ADN4654BRWZ [ADI]

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators;
ADN4654BRWZ
型号: ADN4654BRWZ
厂家: ADI    ADI
描述:

5 kV RMS and 3.75 kV RMS, Dual-Channel LVDS Gigabit Isolators

文件: 总25页 (文件大小:732K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 kV RMS and 3.75 kV RMS,  
Dual-Channel LVDS Gigabit Isolators  
Data Sheet  
ADN4654/ADN4655/ADN4656  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
IN1  
IN2  
5 kV rms and 3.75 kV rms LVDS isolators  
Complies with TIA/EIA-644-A LVDS standard  
Multiple dual-channel configurations  
Any data rate up to 1.1 Gbps switching with low jitter  
4 ns typical propagation delay  
ADN4654  
ISOLATION  
BARRIER  
LDO  
LDO  
V
D
V
DD2  
DD1  
D
D
IN1+  
IN1–  
OUT1+  
OUT1–  
D
2.6 ps rms typical random jitter, rms  
LVDS  
DIGITAL ISOLATOR  
LVDS  
90 ps typical peak-to-peak total jitter at 1.1 Gbps  
2.5 V or 3.3 V supplies  
D
D
D
D
IN2+  
OUT2+  
OUT2–  
IN2–  
−75 dBc power supply ripple rejection, phase spur level  
Glitch immunity  
GND  
GND  
2
1
8 kV IEC 61000-4-2 ESD protection across isolation barrier  
High common-mode transient immunity: >25 kV/μs  
Passes EN 55022 Class B radiated emissions limits with  
1.1 Gbps PRBS  
Safety and regulatory approvals (20-lead SOIC_W package)  
UL (pending): 5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A (pending)  
VDE certificate of conformity (pending)  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Figure 1.  
V
V
IN2  
IN1  
ADN4655  
ISOLATION  
BARRIER  
LDO  
LDO  
V
D
V
DD2  
DD1  
D
D
IN1+  
IN1–  
OUT1+  
OUT1–  
D
LVDS  
DIGITAL ISOLATOR  
LVDS  
D
D
D
D
OUT2+  
IN2+  
IN2–  
OUT2–  
V
IORM = 424 VPEAK  
Fail-safe output high for open, short, and terminated input  
conditions (ADN4655/ADN4656)  
GND  
1
GND  
2
Figure 2.  
Operating temperature range: −40°C to +125°C  
7.8 mm minimum creepage and clearance  
V
V
IN1  
IN2  
ADN4656  
ISOLATION  
BARRIER  
LDO  
LDO  
APPLICATIONS  
V
V
DD1  
DD2  
Isolated video and imaging data  
Analog front-end isolation  
D
D
D
IN1+  
OUT1+  
D
OUT1–  
IN1–  
LVDS  
DIGITAL ISOLATOR  
LVDS  
Data plane isolation  
Isolated high speed clock and data links  
D
D
D
OUT2+  
IN2+  
D
OUT2–  
IN2–  
GND  
GND  
2
1
Figure 3.  
GENERAL DESCRIPTION  
The ADN4654/ADN4655/ADN46561 are signal isolated, low  
voltage differential signaling (LVDS) buffers that operate at up  
to 1.1 Gbps with low jitter. The devices integrate Analog Devices,  
Inc., iCoupler® technology, enhanced for high speed operation to  
provide galvanic isolation of the TIA/EIA-644-A compliant LVDS  
drivers and receivers. This integration allows drop-in isolation of  
an LVDS signal chain.  
the corresponding LVDS driver output when the inputs are  
floating, shorted, or terminated but not driven.  
For high speed operation with low jitter, the LVDS and isolator  
circuits rely on a 2.5 V supply. An integrated on-chip low dropout  
(LDO) regulator can provide the required 2.5 V from an external  
3.3 V power supply. The devices are fully specified over a wide  
industrial temperature range and come in a 20-lead, wide body  
SOIC_W package with 5 kV rms isolation or in a 20-lead SSOP  
package with 3.75 kV rms isolation.  
The ADN4654/ADN4655/ADN4656 comprise multiple channel  
configurations, and the LVDS receivers on the ADN4655 and  
ADN4656 include a fail-safe mechanism to ensure a Logic 1 on  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. C Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................8  
Pin Configurations and Function Descriptions............................9  
Typical Performance Characteristics ........................................... 12  
Test Circuits and Switching Characteristics................................ 17  
Theory of Operation ...................................................................... 18  
Truth Table and Fail-Safe Receiver .......................................... 18  
Isolation ....................................................................................... 19  
Applications Information .............................................................. 20  
PCB Layout ................................................................................. 20  
Application Examples ................................................................ 20  
Magnetic Field Immunity.......................................................... 22  
Insulation Lifetime..................................................................... 22  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Receiver Input Threshold Test Voltages .................................... 4  
Timing Specifications .................................................................. 4  
Insulation and Safety Related Specifications ............................ 5  
Package Characteristics ............................................................... 6  
Regulatory Information............................................................... 6  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics (Pending)............................................................ 7  
Recommended Operating Conditions ...................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
REVISION HISTORY  
6/2019—Rev. B to Rev. C  
Added ADN4656................................................................Universal  
Changes to Features Section............................................................ 1  
Added Figure 3; Renumbered Sequentially .................................. 1  
Added Note 1, Table 8...................................................................... 7  
Added Figure 8 and Table 15; Renumbered Sequentially ......... 11  
Changes to Magnetic Field Immunity Section ........................... 22  
Changes to Ordering Guide .......................................................... 25  
1/2019—Rev. 0 to Rev. A  
Added ADN4655................................................................Universal  
Added Figure 2; Renumbered Sequentially ...................................1  
Changes to General Description Section .......................................1  
Changes to Table 1.............................................................................3  
Changes to Table 3.............................................................................4  
Added Timing Diagram Section and Figure 3 ..............................5  
Changes to Figure 5 Caption and Table 12 Title ...........................9  
Added Figure 6 and Table 13; Renumbered Sequentially......... 10  
Changes to Theory of Operation Section and Truth Table and  
Fail Safe Receiver Section .............................................................. 17  
Added Table 15 ............................................................................... 17  
Moved Isolation Section ................................................................ 18  
Moved PCB Layout Section .......................................................... 19  
Changes to PCB Layout Section................................................... 19  
Changes to Ordering Guide.......................................................... 23  
3/2019—Rev. A to Rev. B  
Changes to Title, Features Section, General Description Section,  
and Figure 2....................................................................................... 1  
Changes to Table 4............................................................................ 5  
Added Table 5.................................................................................... 5  
Changes to Table 7............................................................................ 6  
Changes to Table 8 and Figure 4..................................................... 7  
Changes to Table 10, Table 11, and Table 12................................. 8  
Added Figure 44.............................................................................. 23  
Changes to Ordering Guide .......................................................... 23  
11/2018—Revision 0: Initial Version  
Rev. C | Page 2 of 25  
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
SPECIFICATIONS  
For all minimum and maximum specifications, VDD1 = VDD2 = 2.375 V to 2.625 V, TA = −40°C to +125°C, unless otherwise noted. For all  
typical specifications, VDD1 = VDD2 = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
INPUTS (RECEIVERS)  
Input Threshold  
High  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
See Figure 38 and Table 2  
VTH  
VTL  
100  
mV  
mV  
Low  
−100  
Differential Input Voltage  
Input Common-Mode Voltage  
Input Current, High and Low  
|VID|  
VIC  
IIH, IIL  
100  
0.5|VID|  
−5  
mV  
V
µA  
See Figure 38 and Table 2  
See Figure 38 and Table 2  
2.4 − 0.5|VID|  
+5  
DINx = VDDx or 0 V, other input = 1.2 V, VDDx  
2.5 V or 0 V  
=
Differential Input Capacitance1 CINx  
2
pF  
DINx = 0.4 sin(30 × 106πt) V + 0.5 V, other input =  
1.2 V2  
OUTPUTS (DRIVERS)  
Differential Output Voltage  
|VOD  
|
250  
310  
450  
50  
mV  
See Figure 36 and Figure 37, load resistance (RL) =  
100 Ω  
VOD Magnitude Change  
Offset Voltage  
VOS Magnitude Change  
VOS, Peak to Peak1  
|ΔVOD|  
VOS  
ΔVOS  
VOS(PP)  
IOS  
mV  
V
See Figure 36 and Figure 37, RL = 100 Ω  
See Figure 36, RL = 100 Ω  
See Figure 36, RL = 100 Ω  
See Figure 36, RL = 100 Ω  
DOUTx = 0 V  
1.125  
1.17 1.375  
50  
150  
−20  
12  
mV  
mV  
mA  
mA  
pF  
Output Short-Circuit Current  
|VOD| = 0 V  
Differential Output  
Capacitance1  
COUTx  
5
DOUTx = 0.4 sin(30 × 106πt) V + 0.5 V, other input =  
1.2 V, VDD1 or VDD2 = 0 V  
POWER SUPPLY  
Supply Current  
IDD1, IIN1,  
IDD2, or IIN2  
ADN4655/ADN4656 only  
ADN4654 only  
55  
mA  
mA  
mA  
mA  
V
No output load, inputs with 100 Ω, no applied |VID|  
All outputs loaded, RL = 100 Ω, frequency = 0.55 GHz  
No output load, inputs with 100 Ω, |VID| = 200 mV  
All outputs loaded, RL = 100 Ω, frequency = 0.55 GHz  
No external supply on VDD1 or VDD2  
58  
50  
60  
3.3  
82  
65  
80  
3.6  
LDO Input Range  
VIN1 or  
VIN2  
3.0  
LDO Output Range  
VDD1 or  
VDD2  
2.375  
2.5  
2.625  
V
Power Supply Ripple Rejection, PSRR  
Phase Spur Level  
−75  
dBc  
Phase spur level on DOUTx with 0.55 GHz clock on  
DINx and applied ripple of 100 kHz, 100 mV p-p on  
a 2.5 V supply to VDD1 or VDD2  
COMMON-MODE TRANSIENT  
IMMUNITY3  
|CM|  
25  
50  
kV/µs Common-mode voltage (VCM) = 1000 V, transient  
magnitude = 800 V  
1 These specifications are guaranteed by design and characterization.  
2 t denotes time.  
3 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining any DOUTx+/DOUTx− pin in the same state as the corresponding DINx+/DINx−  
pin (no change in output), or producing the expected transition on any DOUTx+/DOUTx− pin if the applied common-mode transient edge is coincident with a data  
transition on the corresponding DINx+/DINx− pin. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Rev. C | Page 3 of 25  
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
RECEIVER INPUT THRESHOLD TEST VOLTAGES  
Table 2. Test Voltages for Receiver Operation  
Applied Voltages  
DINx+ (V)  
1.25  
1.15  
2.4  
2.3  
0.1  
DINx− (V)  
1.15  
1.25  
2.3  
2.4  
0
Input Voltage, Differential, VID (V) Input Voltage, Common-Mode, VIC (V)  
Driver Output, Differential VOD (mV)  
0.1  
1.2  
>250  
<−250  
>250  
<−250  
>250  
<−250  
>250  
−0.1  
0.1  
−0.1  
0.1  
−0.1  
0.6  
+1.2  
2.35  
+2.35  
0.05  
+0.05  
1.2  
0
1.5  
0.1  
0.9  
0.9  
2.4  
1.5  
1.8  
−0.6  
0.6  
+1.2  
2.1  
<−250  
>250  
1.8  
0.6  
2.4  
0
−0.6  
0.6  
+2.1  
0.3  
<−250  
>250  
0
0.6  
−0.6  
+0.3  
<−250  
TIMING SPECIFICATIONS  
For all minimum and maximum specifications, VDD1 = VDD2 = 2.375 V to 2.625 V, TA = TMIN to TMAX, unless otherwise noted. All typical  
specifications, VDD1 = VDD2 = 2.5 V, T A = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min Typ Max1 Unit  
Test Conditions/Comments  
PROPAGATION DELAY  
tPLH, tPHL  
4
4.5  
ns  
See Figure 39, from any DINx+/DINx− to DOUTx+/DOUTx−  
See Figure 39, across all DOUTx+/DOUTx−  
SKEW  
Duty Cycle2  
Channel to Channel3  
tSK(D)  
tSK(CH)  
100  
ps  
ps  
ps  
ps  
ps  
150 300  
200 500  
500  
ADN4654 only  
ADN4655 and ADN4656 only  
ADN4654 to ADN4654 only  
ADN4654, ADN4655, ADN4656, or combinations  
See Figure 39, for any DOUTx+/DOUTx−  
Part to Part4  
tSK(PP)  
600  
JITTER5  
Random Jitter, RMS6 (1σ)  
Deterministic Jitter, Peak to tDJ(PP)  
Peak7, 8  
With Crosstalk  
tRJ(RMS)  
2.6  
50  
4.8  
116  
ps rms 0.55 GHz clock input  
ps  
1.1 Gbps, 223 − 1 pseudorandom bit stream (PRBS)  
tDJC(PP)  
tTJ(PP)  
50  
90  
ps  
ps  
1.1 Gbps, 223 − 1 PRBS  
0.55 GHz, 1.1 Gbps, 223 − 1 PRBS9  
Total Jitter at Bit Error Rate  
(BER) 1 × 10−12  
171  
Additive Phase Jitter  
tADDJ  
387  
288  
fs rms  
fs rms  
ps  
100 Hz to 100 kHz, output frequency (fOUT) = 10 MHz10  
12 kHz to 20 MHz, fOUT = 0.55 GHz11  
RISE AND FALL TIME  
FAIL-SAFE DELAY12  
tR, tF  
350  
1.2  
See Figure 39, any DOUTx+/DOUTx−, 20% to 80%, RL = 100 Ω, load  
capacitance (CL) = 5 pF  
ADN4655 and ADN4656 only; see Figure 39 and Figure 4,  
any DOUTx+/DOUTx−, RL = 100 Ω  
tFSH, tFSL  
1
µs  
MAXIMUM DATA RATE  
1.1  
1.25  
Gbps  
1 These specifications are guaranteed by design and characterization.  
2 Duty cycle or pulse skew is the magnitude of the maximum difference between tPLH and tPHL for any channel of a device, that is, |tPLHx – tPHLx|, where x denotes either  
Channel 1 or Channel 2 propagation delay.  
3 Channel to channel or output skew is the difference between the largest and smallest values of tPLHx within a device or the difference between the largest and smallest  
values of tPHLx within a device, whichever of the two is greater.  
4 Part to part output skew is the difference between the largest and smallest values of tPLHx across multiple devices or the difference between the largest and smallest  
values of tPHLx across multiple devices, whichever of the two is greater.  
5 Jitter parameters are guaranteed by design and characterization. Values do not include stimulus jitter. VID = 400 mV p-p, tR = tF = 0.3 ns (20% to 80%).  
6 This specification is measured over a population of ~7,000,000 edges.  
7 Peak-to-peak jitter specifications include jitter due to pulse skew (tSK(D)).  
8 This specification is measured over a population of ~3,000,000 edges.  
9 Using the formula: tTJ(PP) = 14 × tRJ(RMS) + tDJ(PP)  
.
10 With input phase jitter of 250 fs rms subtracted.  
11 With input phase jitter of 100 fs rms subtracted.  
12 The fail-safe delay is the delay before DOUTx is switched high to reflect an idle input to DINx (|VID| < 100 mV, with open, short, or terminated input condition).  
Rev. C | Page 4 of 25  
 
 
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
Timing Diagram  
>1.3V  
1.2V  
D
INx+  
(D  
= 1.2V)  
INx–  
<1.1V  
+0.1V  
V
0V  
ID  
–0.1V  
D
OUTx+  
OUTx–  
~1.3V  
D
~1.0V  
~ +0.3V  
+0.1V  
+0.1V  
V
0V  
OD  
~ –0.3V  
tFSH  
tFSL  
Figure 4. Fail-Safe Timing Diagram  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 4. 20-Lead SOIC_W Package  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5
7.8  
kV rms  
1 minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
7.8  
8.1  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
22  
>400  
II  
µm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Table 5. 20-Lead SSOP Package  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation  
Voltage  
3.75  
kV rms  
1 minute duration  
Minimum Clearance  
Minimum Creepage  
Minimum PCB Clearance  
L (I01)  
L (I02)  
L (PCB)  
5.3  
mm min  
mm min  
mm min  
Measured from input terminals to output terminals, shortest distance  
through air  
Measured from input terminals to output terminals, shortest distance path  
along body  
Measured from input terminals to output terminals, shortest distance  
through air, line of sight, in the PCB mounting plane  
5.3  
5.6  
Minimum Internal Clearance  
Comparative Tracking Index  
Material Group  
22  
>400  
II  
µm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Rev. C | Page 5 of 25  
 
 
 
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
PACKAGE CHARACTERISTICS  
Table 6.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
1013  
Ω
CI-O  
CI  
2.2  
3.7  
pF  
pF  
Frequency = 1 MHz  
1 The device is considered a 2-terminal device: Pin 1 through Pin 10 are shorted together, and Pin 11 through Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
See Table 12 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-  
isolation waveforms and insulation levels.  
Table 7.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
To Be Recognized Under UL 1577  
To be approved under CSA  
To be certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Reinforced insulation, VIORM = 424 VPEAK, VIOSM = 8000 VPEAK  
File 2471900-4880-0001  
Component Recognition Program1 Component Acceptance Notice 5A  
Single Protection, Isolation Voltage  
20-Lead SOIC, 5000 V rms  
20-Lead SSOP, 3750 V rms  
File E214100  
File 205078  
1 In accordance with UL 1577, each ADN4654/ADN4655/ADN4656 is proof tested by applying an insulation test voltage ≥ 6000 V rms (20-lead SOIC_W) or ≥ 4500 V rms (20-lead  
SSOP) for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADN4654/ADN4655/ADN4656 is proof tested by applying an insulation test voltage ≥ 795 VPEAK for 1 sec (partial discharge  
detection limit = 5 pC).  
Rev. C | Page 6 of 25  
 
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS (PENDING)  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of  
the safety data.  
Table 8.  
Description  
Test Conditions/Comments1  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 600 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to IV  
I to IV  
I to III  
40/125/21  
2
VIORM  
VPD (M)  
424  
795  
VPEAK  
VPEAK  
VIORM × 1.875 = VPD (M), 100% production test,  
tINI = tM = 1 sec, partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
VPD (M)  
VIORM × 1.5 = VPD (M), tINI = 60 sec, tM = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = VPD (M), tINI = 60 sec, tM = 10 sec,  
partial discharge < 5 pC  
636  
VPEAK  
VPEAK  
VPEAK  
After Input or Safety Test Subgroup 2 and  
Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Basic  
509  
VIOTM  
7000  
VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs, 50% fall time  
VPEAK = 12.8 kV, 1.2 μs rise time, 50 μs, 50% fall time  
VIOSM  
VIOSM  
10,000  
8000  
VPEAK  
VPEAK  
Reinforced  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 5)  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
20-Lead SOIC  
20-Lead SSOP  
Insulation Resistance at TS  
TS  
PS  
150  
°C  
2.78  
1.8  
>109  
W
W
Ω
VIO = 500 V  
RS  
1 For information about tM, tINI, and VIO, see DIN V VDE V 0884-10.  
3.0  
RECOMMENDED OPERATING CONDITIONS  
20-LEAD SOIC  
2.5  
Table 9.  
Parameter  
Symbol  
Rating  
2.0  
Operating Temperature  
Supply Voltages  
TA  
−40°C to +125°C  
20-LEAD SSOP  
1.5  
1.0  
0.5  
0
Supply to LDO Regulator  
LDO Bypass, VINx Shorted to VDDx VDD1, VDD2 2.375 V to 2.625 V  
VIN1, VIN2  
3.0 V to 3.6 V  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 5. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Rev. C | Page 7 of 25  
 
 
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 10.  
THERMAL RESISTANCE  
Thermal performance is directly linked to PCB design and  
operation environment. Close attention to PCB thermal design  
is required.  
Parameter  
Rating  
VIN1 to GND1/VIN2 to GND2  
VDD1 to GND1/VDD2 to GND2  
Input Voltage (DINx+, DINx−) to GNDx on  
the Same Side  
−0.3 V to +6.5 V  
−0.3 V to +2.8 V  
−0.3 V to VDD + 0.3 V  
θ
JA is the natural convection junction to ambient thermal  
resistance measured in a one-cubic foot sealed enclosure.  
Output Voltage (DOUTx+, DOUTx−) to  
GNDx on the Same Side  
Short-Circuit Duration (DOUTx+, DOUTx−  
−0.3 V to VDD + 0.3 V  
Continuous  
Table 11. Thermal Resistance  
Package Type1  
RW-20  
θJA  
Unit  
°C/W  
°C/W  
)
to GNDx on the Same Side  
45.7  
69.6  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature (TJ Maximum)  
Power Dissipation  
−40°C to +125°C  
−65°C to +150°C  
150°C  
RS-20  
1 Test Condition 1: thermal impedance simulated with 4-layer standard JEDEC PCB.  
ESD CAUTION  
(TJ maximum − TA)/θJA  
Electrostatic Discharge (ESD)  
Human Body Model (All Pins to  
Respective GNDx, 1.5 kΩ, 100 pF)  
4 kV  
IEC 61000-4-2 (LVDS Pins to Isolated  
GNDx Across Isolation Barrier)  
20-Lead SOIC  
20-Lead SSOP  
8 kV  
7 kV  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 12. Maximum Continuous Working Voltage1  
Rating  
Parameter  
RW-20  
RS-20  
Constraint  
AC Voltage  
Bipolar Waveform  
Basic Insulation  
Reinforced Insulation  
Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
424 VPEAK  
424 VPEAK  
424 V PEAK  
424 V PEAK  
50-year minimum insulation lifetime for 1% failure  
50-year minimum insulation lifetime for 1% failure  
848 VPEAK  
875 VPEAK  
848 V PEAK  
620 V PEAK  
50-year minimum insulation lifetime for 1% failure  
Lifetime limited by package creepage, maximum approved working voltage  
Basic Insulation  
Reinforced Insulation  
1079 VPEAK  
536 VPEAK  
754 V PEAK  
380 V PEAK  
Lifetime limited by package creepage, maximum approved working voltage  
Lifetime limited by package creepage, maximum approved working voltage  
1 The maximum continuous working voltage refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for  
more details.  
Rev. C | Page 8 of 25  
 
 
 
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
9
20  
V
IN1  
IN2  
GND  
19 GND  
1
2
V
18  
V
DD2  
DD1  
GND  
17 GND  
1
IN1+  
IN1–  
IN2+  
IN2–  
2
ADN4654  
D
D
D
D
16  
15  
14  
13  
12  
D
D
D
D
OUT1+  
OUT1–  
OUT2+  
OUT2–  
DD2  
TOP VIEW  
(Not to Scale)  
V
V
DD1  
GND 10  
11 GND  
1
2
Figure 6. ADN4654 Pin Configuration  
Table 13. ADN4654 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VIN1  
Optional 3.3 V Power Supply and LDO Input for Side 1. Bypass VIN1 to GND1 using a 1 μF capacitor. Alternatively, if using  
a 2.5 V supply, connect VIN1 directly to VDD1  
.
2, 4, 10  
3, 9  
GND1  
VDD1  
Ground, Side 1.  
2.5 V Power Supply for Side 1. Connect both pins externally and bypass to GND1 with 0.1 μF capacitors. If supplying  
3.3 V to VIN1, connect a 1 μF capacitor between Pin 3 and GND1 for proper regulation of the 2.5 V output of the  
internal LDO regulator.  
5
6
7
8
DIN1+  
DIN1−  
DIN2+  
DIN2−  
GND2  
VDD2  
Noninverted Differential Input 1.  
Inverted Differential Input 1.  
Noninverted Differential Input 2.  
Inverted Differential Input 2.  
Ground, Side 2.  
2.5 V Power Supply for Side 2. Connect both pins externally and bypass to GND2 with 0.1 μF capacitors. If supplying  
3.3 V to VIN2, connect a 1 µF capacitor between Pin 18 and GND2 for proper regulation of the 2.5 V output of the  
internal LDO regulator.  
11, 17, 19  
12, 18  
13  
14  
15  
16  
20  
DOUT2−  
DOUT2+  
DOUT1−  
DOUT1+  
VIN2  
Inverted Differential Output 2.  
Noninverted Differential Output 2.  
Inverted Differential Output 1.  
Noninverted Differential Output 1.  
Optional 3.3 V Power Supply and LDO Input for Side 2. Bypass VIN2 to GND2 using a 1 μF capacitor. Alternatively, if using  
a 2.5 V supply, connect VIN2 directly to VDD2  
.
Rev. C | Page 9 of 25  
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
V
1
2
3
4
5
6
7
8
9
20  
V
IN2  
IN1  
GND  
19 GND  
1
2
V
18 V  
DD2  
DD1  
GND  
17 GND  
1
IN1+  
IN1–  
2
OUT1+  
OUT1–  
IN2+  
ADN4655  
D
D
16  
15  
14  
13  
12  
D
D
D
D
TOP VIEW  
(Not to Scale)  
D
D
OUT2+  
OUT2–  
IN2–  
V
V
DD2  
DD1  
GND 10  
11 GND  
1
2
Figure 7. ADN4655 Pin Configuration  
Table 14. ADN4655 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VIN1  
Optional 3.3 V Power Supply and LDO Input for Side 1. Bypass VIN1 to GND1 using a 1 μF capacitor. Alternatively, if using  
a 2.5 V supply, connect VIN1 directly to VDD1  
.
2, 4, 10  
3, 9  
GND1  
VDD1  
Ground, Side 1.  
2.5 V Power Supply for Side 1. Connect both pins externally and bypass to GND1 with 0.1 μF capacitors. If supplying  
3.3 V to VIN1, connect a 1 μF capacitor between Pin 3 and GND1 for proper regulation of the 2.5 V output of the  
internal LDO regulator.  
5
6
7
8
DIN1+  
DIN1−  
DOUT2+  
DOUT2−  
Noninverted Differential Input 1.  
Inverted Differential Input 1.  
Noninverted Differential Output 2.  
Inverted Differential Output 2.  
Ground, Side 2.  
11, 17, 19 GND2  
12, 18  
VDD2  
2.5 V Power Supply for Side 2. Connect both pins externally and bypass to GND2 with 0.1 μF capacitors. If supplying  
3.3 V to VIN2, connect a 1 μF capacitor between Pin 18 and GND2 for proper regulation of the 2.5 V output of the  
internal LDO regulator.  
13  
14  
15  
16  
20  
DIN2−  
DIN2+  
DOUT1−  
DOUT1+  
VIN2  
Inverted Differential Input 2.  
Noninverted Differential Input 2.  
Inverted Differential Output 1.  
Noninverted Differential Output 1.  
Optional 3.3 V Power Supply and LDO Input for Side 2. Bypass VIN2 to GND2 using a 1 μF capacitor. Alternatively, if using  
a 2.5 V supply, connect VIN2 directly to VDD2  
.
Rev. C | Page 10 of 25  
Data Sheet  
ADN4654/ADN4655/ADN4656  
V
1
2
3
4
5
6
7
8
9
20  
V
IN2  
IN1  
GND  
19 GND  
1
2
2
V
18  
V
DD2  
DD1  
GND  
17 GND  
1
ADN4656  
TOP VIEW  
(Not to Scale)  
D
D
16  
15  
14  
13  
12  
D
D
D
D
OUT1+  
OUT1–  
IN1+  
IN1–  
D
D
IN2+  
OUT2+  
OUT2–  
DD2  
IN2–  
V
V
DD1  
GND 10  
11 GND  
1
2
Figure 8. ADN4656 Pin Configuration  
Table 15. ADN4656 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VIN1  
Optional 3.3 V Power Supply and LDO Input for Side 1. Bypass VIN1 to GND1 using a 1 μF capacitor. Alternatively, if using  
a 2.5 V supply, connect VIN1 directly to VDD1  
.
2, 4, 10  
3, 9  
GND1  
VDD1  
Ground, Side 1.  
2.5 V Power Supply for Side 1. Connect both pins externally and bypass to GND1 with 0.1 μF capacitors. If supplying  
3.3 V to VIN1, connect a 1 μF capacitor between Pin 3 and GND1 for proper regulation of the 2.5 V output of the  
internal LDO regulator.  
5
6
7
8
DOUT1+  
DOUT1−  
DIN2+  
Noninverted Differential Output 1.  
Inverted Differential Output 1.  
Noninverted Differential Input 2.  
Inverted Differential Input 2.  
Ground, Side 2.  
DIN2−  
11, 17, 19 GND2  
12, 18  
VDD2  
2.5 V Power Supply for Side 2. Connect both pins externally and bypass to GND2 with 0.1 μF capacitors. If supplying  
3.3 V to VIN2, connect a 1 μF capacitor between Pin 18 and GND2 for proper regulation of the 2.5 V output of the  
internal LDO regulator.  
13  
14  
15  
16  
20  
DOUT2−  
DOUT2+  
DIN1−  
DIN1+  
VIN2  
Inverted Differential Output 2.  
Noninverted Differential Output 2.  
Inverted Differential Input 1.  
Noninverted Differential Input 1.  
Optional 3.3 V Power Supply and LDO Input for Side 2. Bypass VIN2 to GND2 using a 1 μF capacitor. Alternatively, if using  
a 2.5 V supply, connect VIN2 directly to VDD2  
.
Rev. C | Page 11 of 25  
ADN4654/ADN4655/ADN4656  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD1 = VDD2 = 2.5 V, T A = 25°C, RL = 100 Ω, 0.55 GHz input with |VID| = 200 mV, and VIC = 1.1 V for ADN4654, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
I
I
I
I
DD1  
DD2  
IN1  
DD1  
DD2  
IN1  
IN2  
IN2  
0
50 100 150 200 250 300 350 400 450 500 550  
INPUT CLOCK FREQUENCY (MHz)  
–50  
–25  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE (°C)  
Figure 9. Supply Current vs. Input Clock Frequency  
(DIN1 Switching, DIN2 Not Switching)  
Figure 12. Supply Current vs. Ambient Temperature  
(DIN1 and DIN2 with 550 MHz Clock Inputs)  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
(D  
(D  
(D  
(D  
ACTIVE)  
ACTIVE)  
ACTIVE)  
ACTIVE)  
I
IN1  
IN2  
IN1  
IN2  
IN1±  
IN1±  
IN2±  
IN2±  
DD1  
DD2  
IN1  
IN2  
I
I
I
3.00  
3.15  
3.30  
3.45  
(V)  
3.60  
0
50 100 150 200 250 300 350 400 450 500 550  
INPUT CLOCK FREQUENCY (MHz)  
SUPPLY VOLTAGE, V /V  
IN1 IN2  
Figure 10. Supply Current vs. Input Clock Frequency  
(DIN1 and DIN2 Switching)  
Figure 13. Supply Current vs. Supply Voltage, VIN1/VIN2  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
DD1  
DD2  
IN1  
I
I
I
I
(D  
(D  
(D  
(D  
ACTIVE)  
ACTIVE)  
ACTIVE)  
ACTIVE)  
DD1  
DD2  
DD1  
DD2  
IN1±  
IN1±  
IN2±  
IN2±  
IN2  
–50  
–25  
0
25  
50  
75  
100  
125  
2.35  
2.50  
SUPPLY VOLTAGE, V  
2.65  
AMBIENT TEMPERATURE (°C)  
/V  
(V)  
DD1 DD2  
Figure 11. Supply Current vs. Ambient Temperature  
(DIN1 with 550 MHz Clock Input, DIN2 Not Switching)  
Figure 14. Supply Current vs. Supply Voltage, VDD1/VDD2  
Rev. C | Page 12 of 25  
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
V
V
V
V
CHANNEL 1  
CHANNEL 2  
DD1  
DD2  
OH  
OH  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
2.35  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
LDO INPUT VOLTAGE, V /V  
(V)  
SUPPLY VOLTAGE, V  
(V)  
IN1 IN2  
DD1 DD2  
Figure 15. LDO Output Voltage, VDD1/VDD2 vs. LDO Input Voltage, VIN1/VIN2  
Figure 18. Driver Output High Voltage, VOH vs. Supply Voltage, VDD1/VDD2  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
350  
340  
330  
320  
310  
300  
290  
280  
270  
V
V
CHANNEL 1  
CHANNEL 2  
V
V
CHANNEL 1  
CHANNEL 2  
260  
250  
OD  
OD  
OL  
OL  
0.90  
2.35  
0
50 100 150 200 250 300 350 400 450 500 550  
INPUT CLOCK FREQUENCY (MHz)  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
SUPPLY VOLTAGE, V  
/V  
(V)  
DD1 DD2  
Figure 19. Driver Output Low Voltage, VOL vs. Supply Voltage, VDD1/VDD2  
Figure 16. Driver Differential Output Voltage vs. Input Clock Frequency  
1.375  
450  
400  
350  
300  
250  
200  
150  
100  
1.325  
1.275  
1.225  
1.175  
V
V
CHANNEL 1  
CHANNEL 2  
OS  
OS  
50  
0
V
V
CHANNEL 1  
CHANNEL 2  
OD  
OD  
1.125  
2.35  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
50  
75  
100  
OUTPUT LOAD, R (Ω)  
125  
150  
SUPPLY VOLTAGE, V  
(V)  
DD1 DD2  
L
Figure 20. Driver Output Offset Voltage, VOS vs. Supply Voltage, VDD1/VDD2  
Figure 17. Driver Differential Output Voltage, VOD vs. Output Load, RL  
Rev. C | Page 13 of 25  
ADN4654/ADN4655/ADN4656  
Data Sheet  
3.60  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
tPHL CHANNEL 2  
tPHL CHANNEL 2  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tPLH CHANNEL 1  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tPLH CHANNEL 1  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
0
0.5  
1.0  
1.5  
2.0  
2.5  
SUPPLY VOLTAGE, V  
AND V  
(V)  
RECEIVER INPUT OFFSET VOLTAGE, V (V)  
DD1  
DD2  
IC  
Figure 21. Differential Propagation Delay vs. Supply Voltage, VDD1 and VDD2  
Figure 24. Differential Propagation Delay vs. Receiver Input Offset Voltage, VIC  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
240  
tF CHANNEL 2  
tR CHANNEL 2  
tF CHANNEL 1  
tR CHANNEL 1  
220  
200  
180  
160  
140  
120  
tPHL CHANNEL 2  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
tPLH CHANNEL 1  
3.2  
3.1  
3.0  
–50  
–25  
0
25  
50  
75  
100  
125  
2.35  
2.40  
2.45  
2.50  
2.55  
/V  
2.60  
2.65  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE, V  
(V)  
DD1 DD2  
Figure 25. Differential Output Transition Time vs. Supply Voltage, VDD1/VDD2  
Figure 22. Differential Propagation Delay vs. Ambient Temperature  
240  
220  
200  
180  
3.60  
3.55  
3.50  
3.45  
160  
3.40  
tF CHANNEL 2  
tR CHANNEL 2  
tF CHANNEL 1  
tR CHANNEL 1  
tPHL CHANNEL 2  
tPLH CHANNEL 2  
tPHL CHANNEL 1  
140  
3.35  
tPLH CHANNEL 1  
1.0 1.2  
DIFFERENTIAL INPUT VOLTAGE, V (V)  
120  
–50  
3.30  
–25  
0
25  
50  
75 100 125  
0
0.2  
0.4  
0.6  
0.8  
1.4  
AMBIENT TEMPERATURE (°C)  
ID  
Figure 23. Differential Propagation Delay vs. Differential Input Voltage, VID  
Figure 26. Differential Output Transition Time vs. Ambient Temperature  
Rev. C | Page 14 of 25  
Data Sheet  
ADN4654/ADN4655/ADN4656  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
tSK(D) CHANNEL 2  
tSK(D) CHANNEL 1  
CHANNEL 1  
CHANNEL 2  
0
2.35  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.40  
2.45  
2.50  
2.55  
AND V  
2.60  
(V)  
DD2  
2.65  
SUPPLY VOLTAGE, V  
SUPPLY VOLTAGE, V  
/V  
(V)  
DD1  
DD1 DD2  
Figure 30. Deterministic Jitter vs. Supply Voltage, VDD1/VDD2  
Figure 27. Duty Cycle Skew, tSK(D) vs. Supply Voltage, VDD1 and VDD2  
30  
25  
20  
15  
10  
5
90  
CHANNEL 1  
CHANNEL 2  
80  
70  
60  
50  
40  
30  
20  
10  
0
tSK(D) CHANNEL 2  
tSK(D) CHANNEL 1  
75 100 125  
AMBIENT TEMPERATURE (°C)  
0
–50  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
–25  
0
25  
50  
AMBIENT TEMPERATURE (°C)  
Figure 31. Deterministic Jitter vs. Ambient Temperature  
Figure 28. Duty Cycle Skew, tSK(D) vs. Ambient Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CHANNEL 1  
CHANNEL 2  
200k  
180k  
160k  
140k  
120k  
100k  
80k  
60k  
40k  
20k  
0
0
200  
400  
600  
800  
1000  
1200  
–80  
–60  
–40  
–20  
0
20  
40  
60  
TIME (ps)  
DATA RATE (Mbps)  
Figure 29. Deterministic Jitter vs. Data Rate  
Figure 32. Time Interval Error (TIE) Histogram for DOUT1 at 550 MHz  
Rev. C | Page 15 of 25  
ADN4654/ADN4655/ADN4656  
Data Sheet  
CH1 50mV CH2 50mV  
300ps/DIV  
CH1 50mV CH2 50mV  
300ps/DIV  
DELAY 61.0828ns  
DELAY 61.0828ns  
Figure 33. Eye Diagram for DOUT1 at 300 MHz  
Figure 35. Eye Diagram for DOUT2 at 300 MHz  
400  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–600  
–400  
–200  
0
200  
400  
600  
TIME (ps)  
Figure 34. Eye Diagram for DOUT1 at 550 MHz  
Rev. C | Page 16 of 25  
Data Sheet  
ADN4654/ADN4655/ADN4656  
TEST CIRCUITS AND SWITCHING CHARACTERISTICS  
D
D
D
INx+  
OUTx+  
R
V
V
OD  
ID  
V
V
OUT+  
IN+  
D
D
D
D
INx+  
OUTx+  
D
R /2  
D
D
OUTx–  
L
INx–  
V
V
OUT–  
IN–  
R
V
V
OD  
V
V
OS  
R /2  
L
NOTES  
1. V = V  
INx–  
OUTx–  
– V  
ID  
IN+  
IN–  
2. V = (V  
+ V )/2  
IC  
IN+  
IN–  
3. V  
= V  
– V  
OD  
OUT+ OUT–  
4. V = (V  
+ V  
)/2  
OS  
OUT+  
OUT–  
Figure 36. Driver Test Circuit  
Figure 38. Voltage Definitions  
D
D
C
L
D
D
D
D
INx+  
OUTx+  
D
INx+  
OUTx+  
3.75kΩ  
R
L
V
TEST  
V
SIGNAL  
R
R
D
R
L
GENERATOR  
V
V
OD  
3.75kΩ  
D
C
L
50Ω  
50Ω  
INx–  
D
OUTx–  
INx–  
OUTx–  
NOTES  
NOTES  
1. V  
= 0V TO 2.4V  
1. C INCLUDES PROBE AND JIG CAPACITANCE.  
TEST  
L
Figure 37. Driver Test Circuit (Full Load Across Common-Mode Range)  
Figure 39. Timing Test Circuit  
Rev. C | Page 17 of 25  
 
 
 
 
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
THEORY OF OPERATION  
The ADN4654/ADN4655/ADN4656 are TIA/EIA-644-A LVDS  
compliant isolated buffers. LVDS signals applied to the inputs are  
transmitted on the outputs of the buffer, and galvanic isolation  
is integrated between the two sides of the device. This integration  
allows drop-in isolation of the LVDS signal chains.  
can detect either state), as shown in Table 16 for the ADN4654. The  
ADN4655/ADN4656 incorporates a fail-safe circuit to ensure  
that the LVDS outputs are in a known state (logic high) when  
the input state is undefined (−100 mV < VID < +100 mV), as  
shown in Table 17.  
The LVDS receiver detects the differential voltage present across  
a termination resistor on an LVDS input. An integrated digital  
isolator transmits the input state across the isolation barrier,  
and an LVDS driver outputs the same state as the input.  
This input state occurs when the inputs are floating (unconnected  
with no termination resistor), shorted, or when there is no  
active driver connected to the inputs with a termination resistor  
present. Open-circuit, short-circuit, and terminated or idle bus  
fail-safes, respectively, ensure a known output state for these  
conditions, as implemented by the ADN4655/ADN4656.  
When there is a positive differential voltage of ≥100 mV across  
any DINx pin, the corresponding DOUTx+ pin sources current.  
This current flows across the connected transmission line and  
termination at the receiver at the far end of the bus, while  
DOUTx− sinks the return current. When there is a negative  
differential voltage of ≤−100 mV across any DINx pin, the  
corresponding DOUTx+ pin sinks current and the DOUTx− pin  
sources current. Table 16 and Table 17 show these input and  
output combinations.  
After these input states (−100 mV < VID < +100 mV) trigger  
the fail-safe circuit, there is a delay of up to 1.2 µs before the  
output is guaranteed to be high (VOD ≥ 250 mV). During this  
time, the output may transition to, or stay in, a logic low state  
(VOD ≤ −250 mV).  
The fail-safe circuit triggers as soon as the input differential voltage  
remains between +100 mV and −100 mV for some nanoseconds.  
Therefore, very slow rise and fall times on the input signal,  
outside typical LVDS operation (350 ps maximum tR/tF), can  
potentially trigger the fail-safe circuit on a high to low crossover.  
The output drive current is between 2.5 mA and 4.5 mA  
(typically 3.1 mA), developing between 250 mV and 450 mV  
across a 100 Ω termination resistor (RT). The received voltage is  
centered around 1.2 V. Because the differential voltage (VID)  
reverses polarity, the peak-to-peak voltage swing across RT is  
twice the differential voltage magnitude (|VID|).  
At the minimum |VID| of 100 mV for normal operation, the rise  
and fall time must be ≤5 ns to avoid triggering a fail-safe state.  
Increasing |VID| to 200 mV allows an input rise and fall time of  
up to 10 ns without triggering a fail-safe state. For speed applica-  
tions with restricting data rates less than 30 Mbps, where slow  
high to low transitions in excess of this limit are expected, use  
external biasing resistors to introduce a minimum |VID| of  
100 mV if the fail-safe cannot trigger.  
TRUTH TABLE AND FAIL-SAFE RECEIVER  
The LVDS standard, TIA/EIA-644-A, defines normal receiver  
operation under two conditions: an input differential voltage  
of ≥+100 mV corresponding to one logic state, and a voltage of  
≤−100 mV for the other logic state. Between these thresholds,  
standard LVDS receiver operation is undefined (the LVDS receiver  
Table 16. ADN4654 Input and Output Operation  
Input (DINx  
)
Output (DOUTx  
VOD (mV)  
≥250  
≤−250  
Indeterminate  
≥250  
)
Powered On  
VID (mV)  
≥100  
≤−100  
Logic  
Powered On  
Logic  
Yes  
Yes  
Yes  
No  
High  
Low  
Indeterminate  
Don’t care  
Yes  
Yes  
Yes  
Yes  
High  
Low  
Indeterminate  
High  
−100 < VID < +100  
Don’t care  
Table 17. ADN4655/ADN4656 Input and Output Operation  
Input (DINx  
)
Output (DOUTx )  
Powered On  
VID (mV)  
≥100  
≤−100  
−100 < VID < +100  
Don’t care  
Logic  
Powered On  
VOD (mV)  
≥250  
≤−250  
≥250  
Logic  
High  
Low  
High  
High  
Yes  
Yes  
Yes  
No  
High  
Low  
Indeterminate  
Don’t care  
Yes  
Yes  
Yes  
Yes  
≥250  
Rev. C | Page 18 of 25  
 
 
 
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
On power-up, the output state may initially be in the incorrect  
dc state if there are no input transitions. The output state is  
corrected within 1 µs by the refresh pulses.  
ISOLATION  
In response to any change in the input state detected by the  
integrated LVDS receiver, an encoder circuit sends narrow (~1 ns)  
pulses to a decoder circuit using integrated transformer coils.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses that indicate input transitions. The decoder state  
determines the LVDS driver output state in normal operation,  
which reflects the isolated LVDS buffer input state.  
If the decoder receives no internal pulses for more than  
approximately 1 µs, the device assumes that the input side is  
unpowered or nonfunctional, in which case, the output is set to  
a positive differential voltage (logic high).  
In the absence of input transitions for more than approximately  
1 µs, a periodic set of refresh pulses, indicative of the correct input  
state, ensures dc correctness at the output (including the fail-safe  
output state, if applicable).  
Rev. C | Page 19 of 25  
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
APPLICATIONS INFORMATION  
When the integrated LDO regulator is used, bypass capacitors  
of 1 µF are required on the VINx pins and on the nearest VDDx  
pins (LDO output), as shown in Figure 41.  
PCB LAYOUT  
The ADN4654/ADN4655/ADN4656 can operate with high  
speed LVDS signals up to 0.55 GHz clock, or 1.1 Gbps nonreturn to  
zero (NRZ) data. When operating with such high frequencies,  
apply best practices for the LVDS trace layout and termination.  
Place a 100 Ω termination resistor as close as possible to the  
receiver, across the DINx+ and DINx− pins.  
100nF  
100nF  
1µF  
1µF  
1µF  
1µF  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
IN2  
V
IN1  
GND  
GND  
1
2
V
3
V
DD2  
DD1  
4
GND  
D
GND  
2
1
ADN4654  
5
D
Controlled 50 Ω impedance traces are needed on LVDS signal  
lines for full signal integrity, reduced system jitter, and minimizing  
electromagnetic interference (EMI) from the PCB. Trace widths,  
lateral distance within each pair, and distance to the ground plane  
underneath all must be chosen appropriately. Via fencing to the  
PCB ground between pairs is also a best practice to minimize  
crosstalk between adjacent pairs.  
IN1+  
IN1–  
IN2+  
OUT1+  
OUT1–  
OUT2+  
OUT2–  
TOP VIEW  
100Ω  
100Ω  
6
D
D
(Not to Scale)  
D
D
D
7
8
D
IN2–  
V
9
V
DD2  
DD1  
10  
GND  
GND  
2
1
100nF  
100nF  
Figure 41. Required PCB Layout When Using LDO Regulator (3.3 V Supply)  
APPLICATION EXAMPLES  
The ADN4654/ADN4655/ADN4656 pass EN 55022 Class B  
emissions limits without extra considerations required for the  
isolator when operating with up to 1.1 Gbps PRBS data. When  
isolating high speed clocks (for example, 0.55 GHz), a reduced  
PCB clearance (isolation gap) may be required with the 20-lead  
SOIC_W model to reduce dipole antenna effects and provide  
sufficient margin below Class B emissions limits.  
High speed LVDS interfaces for the analog front-end (AFE),  
processor to processor communication, or video and imaging data  
can be isolated using the ADN4654, as an example, between  
components, between boards, or at a cable interface. The ADN4654  
provides the galvanic isolation required for robust external ports,  
and the low jitter and high drive strength of the device allow  
communication along short cable runs of a few meters. High  
common-mode immunity ensures communication integrity  
even in harsh, noisy environments, and isolation can protect  
against electromagnetic compatibility (EMC) transients up to  
8 kV peak, such as ESD, electrical fast transient (EFT), and  
surge. The ADN4654 can isolate a range of video and imaging  
protocols, including protocols that use current mode logic  
(CML) rather than LVDS for the physical layer. One example is  
High-Definition Multimedia Interface (HDMI), where  
ac coupling and biasing and termination resistor networks are  
used as shown in Figure 42 to convert between CML (used by  
the transition minimized differential signaling (TMDS) data  
and clock lanes) and the LVDS levels required by the ADN4654.  
Additional Analog Devices isolator components, such as the  
ADuM1250/ADuM1251 I2C isolators, can be used to isolate  
control signals and power (ADuM5020 isoPower integrated,  
isolated dc-to-dc converter). This circuit supports resolutions  
up to 720p.  
The best practice for high speed PCB design avoids any other  
emissions from PCBs in applications that use the ADN4654/  
ADN4655/ADN4656. Take care when configuring off-board  
connections, where switching transients from high speed LVDS  
signals (clocks in particular) can conduct onto cabling, resulting  
in radiated emissions. Use common-mode chokes, ferrites, or  
other filters as appropriate at the LVDS connectors, as well as  
cable shield or PCB ground connections to earth or chassis.  
The ADN4654/ADN4655/ADN4656 require appropriate  
decoupling of the VDDx pins with 100 nF capacitors. If the  
integrated LDO regulator is not used, and a 2.5 V supply is  
connected directly, connect the appropriate VINx pin to the supply  
as well, as shown in Figure 40, using the ADN4654 as an  
example.  
100nF  
100nF  
1
2
3
4
5
6
7
8
9
20  
V
V
IN2  
IN1  
19  
18  
17  
16  
15  
14  
13  
12  
11  
GND  
GND  
GND  
GND  
1
2
V
V
DD1  
DD2  
1
IN1+  
IN1–  
IN2+  
IN2–  
2
Other circuits can use the ADN4654 for isolating MIPI CSI-2,  
DisplayPort, and LVDS-based protocols such as FPD-Link. Use  
of a field-programmable gate array (FPGA) or an application-  
specific integrated circuit (ASIC) serializer/deserializer (SERDES)  
expands bandwidth through multiple ADN4654 devices to  
support 1080p or 4K video resolutions, providing an alternative  
to short reach fiber links.  
ADN4654  
D
D
D
D
D
D
D
D
OUT1+  
OUT1–  
OUT2+  
OUT2–  
TOP VIEW  
100Ω  
100Ω  
(Not to Scale)  
V
V
DD1  
DD2  
10  
GND  
GND  
2
1
100nF  
100nF  
Figure 40. Required PCB Layout When Not Using LDO Regulator (2.5 V Supply)  
Rev. C | Page 20 of 25  
 
 
 
 
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
1
3
2
4
1
TMDS D0+  
TMDS D0–  
ADN4654 (×2)  
TMDS D0+  
TMDS D0–  
TMDS D1+  
TMDS D1–  
TMDS D1+  
TMDS D1–  
2
TMDS D2+  
TMDS D2–  
TMDS D2+  
TMDS D2–  
TMDS CLK+  
TMDS CLK–  
TMDS CLK+  
TMDS CLK–  
ADuM1250  
SDA  
SCK  
SDA  
SCK  
ADuM1251  
CEC  
HPD  
CEC  
HPD  
ADuM5020 (×2)  
V
V
OSC  
REC  
DDP  
REG  
V
(3.3V)  
ISO  
SUPPLY FOR ISOLATORS  
OSC  
REC  
REG  
DDP  
V
(5V, 100mA)  
ISO  
+5V  
NOTES  
1. SUPPLY BIASED TERMINATION  
2. AC COUPLING  
3. COMMON-MODE BIASING  
4. DIFFERENTIAL TERMINATION  
Figure 42. Example Isolated Video Interface (HDMI) Using the ADN4654  
Rev. C | Page 21 of 25  
 
ADN4654/ADN4655/ADN4656  
Data Sheet  
insensitive to external fields. Only extremely large, high frequency  
currents that are close to the component can potentially be a  
concern. For the 1 MHz example noted, a 2.29 kA current must be  
placed 5 mm from the ADN4654/ADN4655/ADN4656 to affect  
component operation.  
MAGNETIC FIELD IMMUNITY  
The limitation on the magnetic field immunity of the device is  
set by the condition in which the induced voltage in the trans-  
former receiving coil is sufficiently large, either to falsely set or  
reset the decoder. The following analysis defines such conditions.  
The ADN4654/ADN4655/ADN4656 are examined in a 2.375 V  
operating condition because this operating condition represents  
the most susceptible mode of operation for these products.  
10k  
DISTANCE = 1m  
1k  
100  
The pulses at the transformer output have an amplitude greater  
than 0.5 V. The decoder has a sensing threshold of about 0.25 V,  
therefore establishing a 0.25 V margin in which induced voltages  
are tolerated. The voltage (V) induced across the receiving coil  
is given by  
DISTANCE = 100mm  
10  
DISTANCE = 5mm  
1
2
V = (−/dt)∑πrn ; n = 1, 2, …, N  
0.1  
where:  
is the change in magnetic flux density.  
dt is the change in time.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
rn is the radius of the nth turn in the receiving coil.  
N is the number of turns in the receiving coil.  
Figure 44. Maximum Allowable Current for Various Current to ADN4654  
Spacings  
Given the geometry of the receiving coil in the ADN4654/  
ADN4655/ADN4656 and an imposed requirement that the  
induced voltage be, at most, 50% of the 0.25 V margin at the  
decoder, a maximum allowable external magnetic flux density is  
calculated as shown in Figure 43.  
In combinations of strong magnetic field and high frequency,  
any loops formed by PCB traces can induce sufficiently large  
error voltages to trigger the thresholds of succeeding circuitry.  
Avoid PCB structures that form loops.  
INSULATION LIFETIME  
1k  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation as well as on  
the materials and material interfaces.  
100  
10  
1
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation wear  
out. Surface breakdown is the phenomenon of surface tracking  
and the primary determinant of surface creepage requirements  
in system level standards. Insulation wear out is the phenomenon  
where charge injection or displacement currents inside the  
insulation material cause long-term insulation degradation.  
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Surface Tracking  
Figure 43. Maximum Allowable External Magnetic Flux Density  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
surface insulation of components, which allows the components to  
be categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in each  
system level standard and is based on the total rms voltage across  
the isolation barrier, pollution degree, and material group. The  
material group and creepage for ADN4654/ADN4655/ADN4656  
are detailed in Table 4 and Table 5.  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.92 kgauss induces a  
voltage of 0.125 V at the receiving coil. This voltage is about  
50% of the sensing threshold and does not cause a faulty output  
transition. If such an event occurs with the worst case polarity  
during a transmitted pulse, the applied magnetic field reduces  
the received pulse from >0.5 V to 0.375 V. This voltage is still  
higher than the 0.25 V sensing threshold of the decoder.  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances from the ADN4654/  
ADN4655/ADN4656 transformers. Figure 44 expresses these  
allowable current magnitudes as a function of frequency for  
selected distances. The ADN4654/ADN4655/ADN4656 are  
Rev. C | Page 22 of 25  
 
 
 
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
Insulation Wear Out  
creepage, clearance, and lifetime of a device, see Figure 45 and  
the following equations.  
The lifetime of insulation caused by wear out is determined by  
the thickness of the insulation, material properties, and the voltage  
stress applied. It is important to verify that the product lifetime  
is adequate at the application working voltage. The working  
voltage supported by an isolator for wear out may not be the  
same as the working voltage supported for tracking. The working  
voltage applicable to tracking is specified in most standards.  
The working voltage across the barrier from Equation 1 is  
2
VRMS  
=
VAC RMS2 +VDC  
VRMS  
=
2402 + 4002  
VRMS = 466 V  
This VRMS value is the working voltage used together with the  
material group and pollution degree when looking up the creepage  
required by a system standard.  
Testing and modeling show that the primary driver of long-term  
degradation is displacement current in the polyimide insulation  
causing incremental damage. The stress on the insulation can be  
broken down into broad categories, such as dc stress, which causes  
little wear out because there is no displacement current, and an  
ac component time varying voltage stress, which causes wear out.  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this type of waveform reflects  
isolation from line voltage. However, many practical applications  
have combinations of 60 Hz ac and dc across the isolation barrier,  
as shown in Equation 1. Because only the ac portion of the  
stress causes wear out, the equation can be rearranged to solve  
for the ac rms voltage, as shown in Equation 2. For insulation  
wear out with the polyimide materials used in this product, the  
ac rms voltage determines the product lifetime.  
2
VAC RMS  
VAC RMS  
=
=
VRMS2 VDC  
4662 4002  
VAC RMS = 240 V rms  
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. Table 12 compares the value to the limits for the  
working voltage for the expected lifetime. Note that the dc  
working voltage limit in Table 12 is set by the creepage of the  
package as specified in IEC 60664-1. This value can differ for  
specific system level standards.  
2
(1)  
VRMS  
=
VAC RMS2 +VDC  
or  
2
=
VRMS2 VDC  
(2)  
VAC RMS  
where:  
V
V
V
RMS is the total rms working voltage.  
AC RMS is the time varying portion of the working voltage.  
DC is the dc offset of the working voltage.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
TIME  
Figure 45. Critical Voltage Example  
Rev. C | Page 23 of 25  
 
ADN4654/ADN4655/ADN4656  
OUTLINE DIMENSIONS  
Data Sheet  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
PIN 1  
INDICATOR  
TOP VIEW  
SIDE VIEW  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
END VIEW  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.65 BSC  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 46. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
13.00 (0.5118)  
12.60 (0.4961)  
20  
1
11  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10  
10.00 (0.3937)  
0.75 (0.0295)  
45°  
(0.0098)  
2.65 (0.1043)  
0.25  
2.35 (0.0925)  
8°  
0.30 (0.0118)  
0.10 (0.0039)  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 20-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-20)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 24 of 25  
 
Data Sheet  
ADN4654/ADN4655/ADN4656  
ORDERING GUIDE  
Model1  
ADN4654BRSZ  
ADN4654BRSZ-RL7  
ADN4654BRWZ  
ADN4654BRWZ-RL7  
ADN4655BRWZ  
ADN4655BRWZ-RL7  
ADN4656BRWZ  
ADN4656BRWZ-RL7  
EVAL-ADN4654EB1Z  
EVAL-ADN4655EB1Z  
EVAL-ADN4656EB1Z  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
20-Lead Shrink Small Outline Package [SSOP]  
20-Lead Shrink Small Outline Package [SSOP]  
20-Lead Wide Body, Standard Small Outline Package [SOIC_W]  
20-Lead Wide Body, Standard Small Outline Package [SOIC_W]  
20-Lead Wide Body, Standard Small Outline Package [SOIC_W]  
20-Lead Wide Body, Standard Small Outline Package [SOIC_W]  
20-Lead Wide Body, Standard Small Outline Package [SOIC_W]  
20-Lead Wide Body, Standard Small Outline Package [SOIC_W]  
Evaluation Board  
RS-20  
RS-20  
RW-20  
RW-20  
RW-20  
RW-20  
RW-20  
RW-20  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D17011-0-6/19(C)  
Rev. C | Page 25 of 25  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY