ADN4663BRZ-REEL7 [ADI]

Dual, 3 V, CMOS, LVDS High Speed Differential Driver; 双通道, 3 V , CMOS , LVDS高速差分驱动器
ADN4663BRZ-REEL7
型号: ADN4663BRZ-REEL7
厂家: ADI    ADI
描述:

Dual, 3 V, CMOS, LVDS High Speed Differential Driver
双通道, 3 V , CMOS , LVDS高速差分驱动器

驱动器
文件: 总12页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 3 V, CMOS, LVDS  
High Speed Differential Driver  
ADN4663  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
CC  
15 kV ESD protection on output pins  
600 Mbps (300 MHz) switching rates  
Flow-through pinout simplifies PCB layout  
300 ps typical differential skew  
700 ps maximum differential skew  
1.5 ns maximum propagation delay  
3.3 V power supply  
ADN4663  
D
D
OUT1+  
D
IN1  
IN2  
OUT1–  
D
D
OUT2+  
D
OUT2–  
355 mV differential signaling  
Low power dissipation: 23 mW typical  
Interoperable with existing 5 V LVDS receivers  
Conforms to TIA/EIA-644 LVDS standard  
Industrial operating temperature range (−40°C to +85°C)  
Available in surface-mount (SOIC) package  
GND  
Figure 1.  
APPLICATIONS  
Backplane data transmission  
Cable data transmission  
Clock distribution  
GENERAL DESCRIPTION  
The ADN4663 is a dual, CMOS, low voltage differential  
signaling (LVDS) line driver offering data rates of over  
600 Mbps (300 MHz), and ultralow power consumption.  
It features a flow-through pinout for easy PCB layout and  
separation of input and output signals.  
twisted-pair cable. The transmitted signal develops a differential  
voltage of typically 3ꢁꢁ mV across a termination resistor at the  
receiving end, and this is converted back to a TTL/CMOS logic  
level by a line receiver.  
The ADN4663 and a companion receiver offer a new solution  
to high speed point-to-point data transmission, and a low  
power alternative to emitter-coupled logic (ECL) or positive  
emitter-coupled logic (PECL).  
The device accepts low voltage TTL/CMOS logic signals and  
converts them to a differential current output of typically  
3.ꢀ mA for driving a transmission medium such as a  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
ADN4663  
TABLE OF CONTENTS  
Features .............................................................................................. ꢀ  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... ꢀꢀ  
Applications Information.......................................................... ꢀꢀ  
Outline Dimensions....................................................................... ꢀ2  
Ordering Guide .......................................................................... ꢀ2  
Applications....................................................................................... ꢀ  
Functional Block Diagram .............................................................. ꢀ  
General Description......................................................................... ꢀ  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Absolute Maximum Ratings............................................................ 6  
REVISION HISTORY  
1/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
ADN4663  
SPECIFICATIONS  
VCC = 3.0 V to 3.6 V; RL = ꢀ00 Ω; CL = ꢀꢁ pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter1, 2  
Symbol Min  
Typ Max  
Unit Test Conditions  
LVDS OUTPUTS (DOUTx+, DOUTx−  
)
Differential Output Voltage  
Change in Magnitude of VOD for  
Complementary Output States  
VOD  
ΔVOD  
250  
355  
1
450  
35  
mV  
See Figure 2 and Figure 4  
|mV| See Figure 2 and Figure 4  
Offset Voltage  
Change in Magnitude of VOS for  
Complementary Output States  
VOS  
ΔVOS  
1.125 1.2  
3
1.375  
25  
V
See Figure 2 and Figure 4  
|mV| See Figure 2 and Figure 4  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
1.4  
1.1  
1.6  
V
V
See Figure 2 and Figure 4  
See Figure 2 and Figure 4  
0.90  
INPUTS (DIN1, DIN2  
)
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
VIH  
VIL  
IIH  
IIL  
VCL  
2.0  
VCC  
0.8  
+10  
+10  
V
V
μA  
μA  
V
GND  
−10  
−10  
−1.5  
2
1
−0.6  
VIN = 3.3 V or 2.4 V  
VIN = GND or 0.5 V  
ICL = −18 mA  
Input Clamp Voltage  
LVDS OUTPUT PROTECTION (DOUTx+, DOUTx−  
)
Output Short-Circuit Current3  
IOS  
−5.7 −8.0  
mA  
μA  
DINx = VCC, DOUTx+ = 0 V or DINx = GND, DOUTx− = 0 V  
VOUT = VCC or GND, VCC = 0 V  
LVDS OUTPUT LEAKAGE (DOUTx+, DOUTx−  
)
Power-Off Leakage  
IOFF  
−10  
1
+10  
POWER SUPPLY  
Supply Current, Unloaded  
Supply Current, Loaded  
ESD PROTECTION  
ICC  
ICCL  
8
10  
14  
20  
mA  
mA  
No load, DINx = VCC or GND  
DINx = VCC or GND  
DOUTx+, DOUTx− Pins  
All Pins Except DOUTx+, DOUTx−  
15  
4
kV  
kV  
Human body model  
Human body model  
1 Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except VOD, ΔVOD, and ΔVOS  
2 The ADN4663 is a current mode device and functions within data sheet specifications only when a resistive load is applied to the driver outputs. Typical range is  
90 Ω to 110 Ω.  
.
3 Output short-circuit current (IOS) is specified as magnitude only; minus sign indicates direction only.  
Rev. 0 | Page 3 of 12  
 
ADN4663  
AC CHARACTERISTICS  
VCC = 3.0 V to 3.6 V; RL = ꢀ00 Ω; CL = ꢀꢁ pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter2  
Symbol  
tPHLD  
tPLHD  
tSKD1  
tSKD2  
tSKD3  
tSKD4  
tTLH  
Min  
0.3  
0.3  
0
0
0
0
0.2  
0.2  
Typ  
0.8  
1.1  
0.3  
0.4  
Max  
1.5  
1.5  
0.7  
0.8  
1.0  
1.2  
1.0  
1.0  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Conditions/Comments3, 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3 and Figure 4  
See Figure 3  
Differential Propagation Delay High to Low  
Differential Propagation Delay Low to High  
5
Differential Pulse Skew |tPHLD − tPLHD  
Channel-to-Channel Skew6  
Differential Part-to-Part Skew7  
Differential Part-to-Part Skew8  
Rise Time  
|
0.5  
0.5  
350  
Fall Time  
Maximum Operating Frequency9  
tTHL  
fMAX  
MHz  
1 CL includes probe and jig capacitance.  
2 AC parameters are guaranteed by design and characterization.  
3 Generator waveform for all tests, unless otherwise specified: f = 50 MHz, ZO = 50 Ω, tTLH ≤ 1 ns, and tTHL ≤ 1 ns.  
4 All input voltages are for one channel, unless otherwise specified. Other inputs are set to GND.  
5 tSKD1 = |tPHLD − tPLHD| is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the  
same channel.  
6 tSKD2 is the differential channel-to-channel skew of any event on the same device.  
7 tSKD3, differential part-to-part skew, is defined as the difference between the minimum and maximum specified differential propagation delays. This specification  
applies to devices at the same VCC and within 5°C of each other within the operating temperature range.  
8 tSKD4, differential part-to-part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended  
operating temperatures and voltage ranges, and across process distribution. tSKD4 is defined as |maximum − minimum| differential propagation delay.  
9 fMAX generator input conditions: tTLH = tTHL < 1 ns (0% to 100%), 50% duty cycle, 0 V to 3 V. Output criteria: duty cycle = 45% to 55%, VOD > 250 mV, all channels  
switching.  
Rev. 0 | Page 4 of 12  
 
ADN4663  
Test Circuits and Timing Diagrams  
D
OUTx+  
V
CC  
V
CC  
R /2  
L
D
INx  
V
V
OD  
OS  
V
V
R /2  
L
D
OUTx–  
Figure 2. Test Circuit for Driver VOD and VOS  
D
V
OUTx+  
CC  
C
L
L
R
L
D
INx  
SIGNAL  
GENERATOR  
D
OUTx–  
50  
C
C
INCLUDES LOAD AND TEST JIG CAPACITANCE.  
L
Figure 3. Test Circuit for Driver Propagation Delay, Transition Time, and Maximum Operating Frequency  
3V  
D
1.5V  
1.5V  
INx  
0V  
tPHLD  
tPLHD  
V
D
D
OH  
OUTx–  
V
0V (DIFFERENTIAL)  
0V  
OD  
V
OUTx+  
OL  
80%  
80%  
V
DIFF  
0V  
V
= D  
OUT+  
– D  
OUT–  
0V  
DIFF  
20%  
20%  
tTHL  
tTHL  
Figure 4. Driver Propagation Delay and Transition Time Waveforms  
Rev. 0 | Page 5 of 12  
 
 
 
ADN4663  
ABSOLUTE MAXIMUM RATINGS  
TA = 2ꢁ°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VCC to GND  
Input Voltage (DINx) to GND  
Output Voltage (DOUTx+, DOUTx−) to GND  
−0.3 V to +4 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
Short-Circuit Duration (DOUTx+, DOUTx−) to GND Continuous  
Operating Temperature Range  
ESD CAUTION  
Industrial  
−40°C to +85°C  
−65°C to +150°C  
150°C  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
(TJ max − TA)/θJA  
SOIC Package  
θJA Thermal Impedance  
Reflow Soldering Peak Temperature  
Pb-Free  
149.5°C/W  
260°C 5°C  
Rev. 0 | Page 6 of 12  
 
 
ADN4663  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
D
8
7
6
5
D
D
D
D
1
2
3
4
CC  
OUT1–  
OUT1+  
OUT2+  
OUT2–  
ADN4663  
IN1  
IN2  
TOP VIEW  
D
(Not to Scale)  
GND  
Figure 5. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VCC  
Power Supply Input. The part can be operated from 3.0 V to 3.6 V, and the supply should be decoupled with a  
10 μF solid tantalum capacitor in parallel with a 0.1 μF capacitor to GND.  
2
3
4
5
DIN1  
DIN2  
GND  
DOUT2−  
Driver Channel 1 Logic Input.  
Driver Channel 2 Logic Input.  
Ground reference point for all circuitry on the part.  
Channel 2 Inverting Output Current Driver. When DIN2 is high, current flows into DOUT2−. When DIN2 is low, current  
flows out of DOUT2−  
Channel 2 Noninverting Output Current Driver. When DIN2 is high, current flows out of DOUT2+. When DIN2 is low,  
current flows into DOUT2+  
Channel 1 Noninverting Output Current Driver. When DIN1 is high, current flows out of DOUT1+. When DIN1 is low,  
current flows into DOUT1+  
Channel 1 Inverting Output Current Driver. When DIN1 is high, current flows into DOUT1−. When DIN1 is low, current  
flows out of DOUT1−  
.
6
7
8
DOUT2+  
DOUT1+  
DOUT1−  
.
.
.
Rev. 0 | Page 7 of 12  
 
ADN4663  
TYPICAL PERFORMANCE CHARACTERISTICS  
325.0  
324.8  
324.6  
324.4  
324.2  
324.0  
1.415  
T
R
= 25°C  
= 100  
T
R
= 25°C  
= 100Ω  
A
A
L
L
1.414  
1.413  
1.412  
3.0  
3.1  
3.2  
3.3  
3.4  
CC  
3.5  
3.6  
3.6  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
CC  
3.5  
3.6  
POWER SUPPLY VOLTAGE, V (V)  
POWER SUPPLY VOLTAGE, V (V)  
Figure 6. Output High Voltage vs. Power Supply Voltage  
Figure 9. Differential Output Voltage vs. Power Supply Voltage  
500  
1.090  
1.089  
1.088  
1.087  
T
= 25°C  
= 100Ω  
T
= 25°C  
= 3.3V  
A
A
R
V
L
CC  
450  
400  
350  
300  
250  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
90  
100  
110  
120  
130  
140  
150  
POWER SUPPLY VOLTAGE, V (V)  
LOAD RESISTOR, R ()  
CC  
L
Figure 7. Output Low Voltage vs. Power Supply Voltage  
Figure 10. Differential Output Voltage vs. Load Resistor  
1.252  
1.251  
1.250  
1.249  
–3.9  
–4.0  
–4.1  
–4.2  
T
R
= 25°C  
= 100Ω  
A
T
= 25°C  
A
L
V
= GND OR V  
IN  
CC  
= 0V  
V
OUT  
3.0  
3.1  
3.2  
3.3  
3.4  
CC  
3.5  
3.0  
3.1  
3.2  
3.3  
3.4  
CC  
3.5  
3.6  
POWER SUPPLY VOLTAGE, V (V)  
POWER SUPPLY VOLTAGE, V (V)  
Figure 8. Output Short-Circuit Current vs. Power Supply Voltage  
Figure 11. Offset Voltage vs. Power Supply Voltage  
Rev. 0 | Page 8 of 12  
 
ADN4663  
1200  
1100  
1000  
900  
T
C
V
V
R
= 25°C  
= 15pF  
T = 25°C  
A
f = 1MHz  
C = 15pF  
L
A
19  
17  
15  
13  
11  
9
L
= 3.3V  
CC  
= 0V TO 3.3V  
R = 100PER DRIVER  
IN  
L
= 100PER DRIVER  
L
BOTH CHANNELS SWITCHING  
t
PHLD  
t
PLHD  
ONE CHANNEL SWITCHING  
7
5
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
0.01  
0.1  
1
10  
100  
1k  
POWER SUPPLY VOLTAGE, V (V)  
SWITCHING FREQUENCY (MHz)  
CC  
Figure 12. Power Supply Current vs. Switching Frequency  
Figure 15. Differential Propagation Delay vs. Power Supply Voltage  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
1200  
T
= 25°C  
V
= 3.3V  
A
CC  
f = 1MHz  
f = 1MHz  
C
V
= 15pF  
C
R
= 15pF  
= 100PER DRIVER  
L
L
L
= 0V TO 3.3V  
= 100PER DRIVER  
IN  
R
L
t
PLHD  
1100  
1000  
900  
t
PHLD  
3.0  
3.1  
3.2  
3.3  
3.4  
CC  
3.5  
3.6  
–40  
–20  
0
20  
40  
60  
80  
100  
POWER SUPPLY VOLTAGE, V (V)  
AMBIENT TEMPERATURE, T (°C)  
A
Figure 13. Power Supply Current vs. Power Supply Voltage  
Figure 16. Differential Propagation Delay vs. Ambient Temperature  
100  
15  
T
= 25°C  
V
= 3.3V  
A
CC  
f = 1MHz  
f = 1MHz  
C
R
= 15pF  
= 100PER DRIVER  
C
V
R
= 15pF  
= 0V TO 3V  
= 100PER DRIVER  
L
L
L
80  
60  
40  
20  
0
14  
13  
12  
11  
10  
IN  
L
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
–40  
–15  
10  
35  
60  
85  
POWER SUPPLY VOLTAGE, V (V)  
TEMPERATURE (°C)  
CC  
Figure 14. Power Supply Current vs. Ambient Temperature  
Figure 17. Differential Skew vs. Power Supply Voltage  
Rev. 0 | Page 9 of 12  
ADN4663  
50  
400  
380  
360  
340  
320  
V
= 3.3V  
V
= 3.3V  
CC  
f = 1MHz  
CC  
f = 1MHz  
C
R
= 15pF  
= 100PER DRIVER  
C
R
= 15pF  
= 100PER DRIVER  
L
L
L
L
40  
30  
20  
10  
t
TLH  
t
THL  
0
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T (°C)  
AMBIENT TEMPERATURE, T (°C)  
A
A
Figure 18. Differential Skew vs. Ambient Temperature  
Figure 20. Transition Time vs. Ambient Temperature  
400  
380  
T
= 25°C  
A
f = 1MHz  
= 15pF  
C
L
R
= 100PER DRIVER  
L
t
TLH  
360  
340  
320  
t
THL  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
POWER SUPPLY VOLTAGE, V (V)  
CC  
Figure 19. Transition Time vs. Power Supply Voltage  
Rev. 0 | Page 10 of 12  
ADN4663  
THEORY OF OPERATION  
The ADN4663 is a dual line driver for low voltage differential  
signaling. It takes a single-ended 3 V logic signal and converts  
it to a differential current output. The data can then be transmitted  
for considerable distances, over media such as a twisted-pair cable  
or PCB backplane, to an LVDS receiver, where it develops a voltage  
across a terminating resistor, RT. This resistor is chosen to match  
the characteristic impedance of the medium, typically around  
ꢀ00 ꢂ. The differential voltage is detected by the receiver and  
converted back into a single-ended logic signal.  
A current mode device simply reverses a constant current  
between its two outputs, with no significant overlap currents.  
This is similar to emitter-coupled logic (ECL) and positive  
emitter-coupled logic (PECL), but without the high quiescent  
current of ECL and PECL.  
APPLICATIONS INFORMATION  
Figure 2ꢀ shows a typical application for point-to-point data  
transmission using the ADN4663 as the driver and a LVDS  
receiver.  
When DINx is high (Logic ꢀ), current flows out of the DOUTx+ pin  
(current source) through RT and back into the DOUTx− pin (current  
sink). At the receiver, this current develops a positive differential  
voltage across RT (with respect to the inverting input) and results  
in a Logic ꢀ at the receiver output. When DINx is low, DOUTx+  
sinks current and DOUTx− sources current; a negative differential  
voltage across RT results in a Logic 0 at the receiver output.  
+3.3V  
10µF  
TANTALUM  
+3.3V  
+
+
0.1µF  
V
V
CC  
CC  
LVDS RECEIVER  
ADN4663  
D
D
IN+  
OUTx+  
R
T
100Ω  
OUTx–  
D
OUT  
D
INx  
D
D
IN–  
The output drive current is between 2.ꢁ mA and 4.ꢁ mA  
(typically 3.ꢁꢁ mA), developing between 2ꢁ0 mV and 4ꢁ0 mV  
across a ꢀ00 ꢂ termination resistor. The received voltage is centered  
around the receiver offset of ꢀ.2 V. Therefore, the noninverting  
receiver input is typically (ꢀ.2 V + [3ꢁꢁ mV/2]) = ꢀ.377 V, and  
the inverting receiver input is (ꢀ.2 V − [3ꢁꢁ mV/2]) = ꢀ.023 V  
for Logic ꢀ. For Logic 0, the inverting and noninverting output  
voltages are reversed. Note that because the differential voltage  
reverses polarity, the peak-to-peak voltage swing across RT is  
twice the differential voltage.  
GND  
GND  
Figure 21. Typical Application Circuit  
Current mode drivers offer considerable advantages over  
voltage mode drivers such as RS-422 drivers. The operating  
current remains fairly constant with increased switching  
frequency, whereas that of voltage mode drivers increase  
exponentially in most cases. This is caused by the overlap  
as internal gates switch between high and low, which causes  
currents to flow from the device power supply to ground.  
Rev. 0 | Page 11 of 12  
 
 
 
ADN4663  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 22. 8-Lead Standard Small Outline Package [SOIC(N)]  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADN4663BRZ1  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package [SOIC-N]  
8-Lead Standard Small Outline Package [SOIC-N]  
R-8  
R-8  
ADN4663BRZ-REEL71  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07927-0-1/09(0)  
Rev. 0 | Page 12 of 12  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY