ADN8831-EVALZ [ADI]

Thermoelectric Cooler (TEC) Controller; 热电冷却器( TEC )控制器
ADN8831-EVALZ
型号: ADN8831-EVALZ
厂家: ADI    ADI
描述:

Thermoelectric Cooler (TEC) Controller
热电冷却器( TEC )控制器

控制器
文件: 总20页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Thermoelectric Cooler (TEC) Controller  
Data Sheet  
ADN8831  
FEATURES  
GENERAL DESCRIPTION  
Two integrated zero drift, rail-to-rail, chop amplifiers  
TEC voltage and current operation monitoring  
Programmable TEC maximum voltage and current  
Programmable TEC current heating and cooling limits  
Configurable PWM switching frequency up to 1 MHz  
Power efficiency: > 90%  
The ADN8831 is a monolithic TEC controller. It has two inte-  
grated, zero drift, rail-to-rail comparators, and a PWM driver.  
A unique PWM driver works with an analog driver to control  
external selected MOSFETs in an H-bridge. By sensing the  
thermal detector feedback from the TEC, the ADN8831 can  
drive a TEC to settle the programmable temperature of a laser  
diode or a passive component attached to the TEC module.  
Temperature lock indication  
Optional internal or external clock source  
Clock phase adjustment for multiple drop operation  
Supports negative temperature coefficient (NTC) thermistors  
or positive temperature coefficient (PTC) resistance  
thermal detectors (RTDs)  
The ADN8831 supports NTC thermistors or positive tempera-  
ture coefficient (PTC) RTDs. The target temperature is set as an  
analog voltage input either from a DAC or from an external  
resistor divider driven by a reference voltage source.  
A proportional integral differential (PID) compensation  
network helps to quickly and accurately stabilize the ADN8831  
thermal control loop. An adjustable PID compensation network  
example is described in the AN-695 Application Note, Using the  
ADN8831 TEC Controller Evaluation Board. A typical reference  
voltage of 2.5 V is available from the ADN8831 for thermistor  
temperature sensing or for TEC voltage/current measuring and  
limiting in both cooling and heating modes.  
5 V typical and optional 3 V supplies  
Standby and shutdown mode availability  
Adjustable soft start feature  
5 mm × 5 mm 32-lead LFCSP  
APPLICATIONS  
Thermoelectric cooler (TEC) temperature control  
DWDM optical transceiver modules  
Optical fiber amplifiers  
Optical networking systems  
Instruments requiring TEC temperature control  
FUNCTIONAL BLOCK DIAGRAM  
ILIMC ILIMH ITEC VLIM VTEC  
CS  
LIMITER/MONITOR  
LFB  
IN1P  
IN1N  
LINEAR  
MOSFET  
DRIVER  
AMPLIFIER  
Chop1  
LPGATE  
LNGATE  
SFB  
OUT1  
SPGATE  
SNGATE  
COMPSW  
SW  
CONTROL  
PWM  
MOSFET  
DRIVER  
IN2P  
IN2N  
AMPLIFIER  
Chop2  
COMPOSC  
SYNCO  
SOFT START  
SHUTDOWN  
OSCILLATOR  
REF  
OUT2  
TMPGD VREF  
SS/SB  
SYNCI/SD PHASE FREQ  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2005–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADN8831  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Temperature Lock Indicator ..................................................... 13  
Soft Start on Power-Up.............................................................. 13  
Shutdown Mode ......................................................................... 13  
Standby Mode ............................................................................. 13  
TEC Voltage/Current Monitor ................................................. 13  
Maximum TEC Voltage Limit .................................................. 13  
Maximum TEC Current Limit ................................................. 14  
Applications Information .............................................................. 15  
Signal Flow .................................................................................. 15  
Thermistor Setup........................................................................ 15  
Thermistor Amplifier (Chop1) ................................................ 15  
PID Compensation Amplifier (Chop2) .................................. 16  
MOSFET Driver Amplifier ....................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Detailed Block Diagram .................................................................. 3  
Specifications..................................................................................... 4  
Electrical Characteristics............................................................. 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Characteristics .............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 11  
Oscillator Clock Frequency....................................................... 12  
Oscillator Clock Phase............................................................... 12  
REVISION HISTORY  
8/12—Rev. 0 to Rev. A  
Changes to Features and General Description Sections.............. 1  
Moved Figure 2 ................................................................................. 3  
Changes to Figure 2.......................................................................... 3  
Changes to Table 1............................................................................ 4  
Changes to Table 2 and Table 3....................................................... 6  
Changes to Figure 3 and Table 4..................................................... 7  
Changes to Theory of Operation Section and Figure 12........... 11  
Changes to Figure 14 and Figure 15............................................. 11  
Changes to Oscillator Clock Frequency Section and Oscillator  
Clock Phase Section ....................................................................... 12  
Changes to Soft Start on Power-Up Section, Shutdown Mode  
Section, Standby Mode Section, and TEC Voltage/Current  
Monitor Section .............................................................................. 13  
Changes to Figure 17...................................................................... 15  
Changes to PID Compensation Amplifier (Chop2) Section .... 16  
Changes to MOSFET Driver Amplifier Section and Figure 21 ..17  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 18  
9/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
ADN8831  
DETAILED BLOCK DIAGRAM  
ILIMH VLIM  
VTEC  
30  
ITEC  
29  
CS  
28  
LFB LNGATE LPGATE  
31  
32  
27  
26  
25  
2kΩ  
80kΩ  
ADN8831  
VC  
25kΩ  
5kΩ  
1
ILIMC  
5kΩ  
20kΩ  
25kΩ  
VB  
1.25V  
1.25V  
20kΩ  
LINEAR AMPLIFIER  
1kΩ  
1kΩ  
24  
23  
COMPSW  
SFB  
VOLTAGE  
LIMIT  
2
3
IN1P  
IN1N  
VB  
Chop1  
Chop2  
SFB  
20kΩ  
LFB  
20kΩ  
100kΩ  
1.25V  
22  
PGND  
g
1
20kΩ  
20kΩ  
20kΩ  
VB  
4
5
m
OUT1  
IN2P  
VC  
20kΩ  
10kΩ  
100kΩ  
21  
20  
19  
SNGATE  
SW  
ILIMH  
6
7
IN2N  
LFB  
g
2
m
OUT2  
ILIMC  
ITEC  
SPGATE  
VB  
= 2.5V, V > 4.0V  
g
3
m
VB  
DD  
18  
17  
PVDD  
= 1.5V, V < 4.0V  
DD  
SOFT START  
2.5V  
COMPOSC  
SD  
SD  
250mV  
8
REFERENCE  
1.25V  
VREF  
OSCILLATOR  
14  
SB  
TEMPERATURE  
GOOD  
DETECT  
9
10  
11  
12  
15  
16  
13  
AVDD  
PHASE  
TMPGD  
AGND  
FREQ  
SS/SB SYNCO  
SYNCI/SD  
Figure 2. Detailed Block Diagram  
Rev. A | Page 3 of 20  
 
ADN8831  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 3.0 V to 5.0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter1  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PWM OUTPUT DRIVER  
Output Transition Time  
Nonoverlapping Clock Delay  
Output Resistance  
Output Voltage Swing2  
LINEAR OUTPUT AMPLIFIER  
Output Resistance  
tR, tF  
CL = 3300 pF  
20  
80  
6
ns  
ns  
Ω
40  
0
RO (SNGATE, SPGATE)  
SFB  
IL = 10 mA, VDD = 3.0 V  
VLIM = VREF  
VDD  
V
RO, LNGATE  
RO, LPGATE  
LFB  
IOUT = 2 mA, VDD = 3.0 V  
IOUT = 2 mA, VDD = 3.0 V  
200  
100  
Ω
Ω
V
Output Voltage Swing2  
POWER SUPPLY  
0
VDD  
Power Supply Voltage  
Supply Current  
VDD  
ISY  
3.0  
5.5  
12  
15  
V
PWM not switching  
−40°C ≤ TA ≤ +85°C  
SYNCI/SD = 0 V  
8
mA  
mA  
µA  
µA  
V
Shutdown Current  
ISD  
8
Soft Start Charging Current  
Undervoltage Lockout3  
Standby Current  
ISS  
UVLO  
ISB  
VSS = 0 V  
8
2.2  
2
Low to high threshold  
SYNCI/SD = VDD, SS/SB = 0 V  
SYNCI/SD = VDD  
2.6  
mA  
mV  
Standby Threshold  
VSB  
150  
200  
ERROR/COMPENSATION AMPLIFIERS  
Input Offset Voltage  
VOS1  
VOS2  
VCM1, VCM2  
VCM1 = 1.5 V, VIN1P − VIN1M  
VCM2 = 1.5 V, VIN2P − VIN2M  
10  
10  
100  
100  
VDD  
μV  
μV  
V
dB  
V
mV  
dB  
mA  
MHz  
Input Voltage Range  
Common-Mode Rejection Ratio  
Output Voltage High  
Output Voltage Low  
Power Supply Rejection Ratio  
Output Current  
0
CMRR1, CMRR2 VCM1, VCM2 = 0.2 V to VDD − 0.2 V  
VOH1, VOH2  
VOL1, VOL2  
PSRR1, PSRR2  
IOUT1, IOUT2  
GBW1, GBW2  
120  
VDD − 0.03  
25  
3.0 V ≤ VDD ≤ 5.0 V  
Sourcing and sinking  
VOUT = 0.5 V to (VDD − 1 V)  
110  
2
5
Gain Bandwidth Product  
OSCILLATOR  
Sync Range  
fCLK  
SYNCI/SD connected to external  
clock  
COMPOSC = VDD, RFREQ = 118 kΩ,  
SYNCI/SD = VDD, VDD = 5.0 V  
300  
800  
200  
1000  
1250  
1000  
50  
kHz  
kHz  
kHz  
Oscillator Frequency  
fCLK  
1000  
Nominal Free-Run Oscillation  
Frequency  
Phase Adjustment Range2  
fCLK-NOMINAL  
ΦCLK  
COMPOSC = VDD, SYNCI/SD = VDD  
VPHASE = 0.13 V, fSYNCI/SD = 1 MHz  
Degrees  
Degrees  
Degrees  
V
PHASE = 2.3 V, fSYNCI/SD = 1 MHz  
330  
Phase Adjustment Default  
REFERENCE VOLTAGE  
Reference Voltage  
ΦCLK  
VREF  
PHASE = open  
180  
IREF = 2 mA  
IREF = 0 mA  
2.35  
2.47  
V
V
2.37  
2.57  
Rev. A | Page 4 of 20  
 
 
Data Sheet  
ADN8831  
Parameter1  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC Controls  
Logic Low Output Voltage  
Logic High Output Voltage  
Logic Low Input Voltage  
Logic High Input Voltage  
Output High Impedance  
Output Low Impedance  
Output High Impedance  
Output Low Impedance  
TEC CURRENT MEASUREMENT  
ITEC Gain  
VOL  
VOH  
VIL  
TMPGD, SYNCO, IOUT = 0 A  
TMPGD, SYNCO, IOUT = 0 A  
0.2  
0.2  
V
V
V
V
Ω
Ω
Ω
Ω
VDD − 0.2  
3
VIH  
VDD = 5.0 V  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 3.0 V  
35  
20  
50  
25  
AV, ITEC  
(VITEC – VREF/2) / (VLFB − VCS)  
No load  
25  
V/V  
V
V
V
V
ITEC Output Range High  
ITEC Output Range Low  
ITEC Input Range2  
VITEC, HIGH  
VITEC, LOW  
VCS, VLFB  
VITEC, B  
VDD − 0.05  
0.05  
VDD  
1.30  
0
1.10  
ITEC Bias Voltage  
VLFB = VCS = 0  
1.20  
1.5  
Maximum ITEC Driving Current  
TEC VOLTAGE MEASUREMENT  
VTEC Gain  
VTEC Output Range2  
VTEC Bias Voltage2  
IOUT, TEC  
mA  
AV, VTEC  
VVTEC  
VVTEC, B  
RVTEC  
(VVTEC – VREF/2)/(VLFB − VSFB  
VDD = 5.0 V  
)
0.23  
0.05  
1.20  
0.25  
0.28  
2.5  
1.35  
V/V  
V
V
VLFB = VSFB = 0 V  
IVTEC = 300 μA  
1.25  
35  
VTEC Output Load Resistance  
VOLTAGE LIMIT  
Ω
VLIM Gain  
VLIM Input Range2  
AV, LIM  
VVLIM  
(VLFB − VSFB)/VVLIM  
5
V/V  
V
0
VDD  
VLIM Input Current, Cooling  
VLIM Input Current, Heating  
VLIM Input Current Accuracy, Heating  
CURRENT LIMIT  
IVLIM, COOL  
IVLIM, HEAT  
IVLIM, HEAT  
VOUT2 < VREF/2  
VOUT2 > VREF/2  
IVLIM/IFREQ  
100  
nA  
mA  
A/A  
IFREQ  
1.0  
0.8  
1.18  
ILIMC Input Voltage Range  
ILIMH Input Voltage Range  
ILIMC Limit Threshold  
ILIMH Limit Threshold  
TEMPERATURE GOOD  
High Threshold  
VILIMC  
VILIMH  
VTH, ILIMC  
VTH, ILIMH  
VREF/2  
0.1  
1.98  
0.48  
VDD − 1  
VREF/2  
2.02  
V
V
V
V
VITEC = 2.0 V, RS = 20 mΩ  
VITEC = 0.5 V  
2.0  
0.5  
0.52  
VOUT1, TH1  
VOUT1, TH2  
IN2M tied to OUT2, VIN2P = 1.5 V  
IN2M tied to OUT2, VIN2P = 1.5 V  
1.55  
1.45  
1.60  
V
V
Low Threshold  
1.40  
1 Logic inputs meet typical CMOS I/O conditions for source/sink current (~1 µA).  
2 Guaranteed by design or indirect test methods.  
3 The ADN8831 does not work when the supply voltage is less than UVLO.  
Rev. A | Page 5 of 20  
 
ADN8831  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings at 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those indicated in the operational section of this  
specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Storage Temperature Range  
Junction Temperature  
Lead Temperature (Soldering, 60 sec)  
6 V  
GND to VS + 0.3 V  
−65°C to +150°C  
125°C  
THERMAL CHARACTERISTICS  
300°C  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
32-lead LFCSP (ACPZ)  
33.4  
1.02  
°C/W  
ESD CAUTION  
Rev. A | Page 6 of 20  
 
 
 
Data Sheet  
ADN8831  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ILIMC  
IN1P  
IN1N  
OUT1  
IN2P  
IN2N  
OUT2  
VREF  
1
2
3
4
5
6
7
8
24 COMPSW  
23 SFB  
22 PGND  
21 SNGATE  
20 SW  
19 SPGATE  
18 PVDD  
PIN 1  
INDICATOR  
ADN8831  
TOP VIEW  
(Not to Scale)  
17 COMPOSC  
NOTES  
1. THE LFCSP PACKAGE HAS AN EXPOSED PADDLE  
THAT SHOULD BE CONNECTED TO AGND (PIN 12)  
AND THE ASSOCIATED PCB GROUND PLANE.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Type  
Description  
1
2
3
4
5
6
7
8
ILIMC  
IN1P  
IN1N  
OUT1  
IN2P  
IN2N  
Analog Input  
Analog Input  
Analog Input  
Analog Output  
Analog Input  
Analog Input  
Analog Output  
Analog Output  
Power  
Analog Input  
Digital Output  
Ground  
Analog Input  
Analog Input  
Sets TEC Cooling Current Limit.  
Noninverting Input to Error Amplifier.  
Inverting Input to Error Amplifier.  
Output of Error Amplifier.  
Noninverting Input to Compensation Amplifier.  
Inverting Input to Compensation Amplifier.  
Output of Compensation Amplifier.  
2.5 V Voltage Reference Output.  
Power for Nondriver Sections. 3.0 V minimum; 5.5 V maximum.  
Sets SYNCO Clock Phase Relative to SYNCI/SD Clock.  
OUT2  
VREF  
9
AVDD  
PHASE  
TMPGD  
AGND  
FREQ  
SS/SB  
10  
11  
12  
13  
14  
Logic Output. Active high. Indicates when the OUT1 voltage is within 100 mV of IN2P voltage.  
Analog Ground. Connect to low noise ground.  
Sets Switching Frequency with an External Resistor.  
Sets Soft Start Time for Output Voltage. Pull low (VTEC = 0 V) to put the ADN8831 into standby  
mode.  
15  
16  
17  
SYNCO  
Digital Output  
Digital Input  
Phase Adjustment Clock Output. Phase set from PHASE pin. Used to drive SYNCI/SD of other  
ADN8831 devices.  
Optional Clock Input. If not connected, clock frequency is set by FREQ pin. Pull low to put  
the ADN8831 into shutdown mode. Pull high to negate shutdown mode.  
Compensation for Oscillator. Connect to PVDD when in free-run mode, connect to R-C  
network when in external clock mode.  
SYNCI/SD  
COMPOSC  
Analog Output  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
PVDD  
SPGATE  
SW  
SNGATE  
PGND  
SFB  
COMPSW  
LPGATE  
LNGATE  
LFB  
Power  
Power for Output Driver Sections. 3.0 V minimum; 5.5 V maximum.  
PWM Output Drives External PMOS Gate.  
Connects to PWM FET Drains.  
Analog Output  
Analog Input  
Analog Output  
Ground  
Analog Input  
Analog Input  
Analog Output  
Analog Output  
Analog Input  
Analog Input  
Analog Output  
PWM Output Drives External NMOS Gate.  
Power Ground. External NMOS devices connect to PGND. Connect to digital ground.  
PWM Feedback. Connect to the TEC module negative (−) terminal.  
Compensation Pin for Switching Amplifier.  
Linear Output Drives External PMOS Gate.  
Linear Output Drives External NMOS Gate.  
Linear Feedback. Connect to H-Bridge transistor output and current sense resistor.  
Linear Feedback. Connect to the TEC module positive (+) terminal.  
Indicates TEC Current.  
CS  
ITEC  
Rev. A | Page 7 of 20  
 
ADN8831  
Data Sheet  
Pin No. Mnemonic Type  
Description  
30  
31  
32  
33  
VTEC  
VLIM  
ILIMH  
EP  
Analog Output  
Analog Input  
Analog Input  
Indicates TEC Voltage.  
Sets Maximum Voltage Across TEC Module.  
Sets TEC Heating Current Limit.  
Metal paddle at the Exposed Pad. The LFCSP package has an exposed pad that should be connected to AGND  
back of package (Pin 12) and the associated PCB ground plate.  
Rev. A | Page 8 of 20  
Data Sheet  
ADN8831  
TYPICAL PERFORMANCE CHARACTERISTICS  
360  
300  
240  
180  
120  
60  
SYNCI/SD = 1MHz  
= 25°C  
T
A
V
= 3V  
DD  
SPGATE  
SNGATE  
T
= 25°C  
A
V
= 5V  
DD  
0
10ns/DIV  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
V
(V)  
PHASE  
Figure 4. SPGATE and SNGATE Rise Time Using Circuit Shown Figure 12  
Figure 7. Clock Phase Shift vs. Phase Voltage  
2.485  
2.480  
2.475  
2.470  
2.465  
V
= 5V  
DD  
SNGATE  
SPGATE  
T
= 25°C  
A
V
= 5V  
DD  
10ns/DIV  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 5. SNGATE and SPGATE Fall Time Using Circuit Shown in Figure 12  
Figure 8. VREF vs. Temperature  
360  
1000  
800  
600  
400  
200  
0
SYNCI/SD = 1MHz  
V
= 5V  
DD  
T
= 25°C  
A
T
= 25°C  
A
V
= 5V  
DD  
300  
240  
180  
120  
60  
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
0
250  
500  
(k)  
750  
1000  
V
(V)  
R
PHASE  
FREQ  
Figure 9. Switching Frequency vs. RFREQ  
Figure 6. Clock Phase Shift vs. Phase Voltage  
Rev. A | Page 9 of 20  
 
ADN8831  
Data Sheet  
740  
15  
12  
9
V
= 5V  
V
= 5V  
DD  
= 25°C  
DD  
T
A
720  
700  
680  
660  
6
3
640  
–40  
0
200  
–15  
10  
35  
60  
85  
400  
600  
800  
1000  
TEMPERATURE (°C)  
SWITCHING FREQUENCY (kHz)  
Figure 10. Switching Frequency vs. Temperature  
Figure 11. Supply Current vs. Switching Frequency  
Rev. A | Page 10 of 20  
Data Sheet  
ADN8831  
THEORY OF OPERATION  
The ADN8831 is a single chip TEC controller that sets and  
stabilizes a TEC temperature. A voltage applied to the input  
of the ADN8831 corresponds to a target TEC temperature  
setpoint (TEMPSET). By controlling an external FET H-bridge,  
the appropriate current is then applied to the TEC to pump  
heat either to or away from an object attached to the TEC.  
The objective temperature is measured with a thermal sensor  
attached to the TEC and the sensed temperature (voltage) is  
fed back to the ADN8831 to complete a closed thermal control  
loop of the TEC. For best stability, the thermal sensor is to be  
closed to the object. In most laser diode modules, a TEC and a  
NTC thermistor are already mounted in the same package to  
regulate the laser diode temperature.  
Adjusting the PID network optimizes the step response of  
the TEC control loop. A compromised settling time and the  
maximum current ringing become available when this is done.  
Details of how to adjust the compensation network are in the  
PID Compensation Amplifier (CHOP2) section. The TEC is  
differentially driven in an H-bridge configuration. The ADN8831  
drives external MOSFET transistors to provide the TEC current.  
To further improve the power efficiency of the system, one side  
of the H-bridge uses a PWM driver. Only one inductor and one  
capacitor are required to filter out the switching frequency. The  
other side of the H-bridge uses linear output without requiring  
any additional circuitry. This proprietary configuration allows  
the ADN8831 to provide efficiency of >90%. For most applica-  
tions, a 4.7 μH inductor, a 22 μF capacitor, and a switching  
frequency of 1 MHz, maintain less than 0.5% worst-case output  
voltage ripple across a TEC.  
The ADN8831 integrates two self-correcting, auto-zero amplifiers  
(Chop1 and Chop2). The Chop1 amplifier usually takes a thermal  
sensor input and converts or regulates the input to a linear  
voltage output. The OUT1 (Pin 4) voltage is proportional to the  
object temperature. The OUT1 (Pin 4) voltage is fed into the  
compensation amplifier (Chop2) and compared with a tempera-  
ture setpoint voltage, creating an error voltage that is proportional  
to the difference. When using the Chop2 amplifier, a PID  
network is recommended, as shown in Figure 12.  
The maximum voltage across the TEC and current flowing  
through the TEC is to be set using the VLIM (Pin 31) and  
ILIMC (Pin 1)/ILIMH (Pin 32). Additional details are in the  
Maximum TEC Voltage Limit section and the Maximum TEC  
Current Limit section.  
5Ω  
0.1µF  
VDD  
3.0V TO 5.5V  
0.1µF  
AVDD  
PVDD  
VREF  
VLIM  
ILIMC  
LPGATE  
LFB  
R
0.1µF  
10kΩ  
10kΩ  
SENSE  
10kΩ  
0.1µF  
LNGATE  
CS  
8.2kΩ  
ILIMH  
IN1P  
8.2kΩ  
10kΩ  
10kΩ  
COMPSW  
TEC  
17.8kΩ  
SFB  
SYNCI/SD  
COMPOSC  
IN1N  
10kΩ  
1kΩ  
VDD  
17.8kΩ  
10kΩ  
7.68kΩ  
OUT1  
60µF  
THERMISTOR  
SPGATE  
IN2N  
30.1kΩ  
SW  
SNGATE  
SYNCO  
PHASE  
SS/SB  
27nF  
3.3µH  
10µF  
40µF  
OUT2  
IN2P  
TEMPERATURE SET INPUT  
NC  
NC  
TEC VOLTAGE OUTPUT  
TEC CURRENT OUTPUT  
VTEC  
ITEC  
0.1µF  
118kΩ  
FREQ  
TEMP GOOD INDICATOR  
NC = NO CONNECT  
TMPGD  
PGND  
AGND  
Figure 12. Typical Application Circuit 1  
Rev. A | Page 11 of 20  
 
 
ADN8831  
Data Sheet  
Connecting Multiple ADN8831 Devices  
OSCILLATOR CLOCK FREQUENCY  
SD  
Connecting SYNCO (Pin 15) to the SYNCI/ pin of another  
ADN8831 allows for multiple ADN8831 devices to work  
together using a single clock. Multiple ADN8831 devices can be  
driven from a single master ADN8831 device, by connecting the  
The ADN8831 has an internal oscillator to generate the switching  
frequency for the output stage. This oscillator can be set in either  
free-run mode or synchronized to an external clock signal.  
Free-Run Operation  
SD  
SYNCO pin of the master device to each slave SYNCI/ pin,  
or by daisy-chaining by connecting the SYNCO pin of each  
device to the SYNCI/ pin of the next device. When multiple  
ADN8831 devices are clocked at the same frequency, the phase is  
to be adjusted to reduce power supply ripple.  
The switching frequency is set by a single resistor connected  
from FREQ (Pin 13) to ground. Table 5 shows RFREQ for some  
common switching frequencies. For free-run operation, connect  
SD  
SD  
SYNCI/ (Pin 16) and COMPOSC (Pin 17) to PVDD (Pin 18).  
Table 5. Switching Frequencies vs. RFREQ  
ADN8831  
MASTER  
V
fSWITCH  
RFREQ  
COMPOSC  
DD  
250 kHz  
500 kHz  
750 kHz  
1 MHz  
484 kΩ  
249 kΩ  
168 kΩ  
118 kΩ  
118kΩ  
FREQ  
V
SYNCI/SD  
DD  
PHASE  
NC  
SYNCO  
Higher switching frequencies reduce the voltage ripple across the  
TEC. However, high switching frequencies create more power  
dissipation in the external transistors due to the more frequent  
charging and discharging of the transistor gate capacitances.  
10kΩ  
V
DD  
1nF  
0.1µF  
ADN8831  
SLAVE  
1kΩ  
COMPOSC  
ADN8831  
1MΩ  
V
COMPOSC  
FREQ  
DD  
FREQ  
R
FREQ  
V
SYNCI/SD PHASE  
PHASE  
V
SYNCI/SD  
DD  
1nF  
Figure 13. Free-Run Mode  
ADN8831  
SLAVE  
0.1µF  
1kΩ  
External Clock Operation  
The switching frequency of the ADN8831 can be synchronized  
SD  
COMPOSC  
FREQ  
1MΩ  
with an external clock. Connect the clock signal to SYNCI/  
(Pin 16) and connect COMPOSC (Pin 17) to an R-C network. This  
network compensates a PLL to lock on to the external clock.  
V
SYNCI/SD PHASE  
PHASE  
1nF  
ADN8831  
Figure 15. Multiple ADN8831 Devices Driven from a Master Clock  
0.1µF  
1kΩ  
COMPOSC  
OSCILLATOR CLOCK PHASE  
1MΩ  
Adjust the oscillator clock phase using a simple resistor divider  
at PHASE (Pin 10). Phase adjustment allows two or more  
ADN8831 devices to operate from the same clock frequency  
and not have all outputs switched simultaneously. This avoids  
the potential of an excessive power supply ripple.  
FREQ  
EXT. CLOCK  
SYNCI/SD  
SOURCE  
Figure 14. Synchronize to an External Clock  
To ensure the correct operation of the oscillator, VPHASE is to  
remain in the range of 100 mV to 2.4 V. PHASE (Pin 10) is  
internally biased at 1.2 V. If PHASE (Pin 10) remains open, the  
clock phase is set at 180° as the default.  
Rev. A | Page 12 of 20  
 
 
 
Data Sheet  
ADN8831  
Current Monitor  
TEMPERATURE LOCK INDICATOR  
ITEC (Pin 29) is an analog voltage output pin with a voltage  
proportional to the actual current through the TEC. A center  
ITEC voltage of 1.25 V corresponds to 0 A through the TEC.  
The output voltage is calculated using the following equation:  
The TMPGD (Pin 11) outputs a logic high when the OUT1 (Pin 4)  
voltage reaches the IN2P (Pin 5) temperature setpoint (TEMPSET)  
voltage. The TMPGD has a detection range of 25 mV and a  
10 mV typical hysteresis. This allows direct interfacing either to  
the microcontrollers or to the supervisory circuitry.  
VITEC =1.25 V+ 25×(VLFB VCS )  
SOFT START ON POWER-UP  
The equivalent TEC current is calculated using the following  
equation:  
The ADN8831 can be programmed to ramp up for a specified  
SD  
time after the power supply is turned on or after the  
pin is  
V
ITEC 1.25 V  
ITEC  
=
deasserted. This feature, called soft start, is useful for gradually  
increasing the duty cycle of the PWM amplifier. The soft start  
time is set with a single capacitor connected from SS (Pin 14) to  
ground. The capacitor value is calculated by the following  
equation:  
25×RSENSE  
MAXIMUM TEC VOLTAGE LIMIT  
The maximum TEC voltage is set by applying a voltage at  
VLIM (Pin 31) to protect the TEC. This voltage can be set with  
a resistor divider or a DAC. The voltage limiter operates in  
bidirectional TEC voltage, and cooling and heating voltage.  
τSS =150 ×CSS  
where:  
Using a DAC  
CSS is the value of the capacitor in microfarads.  
τ
SS is the soft start time in milliseconds.  
Both the cooling and heating voltage limits are set at the same  
levels when a voltage source directly drives VLIM (Pin 31).  
The maximum TEC voltage is calculated using the following  
equation:  
To set a soft start time of 15 ms, CSS is to equal 0.1 μF.  
SHUTDOWN MODE  
The shutdown mode sets the ADN8831 into an ultralow current  
state. The current draw in shutdown mode is typically 8 µA.  
VTEC(MAX) = 5×VVLIM  
where:  
SD  
The shutdown input,  
(Pin 16), is active low. To shut down  
to logic low. Once a logic high is applied,  
V
V
TEC (MAX) is the maximum TEC voltage.  
VLIM is the voltage applied at VLIM (Pin 31).  
SD  
the device, drive  
the ADN8331 is reactivated after the time delay set by the soft  
start circuitry. Refer to the Soft Start on Power-Up section for  
more details.  
Using a Resistor Divider  
Separate voltage limits are set using a resistor divider. The  
internal current sink circuitry connected to VLIM (Pin 31) draws  
a current when the ADN8831 drives the TEC in a heating  
direction, which lowers the voltage at VLIM (Pin 31). The  
current sink is not active when the TEC is driven in a cooling  
direction; therefore, the TEC heating voltage limit is always  
lower than the cooling voltage limit.  
STANDBY MODE  
The ADN8831 has a standby mode that deactivates a MOSFET  
driver stage. The current draw for the ADN8831 in standby  
SB  
mode is less than 2 mA. The standby input SS/ (Pin 14) is  
active low. After applying a logic high, the ADN8331 reactivates  
following the delay. In standby mode, only SYNCO (Pin 15) has  
a clock output. All the other function blocks are powered off.  
V
REF  
ADN8831  
R
A
VLIM  
VLIM  
TEC VOLTAGE/CURRENT MONITOR  
R
B
The TEC real time voltage and current are detectable at VTEC  
(Pin 30) and ITEC (Pin 29), respectively.  
I
SINK  
Voltage Monitor  
FREQ  
R
VTEC (Pin 30) is an analog voltage output pin with a voltage  
proportional to the actual voltage across the TEC. A center  
VTEC voltage of 1.25 V corresponds to 0 V across a TEC. The  
output voltage is calculated using the following equation:  
FREQ  
Figure 16. Using a Resistor Divider  
VVTEC =1.25 V+ 0.25×(VLFB VSFB  
)
Rev. A | Page 13 of 20  
 
 
 
 
 
 
ADN8831  
Data Sheet  
The sink current is set by the resistor connected from FREQ  
(Pin 13) to ground. The sink current is calculated using the  
following equation:  
MAXIMUM TEC CURRENT LIMIT  
To protect the TEC, separate maximum TEC current limits in  
cooling and heating directions are set by applying a voltage at  
ILIMC (Pin 1) and ILIMH (Pin 32). Maximum TEC currents  
are calculated using the following equations:  
1.25 V  
ISINK  
=
RFREQ  
VILIMC 1.25 V  
25×RSENSE  
where:  
SINC is the sink current at VLIM (Pin 31).  
FREQ is the resistor connected at FREQ (Pin 13).  
ITEC,MAX,COOL  
=
I
R
1.25 VVILIMH  
25×RSENSE  
ITEC,MAX,HEAT  
=
The cooling and heating limits are calculated using the  
following equations:  
V
REF ×RB  
VVLIM,COOL  
=
RA + RB  
VVLIM,HEAT = VVLIM,COOL ISINK ×RA RB  
Rev. A | Page 14 of 20  
 
Data Sheet  
ADN8831  
APPLICATIONS INFORMATION  
THERMISTOR INPUT  
AMPLIFIER  
PID COMPENSATOR  
AMPLIFIER  
MOSFET DRIVER  
= 5  
A
V
SFB  
A
= R /(R + R ) – R /R  
A = Z /Z  
V
FB  
TH  
X
FB  
OUT1  
4
V 2 1  
SPGATE  
SNGATE  
LPF  
PWM  
+
+
IN1P  
IN1N  
IN2P  
IN2N  
TEC  
OUT2  
CONTROL  
Chop2  
Chop1  
LPGATE  
LINEAR  
LNGATE  
LFB  
V
2
3
5
6
7
REF  
V
/2  
V
TEMPSET  
17.68kΩ  
R
REF  
R
FB  
Z
Z
2
1
R
7.68kΩ  
X
V
V
OUT2  
OUT1  
R
TH  
(10kΩ @ 25°C)  
Figure 17. Signal Flow Block Diagram  
T
T
R
LOW and THIGH are the endpoints of the temperature range and  
MID is the average. In some cases, with only B constant available ,  
TH is calculated using the following equation:  
SIGNAL FLOW  
The ADN8831 integrates two auto-zero amplifiers defined  
as the Chop1 amplifier and the Chop2 amplifier. Both of the  
amplifiers can be used as standalone amplifiers, therefore, the  
implementation of temperature control can vary. Figure 17  
shows the signal flow through the ADN8831, and a typical  
implementation of the temperature control loop using the Chop1  
amplifier and the Chop2 amplifier.  
1
T
1
TR  
RTH = R exp B  
R
where:  
R
TH is a resistance at T[K].  
RR is a resistance at TR[K].  
RX is calculated using the following equation:  
In Figure 17, the Chop1 amplifier and the Chop2 amplifier are  
configured as the thermistor input amplifier and the PID  
compensation amplifier, respectively. The thermistor input  
amplifier gains the thermistor voltage then outputs to the PID  
compensation amplifier. The PID compensation amplifier then  
compensates a loop response over the frequency domain.  
RLOW RMID + RMID RHIGH 2RLOW RHIGH  
RLOW + RHIGH 2RMID  
RX  
=
THERMISTOR AMPLIFIER (Chop1)  
The output from the compensation loop at OUT2 is fed to the  
linear MOSFET gate driver. The voltage at LFB is fed with OUT2  
into the PWM MOSFET gate driver. Including the external  
transistors, the gain of the differential output section is fixed at 5.  
For details on the output drivers, see the MOSFET Driver  
Amplifier section.  
The Chop1 amplifier can be used as a thermistor input amplifier.  
In Figure 17, the output voltage is a function of the thermistor  
temperature. The voltage at OUT1 is expressed as  
RFB  
RTH + RX  
RFB  
R
VREF  
2
VOUT1  
=
+1 ×  
THERMISTOR SETUP  
where:  
TH is a thermistor.  
RX is a compensation resistor.  
The thermistor has a nonlinear relationship to temperature; near  
optimal linearity over a specified temperature range can be  
achieved with the proper value of RX placed in series with the  
thermistor. First, the resistance of the thermistor must be  
known, where  
R
R is calculated using the following equation:  
R = RX + RTH @25°C  
V
OUT1 is centered around VREF/2 at 25°C. With the typical  
RLOW = RTH @TLOW  
RMID = RTH @TMID  
RHIGH = RTH @THIGH  
values shown in Figure 17, an average temperature-to-voltage  
coefficient is −25 mV/°C at a range of +5°C to +45°C.  
Rev. A | Page 15 of 20  
 
 
 
 
 
ADN8831  
Data Sheet  
2.5  
1
f0 dB  
80TECGAIN  
2R3C1  
2.0  
1.5  
1.0  
0.5  
To ensure stability, the unity-gain crossover frequency is to be  
lower than the thermal time constant of the TEC and thermistor.  
However, this thermal time constant is sometimes unspecified  
making it difficult to characterize. There are many texts written  
on loop stabilization, and it is beyond the scope of this data  
sheet to discuss all methods and trade offs in optimizing  
compensation networks.  
ADN8831  
+
0
–15  
CHOP2  
5
25  
45  
65  
TEMPERATURE(°C)  
Figure 18. VOUT1 vs. Temperature  
OUT1  
IN2P  
IN2N  
OUT2  
7
4
5
6
PID COMPENSATION AMPLIFIER (Chop2)  
V
TEMPS  
ET  
Use the Chop2 amplifier as the PID compensation amplifier.  
The voltage at OUT1 feeds into the PID compensation amplifier.  
The frequency response of the PID compensation amplifier is  
dictated by the compensation network. Apply the temperature  
set voltage at IN2P. In Figure 17, the voltage at OUT2 is calcu-  
lated using the following equation:  
R3  
R1  
C1  
R2  
C2  
CF  
Figure 19. Implementing a PID Compensation Loop  
Z2  
Z1  
VOUT2 VTEMPSET  
(VOUT1 VTEMPSET )  
The user sets the exact compensation network. This network  
varies from a simple integrator to PI, PID, or any other type of  
network. The user also determines the type of compensation  
and component values because they are dependent on the thermal  
response of the object and the TEC. One method for empirically  
determining these values is to input a step function to IN2P,  
therefore changing the target temperature, and adjusting the  
compensation network to minimize the settling time of the TEC  
temperature.  
0dB  
R1  
R2 || R3  
R1  
R3  
1
1
1
1
A typical compensation network for temperature control of  
a laser module is a PID loop consisting of a very low frequency  
pole and two separate zeros at higher frequencies. Figure 19  
shows a simple network for implementing PID compensation.  
To reduce the noise sensitivity of the control loop, an additional  
pole is added at a higher frequency than the zeros. The bode  
plot of the magnitude is shown in Figure 20. The unity-gain  
crossover frequency of the feedforward amplifier is calculated  
using the following equation:  
2πR3C1  
2πR1C1  
2πC2 (R2 + R3) 2πR3C2  
FREQUENCY (Hz Log Scale)  
Figure 20. Bode Plot for PID Compensation  
With an ADN8831-EVALZ board, AN-695, an application note  
shows how to determine the PID network components for a  
stable TEC subsystem performance.  
Rev. A | Page 16 of 20  
 
 
 
Data Sheet  
ADN8831  
MOSFET DRIVER AMPLIFIER  
5.0  
2.5  
0
The ADN8831 has two separate MOSFET drivers: a switched  
output or pulse-width modulated (PWM) amplifier, and a high  
gain linear amplifier. Each amplifier has a pair of outputs that drive  
the gates of external MOSFETs which, in turn, drive the TEC as  
shown in Figure 17. A voltage across the TEC is monitored via  
SFB (Pin 23) and LFB (Pin 27). Although both MOSFET drivers  
achieve the same result, to provide constant voltage and high  
current, their operation is different. The exact equations for the  
two outputs are  
5.0  
2.5  
0
VLFB = VB 40(VOUT2 1.25)  
VSFB = VLFB + 5(VOUT2 1.25)  
where:  
5.0  
2.5  
VOUT2 is the voltage at OUT2 (Pin 7).  
VB is determined by VDD as  
VB =1.5 V[VDD < 4.0 V]  
0
VB = 2.5 V[VDD > 4.0 V]  
The voltage at OUT2 (Pin 7) is determined by the compensation  
network that receives temperature set voltage and thermistor  
voltage fed by the input amplifier. VLFB has a low limit of 0 V  
and an upper limit of VDD. Figure 21 shows the graphs of these  
equations.  
–2.5  
–5.0  
0
0.25  
0.75  
1.25  
1.75  
2.25  
2.75  
OUT2 (V)  
Figure 21. OUT2 Voltage vs. TEC Voltage  
Rev. A | Page 17 of 20  
 
ADN8831  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
24  
32  
1
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 22. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm× 5 mm Body, Very Thin Quad  
(CP-32-7)  
Dimensions Shown in Millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CP-32-7  
ADN8831ACPZ-R2  
ADN8831ACPZ-REEL7  
ADN8831-EVALZ  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
−40C to +85C  
−40C to +85C  
−40C to +85C  
CP-32-7  
1 Z = RoHS Compliant Part.  
Rev. A | Page 18 of 20  
 
 
 
Data Sheet  
NOTES  
ADN8831  
Rev. A | Page 19 of 20  
ADN8831  
NOTES  
Data Sheet  
©2005–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04663-0-8/12(A)  
Rev. A | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY