ADN2849SURF [ADI]

10.7 Gbps Electro-Absorption Modulator Driver; 10.7 Gbps的电吸收调制器驱动器
ADN2849SURF
型号: ADN2849SURF
厂家: ADI    ADI
描述:

10.7 Gbps Electro-Absorption Modulator Driver
10.7 Gbps的电吸收调制器驱动器

驱动器
文件: 总17页 (文件大小:1043K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10.7 Gbps Electro-Absorption Modulator Driver  
Preliminary Technical Data  
ADN2849  
FEATURES  
Data Rates up to 10.709Gb/s  
Typical Rise/Fall Time 27ps  
Power Dissipation 900mW (at 2V swing, 1V offset)  
Programmable Modulation Voltage up to 3V  
Programmable Bias Offset Voltage up to 2V  
Voltage-input control for offset, modulation  
Cross Point Adjust Range 30%- 85%  
Selectable Data Retiming  
PRODUCT DESCRIPTION  
The ADN2849 is a low power 10.7Gbps driver for electro-  
absorption modulator (EAM) applications. The modulation  
voltage is programmable via an external voltage up to a  
maximum swing of 3V when driving 50. The bias offset  
voltage and output eye cross point are also programmable. On-  
chip 50resistor is provided for back termination of the  
output. The ADN2849 is driven by AC coupled differential  
CML level data and has selectable data retiming to remove jitter  
from data input signal. The modulation voltage can be enabled  
or disabled by driving the MOD_ENB pin with the proper logic  
levels. It can operate with positive or negative (5.2V or 5.0V)  
supply voltage.  
PECL/CML Data & Clock Inputs  
50on Chip Data & Clock Terminations  
Modulation Ebnable/Disable  
|S11|<-10dB , |S22|<-8dB at 10GHz  
The ADN284949 is available in a compact 4x4mm plastic  
package or dice format.  
Positive or negative 5.2 or 5.0V single supply operation  
Available in dice and 4x4mm 24 Lead LFCSP package  
APPLICATIONS  
SONET OC-192 Optical Transmitters  
SDH STM-64 Optical Transmitters  
10Gb Ethernet IEEE802.3  
XFP/X2/XENPACK/MSA-300 Optical Modules  
CPAP CPAN MOD_SET  
BIAS_SET  
GND VTERM MODN_TERM  
GND  
ADN2849  
R
R
50  
DATAP  
50  
50  
MODP  
CROSS  
POINT  
ADJUST  
DATAN  
VBB  
MUX  
D
Q
CLKP  
50  
50  
CLKN  
VEE  
VEE  
CLK_SELB  
MOD_ENB  
Figure 1. Functional Block Diagram  
Rev. Pr. G August 2004  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
Preliminary Technical Data  
ADN2849  
Specifications  
(Electrical Specifications (VEE=VEEMIN to VEEMAX . All specifications Tmin to Tmax, ZL=50unless otherwise noted. Typical values  
specified at 250C)  
Table 1.  
Parameter  
Min  
Typ Max  
Unit  
Conditions  
Bias Offset Voltage(MODP)  
Bias offset voltage  
-0.25  
0.9  
-5  
-2.0  
1.1  
5
V
V/V  
%
Note 1  
BIAS_SET voltage to bias offset voltage gain  
Bias offset voltage drift over temperature and VEE  
Modulation Voltage(MODP)  
Modulation voltage swing  
MOD_SET voltage to modulation voltage swing gain  
Modulation voltage drift over temperature and VEE  
Back termination resistance  
Rise time (20% - 80%)  
Ta=250C, VEE=-5.2V  
0.6  
1.5  
-5  
3.0  
1.9  
5
V
V/v  
%
Note1  
Ta=250C, VEE=-5.2V  
40  
60  
ps  
ps  
ps RMS  
psp-p  
%
%
V
27  
27  
36  
36  
0.75  
10  
85  
5
Fall time (20% - 80%)  
Random jitter  
Total jitter  
Cross point adjust range  
Cross point drift over temperature and VEE  
Minimum output voltage(single ended)  
|S22|  
Modulation enable time  
Modulation disable time  
Data Inputs (DATAP, DATAN)  
Differential Input voltage  
Termination resistance  
30  
-5  
VEE+1.7  
Note1  
At 10GHz  
-8  
dB  
ns  
ns  
100  
100  
600  
40  
1600  
60  
mVp-p  
Setup time (see figure 2)  
Hold time (see figure 2)  
|S11|  
25  
25  
ps  
ps  
DB  
CLK_SELB=’0’  
CLK_SELB=’0’  
At 10GHz  
-10  
-10  
Clock Inputs (CLKP, CLKN)  
Differential Input voltage  
Termination resistance  
600  
40  
1600  
60  
mVp-p  
dB  
|S11|  
At 10GHz  
Cross point adjust (CPAN, CPAP)  
Input voltage range  
CPAP, CPAN differential voltage  
Input current  
-0.85  
85  
-1.85  
0.6  
115  
V
Vp-p  
µA  
Logic Inputs (MOD_ENB, CLK_SELB)  
VIH  
VIL  
IIL  
VEE+2  
V
V
VEE+0.8  
-400  
20  
VI=VEE+0.4V  
VI=VEE+2.4V  
VI=0V  
µA  
µA  
µA  
IIH  
200  
Supply  
VEE  
IEE  
-4.75  
-5.2 -5.5  
52  
V
mA  
IMOD=0  
VMODP/MODN=0  
Notes:  
Minimum supply voltage and minimum output voltage determine maximum output swing and maximum bias offset that can be achieved concurrently.  
Measured using the characterization circuit shown in figure 3.  
Rev. Pr. G | Page 2 of 17  
Preliminary Technical Data  
ADN2849  
SETUP  
tS  
HOLD  
tH  
DATAP/N  
CLKP/N  
Figure 2. Setup and hold time  
Figure 3. High-speed characterization circuit  
Rev. Pr. G | Page 3 of 17  
Preliminary Technical Data  
ADN2849  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Min Max Units Conditions  
VEE to GND  
VBB to GND  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
V
V
V
V
V
V
V
V
V
DATAP, DATAN to GND  
CLKP, CLKN to GND  
CPAP, CPAN to GND  
MOD_SET to GND  
BIAS_SET to GND  
MOD_ENB to GND  
CLK_SELB to GND  
Staorage temperature range -60  
+150 0C  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability  
PACKAGE THERMAL SPECIFICATIONS  
Table 3.  
PARAMETER  
θJ-TOP  
θJ-PAD  
MIN  
TBD  
TBD  
TYP  
TBD  
TBD  
MAX  
TBD  
TBD  
UNITS  
0C/W  
0C/W  
CONDITIONS/COMMENTS  
Thermal resistance from junction to top of package  
Thermal resistance from junction to bottom of exposed pad  
ORDERING GUIDE  
Table 4.  
Model  
Temperature range  
-400C to +850C  
-400C to +850C  
-400C to +850C  
-400C to +850C  
Package description  
24 Lead LFCSP  
24 Lead LFCSP  
24 Lead LFCSP  
Bare die  
ADN2849ACP  
ADN2849ACP-RL  
ADN2849ACP-RL7  
ADN2849SURF  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Rev. Pr. G | Page 4 of 17  
Preliminary Technical Data  
ADN2849  
TYPICAL PERFORMANCE CHARACTERISTICS (TA=250C, VEE=-5.2V)  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
TBD  
TBD  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
ALL CAPS (Initial cap)  
Figure 4. Rise time vs. Swing  
Figure 7. Total jitter vs. Swing  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
TBD  
TBD  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
ALL CAPS (Initial cap)  
Figure 5. Fall time vs. Swing  
Figure 8. Cross point vs. differential voltage at CPAP/CPAN pins  
000  
000  
000  
000  
000  
000  
000  
000  
000  
TBD  
000  
TBD  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
ALL CAPS (Initial cap)  
Figure 9. Differential S11 vs. frequency  
Figure 6. Random jitter vs. Swing  
Rev. Pr. G | Page 5 of 17  
Preliminary Technical Data  
ADN2849  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
TBD  
TBD  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
ALL CAPS (Initial cap)  
Figure 10. Single-ended S22 vs. frequency  
Figure 13. Electrical eye diagram  
(2.5V swing, 0.5V offset, PRBS31 at 10.7Gbps)  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
000  
TBD  
TBD  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
Figure 14. Optical eye diagram using the FLD5F20NP EML  
Figure 21. Total supply current vs. Swing with retiming disabled  
(Pav=0dBm, ER=10dB, PRBS31 pattern at 9.95328Gbps, SONET  
OC192 mask test)  
000  
000  
000  
TBD  
000  
000  
000  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
Figure 12. Total supply current vs. Swing with retiming enabled  
Rev. Pr. G | Page 6 of 17  
Preliminary Technical Data  
ADN2849  
PIN CONFIGURATION AND FUNCTION DESCRIPTION  
1
GND  
VTERM  
GND  
DATAP  
DATAN  
MODP  
MODN_TERM  
GND  
ADN2849  
VBB  
CLKP  
CLKN  
VEE  
Figure 15. Pin configuration  
Note: There is a n exposed pad on the bottom of the package that must be connected to the most negative supply rail of the ADN2849  
Table 5.  
Pin number  
1, 10, 11, 14,17, 20  
Mnemonic  
GND  
Description  
Positive power supply  
2
3
4
DATAP  
DATAN  
VBB  
AC coupled CML data, positive differential terminal  
AC coupled CML data, negative differential terminal  
CML termination resistor  
5
6
7
8
CLKP  
CLKN  
MOD_ENB  
CLK_SELB  
MOD_SET  
VEE  
AC coupled CML clock, positive differential terminal  
AC coupled CML clock, negative differential terminal  
Modulation enable logic input  
Retiming select logic input  
Modulation voltage set input  
9
12, 13, 21  
Negative power supply  
15  
16  
18, 19  
22  
23  
24  
MODN_TERM  
MODP  
VTERM  
BIAS_SET  
CPAP  
Termination resistor for MODN  
Positive modulation voltage output  
Back termination voltage output  
Bias offset voltage set input  
Cross point adjust positive control input  
Cross point adjust negative control input  
Connect to the most negative supply rail of the ADN2849  
CPAN  
Pad  
Exposed Pad  
Rev. Pr. G | Page 7 of 17  
Preliminary Technical Data  
ADN2849  
PAD CONFIGURATION AND FUNCTION DESCRIPTION  
25 24 23  
22 21 20 19 19  
18  
17  
1
2
16  
3
4
ADN2849  
4
5
6
15  
14  
13  
26 7  
8
9
10  
11  
12 27  
Figure 16. Pad configuration  
(Die size 2.05×2.05mm, single bond pad size 84×84µm with 76×76µm glass opening, double bond pad size 184×84µmwith 176×76µm)  
Notes:  
1. The metallization photograph and the die pad coordinates appear at the end of this document.  
2.The pads that have the same number must be bonded together.  
3. The back side of the die must be connected to the most negative supply rail of the ADN2849  
Table 6.  
Pad number  
1, 10, 11, 14,17, 20, 25, 26, 27  
Mnemonic  
GND  
Description  
Positive power supply  
2
3
4
DATAP  
DATAN  
VBB  
AC coupled CML data, positive differential terminal  
AC coupled CML data, negative differential terminal  
CML termination resistor  
5
6
7
8
CLKP  
CLKN  
MOD_ENB  
CLK_SELB  
MOD_SET  
VEE  
AC coupled CML clock, positive differential terminal  
AC coupled CML clock, negative differential terminal  
Modulation enable logic input  
Retiming select logic input  
Modulation voltage set input  
9
12, 13, 21  
Negative power supply  
15  
16  
18, 19  
22  
23  
MODN_TERM  
MODP  
VTERM  
BIAS_SET  
CPAP  
Termination resistor for MODN  
Positive modulation voltage output  
Back termination voltage output  
Bias offset voltage set input  
Cross point adjust positive control input  
Cross point adjust negative control input  
24  
CPAN  
Rev. Pr. G | Page 8 of 17  
Preliminary Technical Data  
ADN2849  
THEORY OF OPERATION  
GENERAL  
GND  
Figure 17 shows a typical EA modulator characteristic. Vm  
represents the voltage across the modulator and Pout represents  
the optical output power. For small voltages across the  
modulator it is in its high transmission state. As the voltage  
becomes more negative, the modulator becomes less  
transparent to the laser light. Fig. 17 also shows a typical drive  
signal for an EA modulator. It consists of a modulation signal  
with a swing Vs, and a bias offset voltage Vb  
DATAP/CLKP  
DATAN/CLKN  
VBB  
VEE  
GND  
VEE  
Pout  
VEE  
GND  
50Ω  
50Ω  
Vm  
VEE  
VEE  
Figure 18. Equivalent circuit for the data and clock input pins  
Vs  
Vb  
The data and clock input pins are internally terminated with a  
100differential termination resistor to minimize signal  
reflections at the input pins that could otherwise lead to  
degradation in the output eye diagram. The ADN2849 input  
pins must be AC-coupled with the signal source to eliminate the  
need of matching between the common mode voltages of the  
data signal source and the inputs stage of the driver. Also, the  
common mode terminal of the internal termination resistors  
(VBB) must be externally decoupled. Figure 19 shows the  
recommended connection between the data/signal source and  
the ADN2849 input pins.  
Figure 17. Typical transfer function of an EA modulator  
As shown in the functional block diagram (figure 1), the  
ADN2849 consists of an input stage for data signals, a cross  
point adjust block and the output stage that generates the bias  
offset and modulation voltages. The retiming option allows the  
user to reduce the jitter by applying a reference clock to the  
clock inputs of the ADN2849. The cross point adjust block pre-  
distorts the data signal applied to the output stage in order to  
compensate for the non-linear transfer function of the EA  
modulator as shown in figure 17. The modulation and the bias  
offset voltage can be programmed via external DC voltages  
applied to the ADN2849. These voltages are converted to  
currents internally and applied to the output stage. The single-  
ended output stage provides both the bias offset and  
modulation voltages at the same pin (MODP) without the need  
of any external components. The ADN2849 can operate with  
positive or negative (5.0V or 5.2V) supply voltage.  
50Ω  
50Ω  
C
DATAP/CLKP  
C
ADN2849  
DATAN/CLKN  
VBB  
INPUT STAGE  
The input stage of the ADN2849 gains the data and clock  
signals applied to the DATAP, DATAN and CLKP, CLKN pins  
respectively to a level that ensures proper operation of the  
ADN2849s output stage. The data and clock inputs are  
PECL/CML compatible and can accept input signal swings in  
the range of 600mV to 1600mV peak-to peak differential. The  
equivalent circuit for the data and clock input pins is shown in  
figure 18.  
C
GND  
Data/clock signal source  
Figure 19. AC-coupling the data/clock signal source to the ADN2849  
input pins  
Rev. Pr. G | Page 9 of 17  
Preliminary Technical Data  
ADN2849  
The capacitors used AC-coupling and the decoupling of the  
VBB pin must have an impedance less than 50over the  
required operating frequency range. Generally this is achieved  
using values from 10nF to 100nF.  
CROSS POINT ADJUST  
The cross point adjust function allows the user to move the eye  
crossing level in the modulation voltage to compensate for  
asymmetry in the EA modulator electrical-to- optical transfer  
function. Figure 21 shows an example on how the cross point  
adjust can compensate the asymmetry of the EA modulator  
transfer function. The 50% cross point in the optical eye can be  
obtained in this case by moving the cross point of the signal  
applied to the EA modulator away from the 50% point.  
The retiming feature of the ADN2849 allows the user to remove  
the data dependent jitter present on the DATAP and DATAN  
pins by applying the data and clock signals to the ADN2849’s  
internal latch. The retiming feature can be enabled or disabled  
depending on the logic level applied to the CLK_SELB pin as  
described in table 7. Note that any jitter present on the CLKP  
and CLKN pins is added to the output.  
Optical  
Output  
Table 7.  
CLK_SELB logic level  
Retiming function  
Disabled  
High  
Low  
Enabled  
If the retiming feature is disabled the CLKP and CLKN inputs  
can be left floating.  
Electrical  
Input  
The CLK_SELB is a 5V TTL and CMOS compatible digital  
input. Its equivalent circuit is shown in figure 20.  
GND  
Figure 21. Cross point adjust compensation  
60K  
GND  
180K  
The cross point is controlled by the differential voltage applied  
to the CPAP and CPAN pins. The equivalent circuit of the  
CPAP and CPAN pins is shown in figure 22.  
CLK_SELB  
40K  
GND  
VEE  
CPAP  
100Ω  
VEE  
GND  
VEE  
VEE  
Figure 20. Equivalent circuit of the CLK_SELB pin  
CPAN  
100Ω  
100µA  
100µA  
VEE  
VEE  
VEE  
VEE  
Figure 22. Equivalent circuit of the CPAP and CPAN pins  
Rev. Pr. G | Page 10 of 17  
Preliminary Technical Data  
ADN2849  
The single-ended voltage at CPAP and CPAN pins must be  
within the –0.8V to-1.85V range for proper operation of the  
cross point adjust block. The cross point will be controlled by  
the differential voltage obtained from the single-ended voltages  
applied to CPAP and CPAN pins. A simple implementation of a  
cross point adjust circuit is shown in figure 23 where a 20KΩ  
potentiometer generates the required differential voltage within  
the specified input voltage range.  
The MOD_ENB pin is a 5V TTL and CMOS compatible logic  
input. Its equivalent circuit of the MOD_ENB pin is shown in  
figure 24.  
GND  
180K  
GND  
60K  
GND  
GND  
MOD_ENB  
40K  
20kΩ  
CPAP  
CPAN  
VEE  
Cross  
Point  
Adjust  
100uA  
100uA  
VEE  
Figure 24. Equivalent circuit of the MOD_ENB pin  
VEE  
VEE  
Figure 23. Cross point adjust control circuit  
An alternative implementation is to use a voltage DAC and a  
single-ended to differential conversion amplifier such as the  
AD138 that will allow digital control of the cross point. When  
designing the circuitry that will drive the voltages at the CPAP  
and CPAN pins the user should take in account that each pin is  
sinking 100µΑ. If the cross point adjust feature is not required  
both the CPAP and CPAN pins should be connected to GND.  
This will automatically set the cross point to 50%. Once the  
cross point adjust has been calibrated under nominal conditions  
it has very low drift over temperature and supply voltage  
variations.  
OUTPUT STAGE  
The output stage of the ADN2849 can provide up to 2V bias  
offset and up to 3V modulation voltage across a single-ended  
50load. Both the bias offset and the modulation voltage are  
made available at a single pin (MODN) eliminating the need for  
external bias inductors as shown in figure 25.  
GND  
+
-
+
-
V
V
BIAS_SET  
100nF  
MOD_SET  
MODULATION ENABLE  
GND  
50  
The modulation voltage generated by the ADN2849 can be  
enabled or disabled under the control of the MOD_ENB pin.  
When the modulation is disabled, the input data is ignored and  
the voltage at the output of the ADN2849 will place the EA  
modulator in a high absorption (low transparency) state. The  
relationship between the logic state of the MOD_ENB input and  
the modulation voltage is described in table 8.  
ADN2849  
R
R
EAM  
50  
MODP  
From cross  
point adjust  
block  
IMOD  
Table 8.  
VEE  
MOD_ENB logic level  
Modulation voltage  
Enabled  
Low  
High  
Disabled  
Figure 25. Output stage of the ADN2849  
Rev. Pr. G | Page 11 of 17  
Preliminary Technical Data  
ADN2849  
GND  
Modulation voltage  
VTERM  
The modulation voltage is established by switching the  
modulation current through the parallel combination of the  
modulator terminating impedance (50) and the 50back-  
termination resistor on the ADN2849. The modulation set  
voltage applied to the MOD_SET pin is converted into current  
(IMOD) using a voltage-to-current converter which forces a  
voltage equal to VMOD_SET across an internal fixed resistor. For  
IMOD range of 24mA to 120mA, the MOD_SET voltage ranges  
from 340mV to 1.7V. With its maximum modulation current of  
120mA, the ADN2849 is capable of generating a 3V modulation  
voltage across the equivalent load resistance (25). The  
equivalent circuit of the MOD_SET pin is shown in figure 26.  
MODN_TERM  
50Ω  
10K  
MODP  
VEE  
100Ω  
VEE  
GND  
VEE  
BIAS_SET  
5K  
100Ω  
VEE  
GND  
Figure 27. Equivalent circuit of the BIAS_SET, MODP, MODN_TERM  
and VTERM pins  
MOD_SET  
100Ω  
During factory calibration of the optical transmitter, the user  
adjusts the BIAS_SET and MOD_SET voltages to achieve the  
desired bias offset and modulation voltages. This adjustment  
calibrates out BIAS_SET to bias offset voltage and MOD_SET to  
modulation voltage gain variations in the ADN2849 due to  
resistor process variations and the offset of the internal  
amplifiers. The drift in the bias offset and modulation voltages  
over temperature and supply voltage variations is very low once  
it has been calibrated under nominal conditions.  
VEE  
VEE  
Figure 26. Equivalent circuit of the MOD_SET pin  
Headroom calculations  
The ADN2849 is capable of delivering up to 2V bias offset and  
up to 3V modulation voltage on a 50single-ended load.  
However, these values for the bias offset and modulation  
voltages cannot be obtained at the same time due to headroom  
constraints. The minimum supply voltage and the MODP  
minimum output voltage specifications determine the  
maximum modulation and bias offset voltages that can be  
achieved concurrently. In order to guarantee proper operation  
of the ADN2849, the bias offset and modulation voltages must  
satisfy the following condition:  
Bias offset voltage  
The bias offset voltage is set by adjusting the voltage between  
the BIAS_SET pin and GND. An internal operational amplifier  
sets the termination voltage for the internal 50output back-  
termination resistors (VTERM) by gaining up the BIAS_SET  
voltage by two. This gain of two cancels out the attenuation of  
the dividing network formed by the 50back- termination  
resistor from the ADN2849 output and the 50load  
termination, providing a nominal gain of one from the  
BIAS_SET input to the bias offset voltage available at the output  
of the ADN2849 (MODP pin). For proper operation, an  
external low ESR 100nF decoupling capacitor is required  
between the VTERM pin and GND to prevent transient  
disturbances on this node. The equivalent circuits of the  
BIAS_SET, MODP, MODN_TERM and VTERM pins are  
shown in figure27.  
VModulation + VBiasOffset VEE VMODPmin  
Where,  
VModulation = the required modulation voltage  
VBias Offset = the required bias offset voltage  
VEE = the supply voltage  
VMODPmin = the minimum voltage at the MODP pin (see table 1)  
Rev. Pr. G | Page 12 of 17  
Preliminary Technical Data  
ADN2849  
POWER DISSIPATION  
For improved heat dissipation the module’s case can be used as  
heat sink as shown in figure 29. A compact optical module is a  
complex thermal environment, and calculations of device  
junction temperature using the package θJ-A (Junction-to-  
Ambient thermal resistance) do not yield accurate results.  
The power dissipated by the ADN2849 is a function of the  
supply voltage and the level of bias offset and modulation  
voltages required. Figure 28 shows the power dissipation of the  
ADN2849 vs. modulation voltage for different bias offset  
voltages. To ensure long-term reliable operation, the junction  
temperature of the ADN2849 must not exceed 1250C.  
000  
000  
000  
TBD  
000  
000  
000  
000  
000  
000  
000  
000  
000  
ALL CAPS (Initial cap)  
Figure 28. Power dissipation of the ADN2849 vs. bias offset and modulation voltage  
Thermal Compound  
Module Case  
Die  
T
TO P  
TJ  
Package  
Thermo-couple  
T
PAD  
PCB  
Copper Plane  
Filled Vias  
Figure 29. Typical optical module structure  
Rev. Pr. G | Page 13 of 17  
Preliminary Technical Data  
ADN2849  
The following procedure can be used to estimate the IC  
junction temperature.  
TTOP and TPAD can be determined by measuring the temperature  
at points inside the module, as shown in fig. 30. The thermo-  
couples should be positioned so as to obtain an accurate  
measurement of the package top and paddle temperatures.  
Using this model the junction temperature can be calculated  
using the formula:  
T
TOP = Temperature at top of package in 0C.  
TPAD = Temperature at package exposed paddle in 0C.  
TJ = IC junction temperature in 0C.  
P × (θJ PAD ×θJ TOP ) + TTOP ×θJ PAD + TPAD ×θJ TOP  
TJ =  
P = Power disipation in W.  
θJ PAD +θJ TOP  
θJ-TOP = Thermal resistance from IC junction to package top.  
θJ-PAD = Thermal resistance from IC junction to package  
exposed pad.  
Where θJ-TOP and θJ-PAD are given in table 3 and P is the power  
dissipated by the ADN2849 obtained from the graph shown in  
figure 28  
.
TTOP  
θJ-TOP  
TJ  
TTOP  
θJ-PAD  
P
TPAD  
TPAD  
Fig. 32. Electrical model for thermal calculations  
Rev. Pr. G | Page 14 of 17  
Preliminary Technical Data  
ADN2849  
the CLKP and CLKN pins must be made using  
50transmission lines. The cross point can be adjusted using  
the potentiometer R3. The modulation voltage can be enabled  
or disabled using the MOD_ENB pin.  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
Figure 31 shows the typical application circuit for the  
ADN2849. Applying DC voltages to the BIAS_SET and  
MOD_SET pins can control the Modulation and bias offset  
voltages. The data signal source must be connected to the  
DATAP and DATAN pins using 50impedance transmission  
lines. If a reference clock signal is available, the retiming option  
can be enabled using the CLK_SELB input. Note that the  
connection between the clock signal source and  
The ADN2849 can operate with positive or negative (5.0V or  
5.2V) supply voltage. Care should be taken to connect the GND  
pins to the positive rail of the supply voltage while the VEE and  
the exposed pad to the negative rail of the supply voltage.  
BIAS_SET  
JP1  
GND  
GND  
R4  
C15  
GND  
VEE  
C18  
C13  
R3  
JP2  
GND  
50Ω  
BIAS_SET VEE  
CPAN CPAP  
GND  
VTERM  
GND  
GND  
VTERM  
GND  
GND  
GND  
C1  
GND  
Z
DATAP  
DATAN  
EAM  
J1  
J2  
Z
=50Ω  
0
=50Ω  
U1  
0
Z
0
=50Ω  
MODP  
C7  
C2  
C3  
GND  
ADN2849  
GND  
GND  
GND  
VBB  
MODN_TERM  
GND  
GND  
GND  
C11  
J3  
J4  
CLKP  
Z
=50  
0
Z
=50Ω  
0
CLKN  
VEE  
C4  
GND  
GND  
MOD_ENB  
CLK_SELB  
M OD_SET GND GND VEE  
GND  
C10  
VEE  
-5.2V  
VEE  
C5  
MOD_SET  
C12  
C6  
GND  
GND  
GND  
GND  
M OD_ENB  
CLK_SELB  
Figure 31. Typical ADN2849 application circuit  
VTERM, VBB, MODN_TERM and VEE pins must be locally  
decoupled with high quality capacitors. If proper decoupling  
cannot be achieved using a single capacitor, the user can use  
multiple capacitors in parallel for each GND pin. A 20µF  
tantalum capacitor must be used as general decoupling  
capacitor for the entire module The exposed pad should be  
connected to the most negative rail of the supply voltage using  
filled vias so that solder does not leak through the vias during  
reflow. Using filled vias under the package greatly enhances the  
reliability of the connectivity of the exposed pad to the GND  
plane during reflow.  
PCB LAYOUT GUIDELINES  
Due to the high frequencies at which the ADN2849 operates,  
care should be taken when designing the PCB layout in order to  
obtain optimum performance. It is recommended to use  
controlled impedance transmission lines for the high-speed  
signal paths The length of the transmission lines must be kept  
to a minimum to reduce losses and pattern dependant jitter. All  
the VEE and GND pins must be connected to solid copper  
planes using low inductance connections. When the  
connections are made through vias, multiple vias can be  
connected in parallel to reduce the parasitic inductance. The  
Rev. Pr. G | Page 15 of 17  
Preliminary Technical Data  
ADN2849  
DESIGN EXAMPLE  
This section describes a design example that covers the  
followings:  
MOD_SET voltage range  
The voltage range at the MOD_SET pin to generate 2V bias  
offset voltage at the MODP pin can be calculated using the  
MOD_SET voltage to bias offset voltage gain specification from  
table1 using the formulae:  
Headroom calculation for the required bias offset and  
modulation voltages  
Required voltage range at the BIAS_SET and  
MOD_SET pins to generate the required bias offset  
and modulation voltages  
VMODULATION  
VMOD _ SET min  
VMOD _ SET max  
=
=
Kmax  
VMODULATION  
Kmin  
This design example assumes a -5.2V supply voltage, 0.5V bias  
offset voltage and 2V modulation voltage.  
Where Kmin and Kmax are the minimum and maximum values of  
the MOD_SET voltage to offset bias voltage gain from table1.  
Substituting the values the MOD_SET voltage range is 1.05V to  
1.33V.  
Headroom calculations  
In order to operate properly, the bias offset and modulation  
voltages must satisfy the following condition:  
VModulation + VBiasOffset VEE VMODPmin  
Assuming that VMODPmin=1.7V (see table1), the above condition  
became:  
2.5V 5.2 1.7 = 3.5V  
BIAS_SET voltage range  
The voltage range at the BIAS_SET pin to generate 0.5V bias  
offset voltage at the MODP pin can be calculated using the  
BIAS_SET voltage to bias offset voltage gain specification from  
table1 using the formulae:  
VBIAS OFFSET  
VBIAS_ SET min  
VBIAS_ SET max  
=
=
Kmax  
VBIAS OFFSET  
Kmin  
Where Kmin and Kmax are the minimum and maximum values of  
the BIAS_SET voltage to offset bias voltage gain from table1.  
Substituting the values the BIAS_SET voltage range is 0.45V to  
0.55V.  
Rev. Pr. G | Page 16 of 17  
Preliminary Technical Data  
ADN2849  
OUTLINE DIMENSIONS  
0.60 MAX  
4.0  
BSC SQ  
PIN 1  
INDICATOR  
0.60 MAX  
1
19  
24  
18  
PIN 1  
INDICATOR  
0.50  
BSC  
2.25  
TOP  
VIEW  
3.75  
BSC SQ  
BOTTO M  
VIEW  
SQ  
2.10  
1.95  
0.50  
0.40  
0.30  
6
13  
12  
7
0.25 MIN  
2.50 REF  
0.80 MAX  
0.65TYP  
1. 00  
0. 85  
0.80  
12MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.20 REF  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDECSTANDARDS MO-220-VGGD-2  
Figure 32. 24-Lead Lead Frame Chip Scale Package (LFCSP) 4mm×4mm Body (CP-24)  
Dimensions shown in millimeters  
Table 9. Die pad coordinates  
Pad Number  
X(µm)  
-920.50  
-920.50  
-920.50  
-920.50  
-920.50  
-920.50  
-920.50  
-609.10  
-457.30  
-305.50  
-103.70  
324.85  
584.00  
920.50  
920.50  
920.50  
920.50  
920.50  
920.50  
628.00  
501.10  
349.30  
182.40  
3.50  
Y(µm)  
685.00  
331.55  
103.05  
-48.75  
1
2
3
4
4
5
6
7
-220.15  
-371.95  
-525.55  
-920.50  
-920.50  
-920.50  
-920.50  
-920.50  
-920.50  
-688.20  
-484.20  
-271.10  
274.50  
490.00  
694.00  
920.50  
920.50  
920.50  
920.50  
920.50  
920.50  
920.50  
920.50  
-920.50  
-920.50  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
19  
20  
21  
22  
23  
24  
25  
26  
27  
-457.30  
-609.10  
-736.00  
-736.00  
738.00  
Figure 33. ADN2849 metallization photograph  
Note: The coordinates are measured between the center of the die and the center  
of the pad.  
Rev. Pr. G | Page 17 of 17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY