ADN4652 [ADI]

5 kV/3.75 kV rms、600 Mbps双通道LVDS隔离器 ;
ADN4652
型号: ADN4652
厂家: ADI    ADI
描述:

5 kV/3.75 kV rms、600 Mbps双通道LVDS隔离器

文件: 总24页 (文件大小:795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 kV RMS, 600 Mbps,  
Dual-Channel LVDS Isolators  
Data Sheet  
ADN4650/ADN4651/ADN4652  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
IN1  
IN2  
5 kV rms LVDS isolator  
ADN4650  
Complies with TIA/EIA-644-A LVDS standard  
Multiple dual-channel configurations  
Up to 600 Mbps switching with low jitter  
4.5 ns maximum propagation delay  
151 ps maximum peak-to-peak total jitter at 600 Mbps  
100 ps maximum pulse skew  
600 ps maximum part to part skew  
ISOLATION  
BARRIER  
LDO  
LDO  
V
D
V
DD2  
DD1  
D
D
IN1+  
IN1–  
OUT1+  
D
OUT1–  
LVDS  
DIGITAL ISOLATOR  
LVDS  
D
D
D
D
IN2+  
OUT2+  
IN2–  
OUT2–  
2.5 V or 3.3 V supplies  
−75 dBc power supply ripple rejection and glitch immunity  
8 kV IEC 61000-4-2 ESD protection across isolation barrier  
High common-mode transient immunity: >25 kV/μs  
Passes EN55022 Class B radiated emissions limits with  
600 Mbps PRBS or 300 MHz clock  
GND  
GND  
2
1
Figure 1.  
V
V
IN1  
IN2  
ADN4651  
ISOLATION  
BARRIER  
LDO  
LDO  
V
V
DD2  
Safety and regulatory approvals  
DD1  
UL (pending): 5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A (pending)  
VDE certificate of conformity (pending)  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
D
D
D
D
IN1+  
OUT1+  
IN1–  
OUT1–  
LVDS  
DIGITAL ISOLATOR  
LVDS  
D
D
D
D
OUT2+  
IN2+  
V
IORM = 424 V peak  
OUT2–  
IN2–  
Fail-safe output high for open, short, and terminated input  
conditions (ADN4651/ADN4652)  
GND  
GND  
2
1
Figure 2.  
Operating temperature range: −40°C to +125°C  
20-lead SOIC with 7.8 mm creepage/clearance  
V
V
IN1  
IN2  
ADN4652  
ISOLATION  
BARRIER  
APPLICATIONS  
LDO  
LDO  
V
V
DD2  
DD1  
Analog front-end (AFE) isolation  
Data plane isolation  
Isolated high speed clock and data links  
Isolated serial peripheral interface (SPI) over LVDS  
D
D
D
D
IN1+  
IN1–  
OUT1+  
OUT1–  
LVDS  
DIGITAL ISOLATOR  
LVDS  
D
D
D
OUT2+  
OUT2–  
IN2+  
GENERAL DESCRIPTION  
D
IN2–  
The ADN4650/ADN4651/ADN46521 are signal isolated, low  
voltage differential signaling (LVDS) buffers that operate at up  
to 600 Mbps with very low jitter.  
GND  
GND  
2
1
Figure 3.  
The devices integrate Analog Devices, Inc., iCoupler® technology,  
enhanced for high speed operation, to provide galvanic isolation of  
the TIA/EIA-644-A compliant LVDS drivers and receivers. This  
technology allows drop-in isolation of an LVDS signal chain.  
For high speed operation with low jitter, the LVDS and isolator  
circuits rely on a 2.5 V supply. An integrated on-chip low dropout  
regulator (LDO) can provide the required 2.5 V from an external  
3.3 V power supply. The devices are fully specified over a wide  
industrial temperature range and are available in a 20-lead,  
wide-body SOIC package with 5 kV rms isolation.  
Multiple channel configurations are offered, and the LVDS receiv-  
ers on the ADN4651/ADN4652 include a fail-safe mechanism  
to ensure a Logic 1 on the corresponding LVDS driver output  
when the inputs are floating, shorted, or terminated, but not driven.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. B Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................8  
ESD Caution...................................................................................8  
Pin Configurations and Function Descriptions............................9  
Typical Performance Characteristics ........................................... 12  
Test Circuits and Switching Characteristics................................ 17  
Theory of Operation ...................................................................... 18  
Truth Table and Fail-Safe Receiver .......................................... 18  
Isolation ....................................................................................... 19  
PCB Layout ................................................................................. 19  
Magnetic Field Immunity.......................................................... 19  
Insulation Lifetime..................................................................... 20  
Applications Information.............................................................. 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Receiver Input Threshold Test Voltages .................................... 4  
Timing Specifications .................................................................. 4  
Insulation and Safety Related Specifications ............................ 5  
Package Characteristics ............................................................... 5  
Regulatory Information............................................................... 6  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics (Pending)............................................................ 6  
Recommended Operating Conditions ...................................... 7  
Absolute Maximum Ratings............................................................ 8  
REVISION HISTORY  
4/16—Rev. A to Rev. B  
Changes to Supply Current Parameter, Table 1.............................3  
Changes to Skew Parameter and Fail-Safe Delay Parameter,  
Table 3 .................................................................................................4  
Added Figure 5...................................................................................9  
Changes to Table 12 ..........................................................................9  
Changes to Figure 30 Caption and Figure 31 Caption .............. 14  
Change to Figure 34 ....................................................................... 15  
Changes to Truth Table and Fail-Safe Receiver Section............ 16  
Added Table 13; Renumbered Sequentially................................ 16  
Change to Applications Information Section............................. 20  
Added Figure 41 ............................................................................. 20  
Changes to Ordering Guide.......................................................... 22  
Added ADN4652 ................................................................Universal  
Changes to Features Section and General Description Section....... 1  
Added Figure 3; Renumbered Sequentially .................................. 1  
Changes to Supply Current Parameter, Table 1............................ 3  
Changes to Skew Parameter and Fail-Safe Delay Parameter,  
Table 3 ................................................................................................ 4  
Changes to Table 12.......................................................................... 9  
Moved Figure 7 ............................................................................... 10  
Added Table 13 ............................................................................... 10  
Added Figure 8 and Table 14, Renumbered Sequentially ......... 11  
Changes to PCB Layout Section................................................... 19  
Changes to Ordering Guide .......................................................... 24  
11/15—Revision 0: Initial Version  
2/16—Rev. 0 to Rev. A  
Added ADN4650 ................................................................Universal  
Changes to Features Section and General Description Section........1  
Added Figure 1; Renumbered Sequentially .................................. 1  
Rev. B | Page 2 of 24  
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
SPECIFICATIONS  
For all minimum/maximum specifications, VDD1 = VDD2 = 2.375 V to 2.625 V, TA = TMIN to TMAX, unless otherwise noted. For all typical  
specifications, VDD1 = VDD2 = 2.5 V, TA = 25°C.  
Table 1.  
Parameter  
INPUTS (RECEIVERS)  
Input Threshold  
High  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
See Figure 36 and Table 2  
VTH  
VTL  
100  
mV  
mV  
Low  
−100  
Differential Input Voltage  
Input Common-Mode  
Voltage  
Input Current  
Differential Input Capacitance1 CINx  
|VID|  
VIC  
100  
0.5|VID|  
mV  
V
See Figure 36 and Table 2  
See Figure 36 and Table 2  
2.4 − 0.5|VID|  
+5  
IIH, IIL  
−5  
µA  
pF  
DINx = VDD or 0 V, other input = 1.2 V, VDD = 2.5 V or 0 V  
DINx = 0.4 sin(30 × 106πt) V + 0.5 V, other input = 1.2 V  
2
OUTPUTS (DRIVERS)  
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
VOS Magnitude Change  
VOS Peak-to-Peak1  
|VOD  
|ΔVOD|  
VOS  
ΔVOS  
VOS(PP)  
IOS  
|
250  
310  
450  
50  
mV  
mV  
V
mV  
mV  
mA  
mA  
pF  
See Figure 34 and Figure 35, RL = 100 Ω  
See Figure 34 and Figure 35, RL = 100 Ω  
See Figure 34, RL = 100 Ω  
See Figure 34, RL = 100 Ω  
See Figure 34, RL = 100 Ω  
DOUTx = 0 V  
1.125  
1.17 1.375  
50  
150  
−20  
12  
Output Short-Circuit Current  
|VOD| = 0 V  
Differential Output  
Capacitance1  
COUTx  
5
DOUTx = 0.4 sin(30 × 106πt) V + 0.5 V, other input =  
1.2 V, VDD1 or VDD2 = 0 V  
POWER SUPPLY  
Supply Current  
IDD1, IIN1,  
IDD2, or IIN2  
ADN4651/ADN4652 Only  
ADN4650 Only  
55  
mA  
mA  
mA  
mA  
V
No output load, inputs with 100 Ω, no applied |VID|  
All outputs loaded, RL = 100 Ω, f = 300 MHz  
No output load, inputs with 100 Ω, |VID| = 200 mV  
All outputs loaded, RL = 100 Ω, f = 300 MHz  
No external supply on VDD1 or VDD2  
58  
50  
60  
3.3  
80  
65  
72  
3.6  
LDO Input Range  
VIN1 or  
VIN2  
3.0  
LDO Output Range  
VDD1 or  
VDD2  
2.375  
2.5  
2.625  
V
Power Supply Ripple Rejection, PSRR  
Phase Spur Level  
−75  
dBc  
Phase spur level on DOUTx with 300 MHz clock on  
DINx and applied ripple of 100 kHz, 100 mV p-p on  
a 2.5 V supply to VDD1 or VDD2  
COMMON-MODE TRANSIENT  
IMMUNITY2  
|CM|  
25  
50  
kV/µs VCM = 1000 V, transient magnitude = 800 V  
1 These specifications are guaranteed by design and characterization.  
2 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining any DOUTx+/DOUTx− pin in the same state as the corresponding DINx+/DINx−  
pin (no change on output), or producing the expected transition on any DOUTx+/DOUTx− pin if the applied common-mode transient edge is coincident with a data  
transition on the corresponding DINx+/DINx− pin. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. B | Page 3 of 24  
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
RECEIVER INPUT THRESHOLD TEST VOLTAGES  
Table 2. Test Voltages for Receiver Operation  
Applied Voltages  
DINx+ (V)  
1.25  
1.15  
2.4  
2.3  
0.1  
0
1.5  
0.9  
2.4  
DINx− (V)  
1.15  
1.25  
2.3  
2.4  
0
0.1  
0.9  
1.5  
1.8  
Input Voltage, Differential (VID) (V)  
Input Voltage, Common-Mode (VIC) (V)  
Driver Output (VOD) (mV)  
>+250  
<−250  
>+250  
<−250  
>+250  
<−250  
>+250  
<−250  
>+250  
<−250  
>+250  
<−250  
+0.1  
−0.1  
+0.1  
−0.1  
+0.1  
−0.1  
+0.6  
−0.6  
+0.6  
−0.6  
+0.6  
−0.6  
1.2  
1.2  
2.35  
2.35  
0.05  
0.05  
1.2  
1.2  
2.1  
2.1  
0.3  
1.8  
0.6  
0
2.4  
0
0.6  
0.3  
TIMING SPECIFICATIONS  
For all minimum/maximum specifications, VDD1 = VDD2 = 2.375 V to 2.625 V, TA = TMIN to TMAX, unless otherwise noted. All typical  
specifications, VDD1 = VDD2 = 2.5 V, T A = 25°C.  
Table 3.  
Parameter  
Symbol  
Min Typ Max1 Unit  
Test Conditions/Comments  
PROPAGATION DELAY  
tPLH, tPHL  
4
4.5  
ns  
See Figure 37, from any DINx+/DINx− to DOUTx+/DOUTx−  
See Figure 37, across all DOUTx+/DOUTx−  
SKEW  
Duty Cycle2  
Channel to Channel3  
tSK(D)  
tSK(CH)  
100  
ps  
ps  
ps  
ps  
ps  
200 500  
150 300  
600  
ADN4650 only  
ADN4650, ADN4651, ADN4652, or combinations  
ADN4650 to ADN4650 only  
Part to Part4  
tSK(PP)  
500  
JITTER5  
See Figure 37, for any DOUTx+/DOUTx−  
Random Jitter, RMS6 (1σ)  
Deterministic Jitter7, 8  
With Crosstalk  
Total Jitter at BER 1 × 10−12  
Additive Phase Jitter  
tRJ(RMS)  
tDJ(PP)  
tDJC(PP)  
tTJ(PP)  
2.6  
30  
30  
70  
387  
376  
4.8  
96  
ps rms 300 MHz clock input  
ps  
ps  
600 Mbps, 223 − 1 PRBS  
600 Mbps, 223 − 1 PRBS  
151  
ps  
300 MHz/600 Mbps, 223 − 1 PRBS9  
100 Hz to 100 kHz, fOUT = 10 MHz10  
12 kHz to 20 MHz, fOUT = 300 MHz11  
See Figure 37, any DOUTx+/DOUTx−, 20% to 80%, RL = 100 Ω, CL = 5 pF  
tADDJ  
fs rms  
fs rms  
ps  
RISE/FALL TIME  
FAIL-SAFE DELAY12  
tR, tF  
350  
1.2  
tFSH, tFSL  
1
µs  
ADN4651/ADN4652 only; see Figure 37 and Figure 4, any  
DOUTx+/DOUTx−, RL = 100 Ω  
MAXIMUM DATA RATE  
600  
Mbps  
1 These specifications are guaranteed by design and characterization.  
2 Duty cycle or pulse skew is the magnitude of the maximum difference between tPLH and tPHL for any channel of a device, that is, |tPHLx – tPHLx|.  
3 Channel to channel or output skew is the difference between the largest and smallest values of tPLHx within a device or the difference between the largest and smallest  
values of tPHLx within a device, whichever of the two is greater.  
4 Part to part output skew is the difference between the largest and smallest values of tPLHx across multiple devices or the difference between the largest and smallest  
values of tPHLx across multiple devices, whichever of the two is greater.  
5 Jitter parameters are guaranteed by design and characterization. Values do not include stimulus jitter. VID = 400 mV p-p, tR = tF = 0.3 ns (20% to 80%).  
6 This specification is measured over a population of ~7,000,000 edges.  
7 Peak-to-peak jitter specifications include jitter due to pulse skew (tSK(D)).  
8 This specification is measured over a population of ~3,000,000 edges.  
9 Using the formula tTJ(PP) = 14 × tRJ(RMS) + tDJ(PP)  
.
10 With input phase jitter of 250 fs rms subtracted.  
11 With input phase jitter of 100 fs rms subtracted.  
12 The fail-safe delay is the delay before DOUTx is switched high to reflect idle input to DINx (|VID| < 100 mV, open or short/terminated input condition).  
Rev. B | Page 4 of 24  
 
 
 
 
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
Timing Diagram  
>1.3V  
1.2V  
D
INx+  
(D  
= 1.2V)  
INx–  
<1.1V  
+0.1V  
V
0V  
ID  
–0.1V  
D
D
OUTx+  
~1.3V  
OUTx–  
~1.0V  
~ +0.3V  
+0.1V  
+0.1V  
V
0V  
OD  
~ –0.3V  
tFSH  
tFSL  
Figure 4. Fail-Safe Timing Diagram  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 4.  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5000  
7.8  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
7.8  
8.1  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
17  
>400  
II  
µm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
PACKAGE CHARACTERISTICS  
Table 5.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
Ω
pF  
pF  
2.2  
3.7  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance  
θJA  
45.7  
°C/W Thermal simulation with 4-layer standard JEDEC PCB  
1 The device is considered a 2-terminal device: Pin 1 through Pin 10 are shorted together, and Pin 11 through Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
Rev. B | Page 5 of 24  
 
 
 
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
REGULATORY INFORMATION  
See Table 11 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-  
isolation waveforms and insulation levels.  
Table 6.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
To Be Recognized Under UL 1577  
Component Recognition Program1  
To be approved under CSA  
To be certified according to DIN V VDE V 0884-10  
Component Acceptance Notice 5A (VDE V 0884-10):2006-122  
Single Protection, 5000 V rms Isolation  
Voltage  
Reinforced insulation, VIORM = 424 V peak, VIOSM  
6000 V peak  
=
Basic insulation, VIORM = 424 V peak, VIOSM = 10,000 V peak  
File 2471900-4880-0001  
File E214100  
File 205078  
1 In accordance with UL 1577, each ADN4650/ADN4651/ADN4652 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADN4650/ADN4651/ADN4652 is proof tested by applying an insulation test voltage ≥ 795 V peak for 1 sec (partial discharge  
detection limit = 5 pC).  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS (PENDING)  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of  
the safety data.  
Table 7.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 600 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to IV  
I to IV  
I to III  
40/125/21  
2
VIORM  
Vpd (m)  
424  
795  
V peak  
V peak  
VIORM × 1.875 = Vpd (m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
Vpd (m)  
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
636  
V peak  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Basic  
509  
VIOTM  
5000  
VPEAK = 12.8 kV, 1.2 µs rise time, 50 µs, 50% fall time  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
VIOSM  
VIOSM  
10,000  
6000  
V peak  
V peak  
Reinforced  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 5)  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
2.78  
>109  
°C  
W
Ω
VIO = 500 V  
Rev. B | Page 6 of 24  
 
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
RECOMMENDED OPERATING CONDITIONS  
Table 8.  
Parameter  
Symbol  
Rating  
Operating Temperature  
Supply Voltages  
Supply to LDO  
TA  
−40°C to +125°C  
VIN1, VIN2  
3.0 V to 3.6 V  
LDO Bypass, VINx Shorted to VDDx VDD1, VDD2 2.375 V to 2.625 V  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 5. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Rev. B | Page 7 of 24  
 
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 9.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VIN1 to GND1/VIN2 to GND2  
VDD1 to GND1/VDD2 to GND2  
Input Voltage (DINx+, DINx−) to GNDx on  
the Same Side  
−0.3 V to +6.5 V  
−0.3 V to +2.8 V  
−0.3 V to VDD + 0.3 V  
Table 10. Thermal Resistance  
Package Type  
θJA  
Unit  
20-Lead SOIC  
45.7  
°C/W  
Output Voltage (DOUTx+, DOUTx−) to  
GNDx on the Same Side  
Short-Circuit Duration (DOUTx+, DOUTx−  
−0.3 V to VDD + 0.3 V  
Continuous  
)
ESD CAUTION  
to GNDx on the Same Side  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature (TJ Maximum)  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
ESD  
(TJ maximum − TA)/θJA  
Human Body Model (All Pins to  
Respective GNDx, 1.5 kΩ, 100 pF)  
IEC 61000-4-2 (LVDS Pins to Isolated  
GNDx Across Isolation Barrier)  
4 kV  
8 kV  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 11. Maximum Continuous Working Voltage1  
Parameter  
Rating  
Constraint  
AC Voltage  
Bipolar Waveform  
Basic Insulation  
Reinforced Insulation  
Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
495 V peak  
495 V peak  
50-year minimum insulation lifetime for 1% failure  
50-year minimum insulation lifetime for 1% failure  
990 V peak  
875 V peak  
50-year minimum insulation lifetime for 1% failure  
Lifetime limited by package creepage, maximum approved working voltage  
Basic Insulation  
Reinforced Insulation  
1079 V peak Lifetime limited by package creepage, maximum approved working voltage  
536 V peak Lifetime limited by package creepage, maximum approved working voltage  
1 The maximum continuous working voltage refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for  
more details.  
Rev. B | Page 8 of 24  
 
 
 
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
20  
V
IN2  
IN1  
GND  
19 GND  
1
2
V
18  
V
DD2  
DD1  
GND  
17 GND  
1
IN1+  
IN1–  
IN2+  
IN2–  
2
ADN4650  
TOP VIEW  
(Not to Scale)  
D
D
D
D
16  
15  
14  
13  
12  
D
D
D
D
OUT1+  
OUT1–  
OUT2+  
OUT2–  
DD2  
V
V
DD1  
GND 10  
11 GND  
1
2
Figure 6. ADN4650 Pin Configuration  
Table 12. ADN4650 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VIN1  
Optional 3.3 V Power Supply/LDO Input for Side 1. Bypass VIN1 to GND1 using a 1 μF capacitor. Alternatively, if  
using a 2.5 V supply, connect VIN1 directly to VDD1  
Ground, Side 1.  
.
2, 4, 10  
3, 9  
GND1  
VDD1  
2.5 V Power Supply for Side 1. Connect both pins externally and bypass to GND1 with 0.1 μF capacitors. If  
supplying 3.3 V to VIN1, connect a 1 μF capacitor between Pin 3 and GND1 for proper regulation of the 2.5 V  
output of the internal LDO.  
5
6
7
8
DIN1+  
DIN1−  
DIN2+  
DIN2−  
GND2  
VDD2  
Noninverted Differential Input 1.  
Inverted Differential Input 1.  
Noninverted Differential Input 2.  
Inverted Differential Input 2.  
Ground, Side 2.  
2.5 V Power Supply for Side 2. Connect both pins externally and bypass to GND2 with 0.1 μF capacitors. If  
supplying 3.3 V to VIN2, connect a 1 μF capacitor between Pin 18 and GND2 for proper regulation of the 2.5 V  
output of the internal LDO.  
11, 17, 19  
12, 18  
13  
14  
15  
16  
20  
DOUT2−  
DOUT2+  
DOUT1−  
DOUT1+  
VIN2  
Inverted Differential Output 2.  
Noninverted Differential Output 2.  
Inverted Differential Output 1.  
Noninverted Differential Output 1.  
Optional 3.3 V Power Supply/LDO Input for Side 2. Bypass VIN2 to GND2 using a 1 μF capacitor. Alternatively, if  
using a 2.5 V supply, connect VIN2 directly to VDD2  
.
Rev. B | Page 9 of 24  
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
V
1
2
3
4
5
6
7
8
9
20  
V
IN2  
IN1  
GND  
19 GND  
1
2
V
18 V  
DD2  
DD1  
GND  
17 GND  
1
IN1+  
IN1–  
2
OUT1+  
OUT1–  
IN2+  
ADN4651  
TOP VIEW  
(Not to Scale)  
D
D
16  
15  
14  
13  
12  
D
D
D
D
D
D
OUT2+  
OUT2–  
IN2–  
V
V
DD2  
DD1  
GND 10  
11 GND  
1
2
Figure 7. ADN4651 Pin Configuration  
Table 13. ADN4651 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VIN1  
Optional 3.3 V Power Supply/LDO Input for Side 1. Bypass VIN1 to GND1 using a 1 μF capacitor. Alternatively, if  
using a 2.5 V supply, connect VIN1 directly to VDD1  
Ground, Side 1.  
.
2, 4, 10  
3, 9  
GND1  
VDD1  
2.5 V Power Supply for Side 1. Connect both pins externally and bypass to GND1 with 0.1 μF capacitors. If  
supplying 3.3 V to VIN1, connect a 1 μF capacitor between Pin 3 and GND1 for proper regulation of the 2.5 V  
output of the internal LDO.  
5
6
7
8
DIN1+  
DIN1−  
DOUT2+  
DOUT2−  
GND2  
VDD2  
Noninverted Differential Input 1.  
Inverted Differential Input 1.  
Noninverted Differential Output 2.  
Inverted Differential Output 2.  
Ground, Side 2.  
2.5 V Power Supply for Side 2. Connect both pins externally and bypass to GND2 with 0.1 μF capacitors. If  
supplying 3.3 V to VIN2, connect a 1 μF capacitor between Pin 18 and GND2 for proper regulation of the 2.5 V  
output of the internal LDO.  
11, 17, 19  
12, 18  
13  
14  
15  
16  
20  
DIN2−  
DIN2+  
DOUT1−  
DOUT1+  
VIN2  
Inverted Differential Input 2.  
Noninverted Differential Input 2.  
Inverted Differential Output 1.  
Noninverted Differential Output 1.  
Optional 3.3 V Power Supply/LDO Input for Side 2. Bypass VIN2 to GND2 using a 1 μF capacitor. Alternatively, if  
using a 2.5 V supply, connect VIN2 directly to VDD2  
.
Rev. B | Page 10 of 24  
Data Sheet  
ADN4650/ADN4651/ADN4652  
V
1
2
3
4
5
6
7
8
9
20  
V
IN2  
IN1  
GND  
19 GND  
1
2
2
V
18  
V
DD2  
DD1  
GND  
17 GND  
1
ADN4652  
TOP VIEW  
(Not to Scale)  
D
D
16  
15  
14  
13  
12  
D
D
D
D
OUT1+  
OUT1–  
IN1+  
IN1–  
D
D
IN2+  
OUT2+  
OUT2–  
DD2  
IN2–  
V
V
DD1  
GND 10  
11 GND  
1
2
Figure 8. ADN4652 Pin Configuration  
Table 14. ADN4652 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VIN1  
Optional 3.3 V Power Supply/LDO Input for Side 1. Bypass VIN1 to GND1 using a 1 μF capacitor. Alternatively, if  
using a 2.5 V supply, connect VIN1 directly to VDD1  
Ground, Side 1.  
.
2, 4, 10  
3, 9  
GND1  
VDD1  
2.5 V Power Supply for Side 1. Connect both pins externally and bypass to GND1 with 0.1 μF capacitors. If  
supplying 3.3 V to VIN1, connect a 1 μF capacitor between Pin 3 and GND1 for proper regulation of the 2.5 V  
output of the internal LDO.  
5
6
7
8
DOUT1+  
DOUT1−  
DIN2+  
DIN2−  
GND2  
VDD2  
Noninverted Differential Output 1.  
Inverted Differential Output 1.  
Noninverted Differential Input 2.  
Inverted Differential Input 2.  
Ground, Side 2.  
2.5 V Power Supply for Side 2. Connect both pins externally and bypass to GND2 with 0.1 μF capacitors. If  
supplying 3.3 V to VIN2, connect a 1 μF capacitor between Pin 18 and GND2 for proper regulation of the 2.5 V  
output of the internal LDO.  
11, 17, 19  
12, 18  
13  
14  
15  
16  
20  
DOUT2−  
DOUT2+  
DIN1−  
DIN1+  
VIN2  
Inverted Differential Output 2.  
Noninverted Differential Output 2.  
Inverted Differential Input 1.  
Noninverted Differential Input 1.  
Optional 3.3 V Power Supply/LDO Input for Side 2. Bypass VIN2 to GND2 using a 1 μF capacitor. Alternatively, if  
using a 2.5 V supply, connect VIN2 directly to VDD2  
.
Rev. B | Page 11 of 24  
ADN4650/ADN4651/ADN4652  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD1 = VDD2 = 2.5 V, T A = 25°C, RL = 100 Ω, 300 MHz input with |VID| = 200 mV, and VIC = 1.1 V, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
I
I
I
I
DD1  
DD2  
IN1  
DD1  
DD2  
IN1  
IN2  
IN2  
0
50  
100  
150  
200  
250  
300  
–50  
–25  
0
25  
50  
75  
100  
125  
INPUT CLOCK FREQUENCY (MHz)  
AMBIENT TEMPERATURE (°C)  
Figure 9. IDD1/IDD2 or IIN1/IIN2 Supply Current vs. DIN1 Input Clock Frequency  
(DIN2 Not Switching)  
Figure 12. IDD1/IDD2 or IIN1/IIN2 Supply Current vs. Ambient Temperature (TA)  
(DIN2 with 300 MHz Clock Input, DIN1 Not Switching)  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
I
I
I
I
(D  
(D  
(D  
(D  
ACTIVE)  
ACTIVE)  
ACTIVE)  
ACTIVE)  
I
I
I
I
DD1  
DD2  
DD1  
DD2  
IN2  
IN2  
IN1  
IN1  
DD1  
DD2  
IN1  
10  
0
10  
0
IN2  
2.35  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
0
50  
100  
150  
200  
250  
300  
SUPPLY VOLTAGE, V  
(V)  
DD1 DD2  
INPUT CLOCK FREQUENCY (MHz)  
Figure 10. IDD1/IDD2 or IIN1/IIN2 Supply Current vs. DIN2 Input Clock Frequency  
(DIN1 Not Switching)  
Figure 13. IDD1/IDD2 Supply Current vs. Supply Voltage, VDD1/VDD2  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
I
I
I
I
(D  
(D  
ACTIVE)  
ACTIVE)  
ACTIVE)  
ACTIVE)  
I
I
I
I
IN1  
IN2  
IN2  
DD1  
DD2  
IN1  
10  
0
IN2  
10  
0
1 (D  
IN  
IN1  
IN1  
(D  
IN2  
IN2  
3.00  
3.15  
3.30  
3.45  
(V)  
3.60  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE, V /V  
IN1 IN2  
AMBIENT TEMPERATURE (°C)  
Figure 11. IDD1/IDD2 or IIN1/IIN2 Supply Current vs. Ambient Temperature (TA)  
(DIN1 with 300 MHz Clock Input, DIN2 Not Switching)  
Figure 14. IIN1/IIN2 Supply Current vs. Supply Voltage, VIN1/VIN2  
Rev. B | Page 12 of 24  
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
V
V
V
V
CHANNEL 1  
CHANNEL 2  
DD1  
DD2  
OH  
OH  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
LDO INPUT VOLTAGE, V /V  
(V)  
SUPPLY VOLTAGE, V  
/V  
(V)  
IN1 IN2  
DD1 DD2  
Figure 15. LDO Output Voltage, VDD1/VDD2 vs. LDO Input Voltage, VIN1/VIN2  
Figure 18. Driver Output High Voltage (VOH) vs. Supply Voltage, VDD1/VDD2  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
350  
340  
330  
320  
310  
300  
290  
280  
270  
V
V
CHANNEL 1  
CHANNEL 2  
OL  
OL  
V
V
CHANNEL 1  
CHANNEL 2  
260  
250  
OD  
OD  
0.90  
2.35  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
0
50  
100  
150  
200  
250  
300  
350  
SUPPLY VOLTAGE, V  
(V)  
DD1 DD2  
INPUT CLOCK FREQUENCY (MHz)  
Figure 16. Driver Differential Output Voltage (VOD) vs. Input Clock Frequency  
Figure 19. Driver Output Low Voltage (VOL) vs. Supply Voltage, VDD1/VDD2  
1.375  
450  
400  
350  
300  
250  
200  
150  
100  
1.325  
1.275  
1.225  
1.175  
V
V
CHANNEL 1  
CHANNEL 2  
OS  
OS  
50  
V
V
CHANNEL 1  
CHANNEL 2  
OD  
OD  
1.125  
2.35  
0
50  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
75  
100  
OUTPUT LOAD, R ()  
125  
150  
SUPPLY VOLTAGE, V  
(V)  
DD1 DD2  
L
Figure 17. Driver Differential Output Voltage (VOD) vs. Output Load (RL)  
Figure 20. Driver Output Offset Voltage (VOS) vs. Supply Voltage, VDD1/VDD2  
Rev. B | Page 13 of 24  
ADN4650/ADN4651/ADN4652  
Data Sheet  
3.60  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
tPHL CHANNEL 2  
tPHL CHANNEL 2  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tPLH CHANNEL 1  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tPLH CHANNEL 1  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
0
0.5  
1.0  
1.5  
2.0  
2.5  
SUPPLY VOLTAGE, V  
AND V  
(V)  
RECEIVER INPUT OFFSET VOLTAGE, V (V)  
DD1  
DD2  
IC  
Figure 21. Differential Propagation Delay vs. Supply Voltage, VDD1 and VDD2  
Figure 24. Differential Propagation Delay vs. Receiver Input Offset Voltage (VIC)  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
240  
tF CHANNEL 2  
tR CHANNEL 2  
tF CHANNEL 1  
tR CHANNEL 1  
220  
200  
180  
160  
140  
120  
tPHL CHANNEL 2  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tPLH CHANNEL 1  
3.2  
3.1  
3.0  
2.35  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE, V  
(V)  
AMBIENT TEMPERATURE (°C)  
DD1 DD2  
Figure 22. Differential Propagation Delay vs. Ambient Temperature (TA)  
Figure 25. Differential Output Transition Time vs. Supply Voltage, VDD1/VDD2  
3.60  
3.55  
3.50  
3.45  
240  
220  
200  
180  
3.40  
160  
tPHL CHANNEL 2  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tF CHANNEL 2  
tR CHANNEL 2  
tF CHANNEL 1  
tR CHANNEL 1  
3.35  
140  
tPLH CHANNEL 1  
1.0 1.2  
DIFFERENTIAL INPUT VOLTAGE, V (V)  
3.30  
120  
–50  
0
0.2  
0.4  
0.6  
0.8  
1.4  
–25  
0
25  
50  
75 100 125  
ID  
AMBIENT TEMPERATURE (°C)  
Figure 23. Differential Propagation Delay vs. Receiver Differential Input  
Voltage (VID)  
Figure 26. Differential Output Transition Time vs. Ambient Temperature (TA)  
Rev. B | Page 14 of 24  
Data Sheet  
ADN4650/ADN4651/ADN4652  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
tSK(D) CHANNEL 2  
tSK(D) CHANNEL 1  
CHANNEL 1  
CHANNEL 2  
0
2.35  
0
2.40  
2.45  
2.50  
2.55  
AND V  
2.60  
(V)  
DD2  
2.65  
0
100  
200  
300  
400  
500  
600  
SUPPLY VOLTAGE, V  
DD1  
DATA RATE (Mbps)  
Figure 27. Duty Cycle Skew (tSK(D)) vs. Supply Voltage, VDD1 and VDD2  
Figure 29. Deterministic Jitter (tDJ(PP)) vs. Data Rate  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
CHANNEL 1  
CHANNEL 2  
tSK(D) CHANNEL 2  
tSK(D) CHANNEL 1  
75 100 125  
AMBIENT TEMPERATURE (°C)  
0
2.35  
0
–50  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
–25  
0
25  
50  
SUPPLY VOLTAGE, V  
(V)  
DD1 DD2  
Figure 28. Duty Cycle Skew (tSK(D)) vs. Ambient Temperature (TA)  
Figure 30. Deterministic Jitter (tDJ(PP)) vs. Supply Voltage, VDD1/VDD2  
Rev. B | Page 15 of 24  
ADN4650/ADN4651/ADN4652  
Data Sheet  
60  
50  
40  
30  
20  
10  
0
CHANNEL 1  
CHANNEL 2  
–50  
–25  
0
25  
50  
75  
100  
125  
CH1 50mV CH2 50mV  
CH3 10mV CH4 10mV  
300ps/DIV  
DELAY 61.0828ns  
AMBIENT TEMPERATURE (°C)  
Figure 31. Deterministic Jitter (tDJ(PP)) vs. Ambient Temperature  
Figure 33. ADN4651 Eye Diagram for DOUT2  
CH1 50mV CH2 50mV  
CH3 10mV CH4 10mV  
300ps/DIV  
DELAY 61.0828ns  
Figure 32. ADN4651 Eye Diagram for DOUT1  
Rev. B | Page 16 of 24  
Data Sheet  
ADN4650/ADN4651/ADN4652  
TEST CIRCUITS AND SWITCHING CHARACTERISTICS  
D
D
D
INx+  
OUTx+  
R
V
V
OD  
ID  
V
V
OUT+  
IN+  
D
D
OUTx–  
INx–  
V
V
OUT–  
IN–  
D
D
INx+  
INx–  
OUTx+  
D
R /2  
L
NOTES  
1. V = V  
– V  
IN–  
R
ID  
IN+  
2. V = (V  
+ V )/2  
IC  
IN+  
IN–  
V
V
OD  
V
V
OS  
R /2  
L
3. V  
= V  
– V  
OD  
OUT+ OUT–  
D
D
OUTx–  
4. V = (V  
+ V  
)/2  
OS  
OUT+  
OUT–  
Figure 34. Driver Test Circuit  
Figure 36. Voltage Definitions  
D
D
D
D
D
D
C
INx+  
OUTx+  
INx+  
OUTx+  
L
3.75kΩ  
3.75kΩ  
R
V
L
TEST  
V
SIGNAL  
GENERATOR  
R
D
R
D
R
L
V
V
OD  
D
INx–  
C
50Ω  
50Ω  
L
D
OUTx–  
INx–  
OUTx–  
NOTES  
NOTES  
1. V  
= 0V TO 2.4V  
1. C INCLUDES PROBE AND JIG CAPACITANCE.  
TEST  
L
Figure 35. Driver Test Circuit (Full Load Across Common-Mode Range)  
Figure 37. Timing Test Circuit  
Rev. B | Page 17 of 24  
 
 
 
 
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
THEORY OF OPERATION  
The ADN4650/ADN4651/ADN4652 are TIA/EIA-644-A LVDS  
compliant isolated buffers. LVDS signals applied to the inputs are  
transmitted on the outputs of the buffer, and galvanic isolation  
is integrated between the two sides of the device. This integration  
allows drop-in isolation of LVDS signal chains.  
ADN4651/ADN4652 incorporate a fail-safe circuit to ensure  
the LVDS outputs are in a known state (logic high) when the  
input state is undefined (−100 mV < VID < +100 mV), as shown  
in Table 16.  
This input state can occur when the inputs are floating (uncon-  
nected, no termination resistor), when the inputs are shorted,  
and when there is no active driver connected to the inputs (but  
with a termination resistor). Open-circuit, short-circuit, and  
terminated/idle bus fail-safes, respectively, ensure a known output  
state for these conditions, as implemented by the  
The LVDS receiver detects the differential voltage present across  
a termination resistor on an LVDS input. An integrated digital  
isolator transmits the input state across the isolation barrier,  
and an LVDS driver outputs the same state as the input.  
With a positive differential voltage of ≥100 mV across any DINx pin,  
the corresponding DOUTx+ pin sources current. This current flows  
across the connected transmission line and termination at the  
receiver at the far end of the bus, while DOUTx− sinks the return  
current. With a negative differential voltage of ≤−100 mV across  
any DINx pin, the corresponding DOUTx+ pin sinks current, with  
ADN4651/ADN4652.  
After the fail-safe circuit is triggered by these input states  
(−100 mV < VID < +100 mV), there is a delay of up to 1.2 µs  
before the output is guaranteed to be high (VOD ≥ 250 mV).  
During this time, the output may transition to or stay in a logic  
low state (VOD ≤ −250 mV).  
DOUTx− sourcing the current. Table 15 and Table 16 show these  
input/output combinations.  
The fail-safe circuit triggers as soon as the input differential voltage  
remains between +100 mV and −100 mV for some nanoseconds.  
This means that very slow rise and fall times on the input signal,  
outside typical LVDS operation (350 ps maximum tR/tF), can poten-  
tially trigger the fail-safe circuit on a high to low crossover.  
The output drive current is between 2.5 mA and 4.5 mA  
(typically 3.1 mA), developing between 250 mV and 450 mV  
across a 100 Ω termination resistor (RT). The received voltage is  
centered around 1.2 V. Note that because the differential voltage  
(VID) reverses polarity, the peak-to-peak voltage swing across RT  
is twice the differential voltage magnitude (|VID|).  
At the minimum |VID| of 100 mV for normal operation, the  
rise/fall time must be ≤5 ns to avoid triggering a fail-safe state.  
Increasing |VID| to 200 mV correspondingly allows an input  
rise/fall time of up to 10 ns without triggering a fail-safe state.  
For very low speed applications where slow high to low transitions  
in excess of this limit are expected, using external biasing resistors  
is an option to introduce a minimum |VID| of 100 mV (that is,  
the fail-safe cannot trigger).  
TRUTH TABLE AND FAIL-SAFE RECEIVER  
The LVDS standard, TIA/EIA-644-A, defines normal receiver  
operation under two conditions: an input differential voltage  
of ≥+100 mV corresponding to one logic state, and a voltage of  
≤−100 mV for the other logic state. Between these thresholds,  
standard LVDS receiver operation is undefined (it may detect  
either state), as shown in Table 15 for the ADN4650. The  
Table 15. ADN4650 Input/Output Operation  
Input (DINx  
)
Output (DOUTx  
VOD (mV)  
≥250  
≤−250  
Indeterminate  
≥250  
)
Powered On  
VID (mV)  
≥100  
≤−100  
Logic  
Powered On  
Logic  
Yes  
Yes  
Yes  
No  
High  
Low  
Indeterminate  
Don’t care  
Yes  
Yes  
Yes  
Yes  
High  
Low  
Indeterminate  
High  
−100 < VID < +100  
Don’t care  
Table 16. ADN4651/ADN4652 Input/Output Operation  
Input (DINx  
)
Output (DOUTx  
VOD (mV)  
≥250  
)
Powered On  
VID (mV)  
≥100  
Logic  
Powered On  
Logic  
High  
Low  
High  
High  
Yes  
Yes  
Yes  
No  
High  
Yes  
Yes  
Yes  
Yes  
≤−100  
Low  
≤−250  
≥250  
≥250  
−100 < VID < +100  
Don’t care  
Indeterminate  
Don’t care  
Rev. B | Page 18 of 24  
 
 
 
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
The ADN4650/ADN4651/ADN4652 require appropriate  
decoupling of the VDDx pins with 100 nF capacitors. If the  
integrated LDO is not used, and a 2.5 V supply is connected  
directly, connect the appropriate VINx pin to the supply as well, as  
shown in Figure 38, using the ADN4651 as an example.  
ISOLATION  
In response to any change in the input state detected by the  
integrated LVDS receiver, an encoder circuit sends narrow (~1 ns)  
pulses to a decoder circuit using integrated transformer coils.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses that indicate input transitions. The decoder state  
determines the LVDS driver output state in normal operation,  
and this in turn reflects the isolated LVDS buffer input state.  
100nF  
100nF  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
V
IN2  
IN1  
GND  
GND  
1
2
V
3
DD1  
DD2  
In the absence of input transitions for more than approximately  
1 μs, a periodic set of refresh pulses, indicative of the correct  
input state, ensures dc correctness at the output (including the  
fail-safe output state, if applicable). These periodic refresh  
pulses also correct the output state within 1 μs in the event of a  
fault condition or set the ADN4651/ADN4652 output to the fail-  
safe state.  
4
GND  
D
GND  
D
1
2
ADN4651  
5
IN1+  
IN1–  
OUT1+  
OUT1–  
IN2+  
TOP VIEW  
100  
6
D
D
D
(Not to Scale)  
D
D
D
7
OUT2+  
OUT2–  
100Ω  
8
IN2–  
V
9
V
DD2  
DD1  
10  
GND  
GND  
2
1
100nF  
100nF  
Figure 38. Required PCB Layout When Not Using the LDO (2.5 V Supply)  
On power-up, the output state may initially be in the incorrect  
dc state if there are no input transitions. The output state is  
corrected within 1 μs by the refresh pulses.  
1µF 100nF  
100nF1µF  
1µF  
1µF  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
IN2  
IN1  
GND  
GND  
1
2
If the decoder receives no internal pulses for more than  
approximately 1 μs, the device assumes that the input side is  
unpowered or nonfunctional, in which case, the output is set to  
a positive differential voltage (logic high).  
V
3
V
DD2  
DD1  
4
GND  
D
GND  
2
1
ADN4651  
5
D
D
D
D
IN1+  
OUT1+  
OUT1–  
IN2+  
TOP VIEW  
100  
6
D
D
D
(Not to Scale)  
IN1–  
7
OUT2+  
OUT2–  
100Ω  
8
PCB LAYOUT  
IN2–  
V
9
V
DD2  
DD1  
The ADN4650/ADN4651/ADN4652 can operate with high  
speed LVDS signals up to 300 MHz clock, or 600 Mbps nonreturn  
to zero (NRZ) data. With such high frequencies, it is particularly  
important to apply best practices for the LVDS trace layout and  
termination. Locate a 100 Ω termination resistor as close as  
possible to the receiver, across the DINx+ and DINx− pins.  
10  
GND  
GND  
2
1
100nF  
100nF  
Figure 39. Required PCB Layout When Using the LDO (3.3 V Supply)  
When the integrated LDO is used, bypass capacitors of 1 ꢀF are  
required on the VINx pins and on the nearest VDDx pins (LDO  
output), as shown in Figure 39, using the ADN4651 as an  
example.  
Controlled 50 Ω impedance traces are needed on LVDS signal lines  
for full signal integrity, reduced system jitter, and minimizing elec-  
tromagnetic interference (EMI) from the PCB. Trace widths, lateral  
distance within each pair, and distance to the ground plane  
underneath all must be chosen appropriately. Via fencing to the  
PCB ground between pairs is also a best practice to minimize  
crosstalk between adjacent pairs.  
MAGNETIC FIELD IMMUNITY  
The limitation on the magnetic field immunity of the device is  
set by the condition in which the induced voltage in the  
transformer receiving coil is sufficiently large, either to falsely  
set or reset the decoder. The following analysis defines such  
conditions. The ADN4650/ADN4651/ADN4652 are examined  
in a 2.375 V operating condition because it represents the most  
susceptible mode of operation for this product.  
The ADN4650/ADN4651/ADN4652 pass EN55022 Class B  
emissions limits without extra considerations required for the  
isolator when operating with up to 600 Mbps PRBS data. When  
isolating high speed clocks (for example, 300 MHz), a reduced  
PCB clearance (isolation gap) may be required to reduce dipole  
antenna effects and provide sufficient margin below Class B  
emissions limits.  
The pulses at the transformer output have an amplitude greater  
than 0.5 V. The decoder has a sensing threshold of about 0.25 V,  
therefore establishing a 0.25 V margin in which induced voltages  
are tolerated. The voltage induced across the receiving coil is  
given by  
The best practice for high speed PCB design avoids any other emis-  
sions from PCBs in applications that use the ADN4650/ADN4651/  
ADN4652. Special care is recommended for off board connections,  
where switching transients from high speed LVDS signals (and  
clocks in particular) may conduct onto cabling, resulting in  
radiated emissions. Use common-mode chokes, ferrites, or other  
filters as appropriate at the LVDS connectors, as well as cable  
shield or PCB ground connections to earth/chassis.  
2
V = (−/dt)∑πrn ; n = 1, 2, …, N  
where:  
β is the magnetic flux density.  
rn is the radius of the nth turn in the receiving coil.  
N is the number of turns in the receiving coil.  
Rev. B | Page 19 of 24  
 
 
 
 
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
Given the geometry of the receiving coil in the ADN4650/  
ADN4651/ADN4652, and an imposed requirement that the  
induced voltage be, at most, 50% of the 0.25 V margin at the  
decoder, a maximum allowable magnetic field is calculated as  
shown in Figure 40.  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by PCB traces can induce  
sufficiently large error voltages to trigger the thresholds of  
succeeding circuitry. Avoid PCB structures that form loops.  
INSULATION LIFETIME  
1k  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation as well as on the  
materials and material interfaces.  
100  
10  
1
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation wear  
out. Surface breakdown is the phenomenon of surface tracking  
and the primary determinant of surface creepage requirements  
in system level standards. Insulation wear out is the phenomenon  
where charge injection or displacement currents inside the  
insulation material cause long-term insulation degradation.  
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Surface Tracking  
Figure 40. Maximum Allowable External Magnetic Flux Density  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
surface insulation of components that allows the components to be  
categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in each  
system level standard and is based on the total rms voltage across  
the isolation barrier, pollution degree, and material group. The  
material group and creepage for ADN4650/ADN4651/ADN4652  
are presented in Table 4.  
For example, at a magnetic field frequency of 1 MHz, the maxi-  
mum allowable magnetic field of 0.92 kgauss induces a voltage  
of 0.125 V at the receiving coil. This voltage is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
If such an event occurs with the worst case polarity during a  
transmitted pulse, it reduces the received pulse from >0.5 V to  
0.375 V. This voltage is still higher than the 0.25 V sensing  
threshold of the decoder.  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances from the ADN4650/  
ADN4651/ADN4652 transformers. Figure 41 expresses these  
allowable current magnitudes as a function of frequency for  
selected distances. The ADN4650/ADN4651/ADN4652 are  
very insensitive to external fields. Only extremely large, high  
frequency currents, very close to the component, can potentially  
be a concern. For the 1 MHz example noted, a 2.29 kA current must  
be placed 5 mm from the ADN4650/ADN4651/ADN4652 to  
affect component operation.  
Insulation Wear Out  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. It is the working voltage applica-  
ble to tracking that is specified in most standards.  
10k  
DISTANCE = 1m  
1k  
Testing and modeling show that the primary driver of long-term  
degradation is displacement current in the polyimide insulation  
causing incremental damage. The stress on the insulation can be  
broken down into broad categories, such as dc stress, which causes  
very little wear out because there is no displacement current,  
and an ac component time varying voltage stress, which causes  
wear out.  
100  
DISTANCE = 100mm  
10  
DISTANCE = 5mm  
1
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 41. Maximum Allowable Current for Various Current to  
ADN4650/ADN4651/ADN4652 Spacings  
Rev. B | Page 20 of 24  
 
 
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this reflects isolation from line  
voltage. However, many practical applications have combinations  
of 60 Hz ac and dc across the isolation barrier, as shown in  
Equation 1. Because only the ac portion of the stress causes  
wear out, the equation can be rearranged to solve for the ac rms  
voltage, as shown in Equation 2. For insulation wear out with the  
polyimide materials used in this product, the ac rms voltage  
determines the product lifetime.  
The working voltage across the barrier from Equation 1 is  
2
VRMS  
VRMS  
=
VAC RMS2 +VDC  
=
2402 + 4002  
VRMS = 466 V  
This VRMS value is the working voltage used together with the  
material group and pollution degree when looking up the  
creepage required by a system standard.  
2
(1)  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
VRMS  
=
VAC RMS2 +VDC  
or  
2
(2)  
VAC RMS  
=
VRMS2 VDC  
2
VAC RMS  
VAC RMS  
=
=
VRMS2 VDC  
where:  
4662 4002  
V
V
V
RMS is the total rms working voltage.  
AC RMS is the time varying portion of the working voltage.  
DC is the dc offset of the working voltage.  
VAC RMS = 240 V rms  
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for the working  
voltage in Table 11 for the expected lifetime, less than a 60 Hz  
sine wave, and it is well within the limit for a 50-year service life.  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
creepage, clearance, and lifetime of a device, see Figure 42 and  
the following equations.  
Note that the dc working voltage limit in Table 11 is set by the  
creepage of the package as specified in IEC 60664-1. This value  
can differ for specific system level standards.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
TIME  
Figure 42. Critical Voltage Example  
Rev. B | Page 21 of 24  
 
ADN4650/ADN4651/ADN4652  
Data Sheet  
APPLICATIONS INFORMATION  
High speed LVDS interfaces can be isolated using the  
ADN4650/ADN4651/ADN4652 either between components,  
between boards, or at a cable interface. The ADN4650/ADN4651/  
ADN4652 offer full LVDS compliant inputs and outputs, allowing  
increased LVDS output drive strength compared to built-in reduced  
specification LVDS interfaces on other components. The LVDS  
compliant receiver inputs on the ADN4650/ADN4651/ADN4652  
also ensure full compatibility with any LVDS source being  
isolated.  
Newer programmable logic controller (PLC) and input/output  
modules communicate across an LVDS backplane, illustrating a  
board to board LVDS interface, as shown in Figure 45. With a  
daisy-chain type topology for transmit and receive to either  
adjacent node, two ADN4651 (or ADN4652) devices on each  
node can isolate four LVDS channels. The addition of galvanic  
isolation allows a much more robust backplane interface port  
on the PLC or input/output modules.  
With galvanic isolation, even LVDS ports can be treated as full  
external ports, and transmitted along cable runs (see Figure 46),  
even in harsh environments where high common-mode voltages  
may be induced on the cable. The low jitter of the  
ADN4651/ADN4652 ensures that more of the jitter budget can  
be used to account for the cable effects, allowing the cable to be  
as long as possible. The ADN4651/ADN4652 offer a high drive  
strength, fully LVDS compliant output, capable of driving short  
cable runs of a few meters. This is in contrast to alternative  
isolation methods that degrade the LVDS signal quality. The  
data rate can be chosen as appropriate for the cable length; the  
ADN4651/ADN4652 operate not only at 600 Mbps but also at  
any arbitrary data rate down to dc.  
Isolated analog front-end applications provide an example of  
the ADN4650/ADN4651 isolating an LVDS interface between  
components. As shown in Figure 43, two ADN4650 components  
isolate the LVDS interface of the AD7960 analog-to-digital  
converter (ADC), including 600 Mbps data, a 300 MHz echoed  
clock, and a 5 MHz sample clock. Isolation of the AD7960 using  
two ADN4651 components is shown in Figure 44. The ADN4651  
additive phase jitter is sufficiently low that it does not affect the  
ADC performance even when isolating the sample clock. In  
addition, implementing the galvanic isolation improves ADC  
performance by removing digital and power supply noise from  
the field-programmable gate array (FPGA) circuit.  
ADN4650  
D±  
D±  
100  
100Ω  
100Ω  
100Ω  
DCO±  
DCO±  
AD7960  
FPGA/ASIC  
100Ω  
100Ω  
CLK± 100Ω  
CNV± 100Ω  
CLK±  
CNV±  
ADN4650  
Figure 43. Example Isolated Analog Front-End Implementation (Isolated AD7960 Using the ADN4650)  
ADN4651  
D±  
D±  
100Ω  
100Ω  
100Ω  
100Ω  
CLK±  
CLK±  
AD7960  
FPGA/ASIC  
DCO±  
CNV±  
100Ω  
100DCO±  
100Ω  
100Ω  
CNV±  
ADN4651  
Figure 44. Example Isolated Analog Front-End Implementation (Isolated AD7960 Using the ADN4651)  
Rev. B | Page 22 of 24  
 
 
 
Data Sheet  
ADN4650/ADN4651/ADN4652  
MCU 1  
MCU 2  
MCU 3  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
ISOLATION  
ISOLATION  
ISOLATION  
ISOLATION  
ISOLATION  
ISOLATION  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
MODULE 1  
MODULE 2  
MODULE 3  
Figure 45. Example Isolated Backplane Implementation for PLCs and Input/Output Modules Using the ADN4651  
SHIELDED  
TWISTED PAIR  
CABLE  
ADN4651  
ADN4651  
100Ω  
100Ω  
FPGA/  
ASIC  
FPGA/  
ASIC  
100Ω  
100Ω  
Figure 46. Example Isolated LVDS Cable Application Using the ADN4651  
Rev. B | Page 23 of 24  
 
 
ADN4650/ADN4651/ADN4652  
OUTLINE DIMENSIONS  
Data Sheet  
13.00 (0.5118)  
12.60 (0.4961)  
20  
11  
10  
7.60 (0.2992)  
7.40 (0.2913)  
1
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0
.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.10  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 20-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-20)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
ADN4650BRWZ  
ADN4650BRWZ-RL7  
ADN4651BRWZ  
ADN4651BRWZ-RL7  
ADN4652BRWZ  
ADN4652BRWZ-RL7  
EVAL-ADN4650EB1Z  
EVAL-ADN4651EB1Z  
EVAL-ADN4652EB1Z  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RW-20  
RW-20  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
20-Lead Standard Small Outline Package [SOIC_W]  
ADN4650 SOIC_W Evaluation Board  
RW-20  
RW-20  
RW-20  
RW-20  
RW-20  
RW-20  
RW-20  
ADN4651 SOIC_W Evaluation Board  
ADN4652 SOIC_W Evaluation Board  
1 Z = RoHS Compliant Part.  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13677-0-4/16(B)  
Rev. B | Page 24 of 24  
 
 

相关型号:

ADN4652BRWZ

5 kV RMS, 600 Mbps, Dual-Channel LVDS Isolators
ADI

ADN4652BRWZ-RL7

5 kV RMS, 600 Mbps, Dual-Channel LVDS Isolators
ADI

ADN4654

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4654BRSZ

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4654BRSZ-RL7

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4654BRWZ

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4654BRWZ-RL7

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4655

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4655BRWZ

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4655BRWZ-RL7

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4656

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI

ADN4656BRWZ

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators
ADI