADN2530YCPZ-REEL71  
Temperature Range  
−40°C to +100°C  
−40°C to +100°C  
−40°C to +100°C  
Package Description  
Package Option  
CP-16-3  
CP-16-3  
Branding  
F08  
F08  
16-Lead LFCSP_VQ, 50-Piece Waffle Pack  
16-Lead LFCSP_VQ, 250-Piece Reel  
16-Lead LFCSP_VQ, 1500-Piece Reel  
CP-16-3  
F08  
1 Z = Pb-free part.  
Rev. A | Page 18 of 20  
 
 
ADN2530  
NOTES  
Rev. A | Page 19 of 20  
ADN2530  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05457–0–8/06(A)  
Rev. A | Page 20 of 20  

相关型号:

ADN2530YCPZ-WP

11.3 Gbps, Active Back-Termination, Differential VCSEL Driver
ADI

ADN2531

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-R2

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-R7

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2531ACPZ-WP

11.3 Gbps, Active Back-Termination, Differential Laser Diode Driver
ADI

ADN2804

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2804ACPZ

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2804ACPZ-500RL7

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2804ACPZ-RL7

622 Mbps Clock and Data Recovery IC with Integrated Limiting Amplifier
ADI

ADN2805

1.25 Gbps Clock and Data Recovery IC
ADI

ADN2805ACPZ

1.25 Gbps Clock and Data Recovery IC
ADI