ADP1032ACPZ-2-R7 [ADI]

Two-Channel, Isolated Micropower Management Unit with Seven Digital Isolators;
ADP1032ACPZ-2-R7
型号: ADP1032ACPZ-2-R7
厂家: ADI    ADI
描述:

Two-Channel, Isolated Micropower Management Unit with Seven Digital Isolators

文件: 总37页 (文件大小:1345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Two-Channel, Isolated Micropower Management  
Unit with Seven Digital Isolators  
Data Sheet  
ADP1032  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
V
V
INP  
OUT1  
6V TO 28V  
D1  
Wide input supply voltage range: 4.5 V to 60 V  
Integrated flyback power switch  
Generates two isolated, well regulated independent outputs  
4.5V TO 60V  
R
R
FT1  
Z
C
CLAMP  
FLY BK  
D
CLAMP  
Tx1  
FB1  
VOUT1: 24 V or 6 V to 28 V  
V
OUT2: 3.3 V, 5.0 V, or 5.15 V  
SWP  
FB1  
SGND2  
VINP  
EN  
R3  
R2  
Uses a 1:1 ratio transformer for simplified transformer design  
Peak current limiting and OVP for flyback and buck regulators  
Precision enable input and power-good output  
Adjustable switching frequency via SYNC input  
Internal compensation and soft start control per regulator  
High speed, low propagation delay, SPI signal isolation  
channels  
Three 100 kbps general-purpose isolated data channels  
41-lead, 9 mm × 7 mm LFCSP form factor enables small  
overall solution size  
VOUT1  
SYNC  
C
IN  
PGND  
V
OUT2  
PGNDP  
GNDP  
3.3V, 5.0V, 5.15V  
VOUT2  
SW2  
SLEW  
C
L1  
BUCK  
ADP1032  
ISOLATED GPIO  
CHANNELS AND SPI  
INTERFACE  
ISOLATED GPIO  
CHANNELS AND SPI  
INTERFACE  
V
SVDD  
1.8V TO 5.5V  
PWRGD  
MVDD  
SVDD2  
−40°C to +125°C operating junction temperature range  
Safety and regulatory approvals (pending)  
CISPR11 Class B radiated emission  
C3  
V
R1  
C1  
MVDD  
2.3V TO 5.5V  
SGND2  
SVDD1  
C4  
UL recognition: 2500 V rms for 1 minute duration per UL 1577  
CSA Component Acceptance Notice 5A  
MGND  
SGND1  
300 V rms basic insulation between slave, master, and  
field power domains (IEC 61010-1, pending)  
VDE certificate of conformity  
Figure 1.  
The two regulators are phase shifted relative to each other to  
reduce electromagnetic interference (EMI). The ADP1032 can  
be driven by an external oscillator in the range of 350 kHz to  
750 kHz to ease noise filtering in sensitive applications.  
DIN V VDE 0884-10 (VDE 0884-10):2006-12  
V
IORM = 565 VPEAK  
APPLICATIONS  
The digital isolators integrated in the ADP1032 use Analog  
Devices, Inc., iCoupler® chip scale transformer technology,  
optimized for low power and low radiated emissions.  
Industrial automation and process control  
Instrumentation and data acquisition systems  
Data and power isolation  
The ADP1032 is available in a 9 mm × 7 mm, 41-lead LFCSP and  
is rated for a −40°C to +125°C operating junction temperature  
range.  
GENERAL DESCRIPTION  
The ADP1032 is a high performance, isolated micropower  
management unit (PMU) that combines an isolated flyback and a  
dc-to-dc regulator providing two isolated power rails. Additionally,  
the ADP1032 contains four high speed serial peripheral interface  
(SPI) isolation channels and three general-purpose isolators for  
channel to channel applications where low power dissipation  
and small solution size is required. Operating over an input  
voltage range of 4.5 V to 60 V, the ADP1032 generates isolated  
output voltages of 6 V to 28 V (adjustable version) or 24 V  
(fixed version) for VOUT1, and factory programmable voltages  
Table 1. Family Models  
Flyback Switch  
(mA)  
Buck Switch  
(mA)  
Inverter Switch  
(mA)  
Model  
ADP1031 300  
ADP1032 440  
300  
300  
300  
Not applicable  
COMPANION PRODUCTS  
Analog Output DAC: AD5758  
Universal Analog input: AD4110-1  
Software Defined Input/Output: AD74412R  
Precision Data Acquisition Subsystem: AD7768-1  
Additional companion products on the ADP1032 product page  
of 5.15 V, 5.0 V, or 3.3 V for VOUT2  
.
By default, the ADP1032 flyback regulator operates at a 250 kHz  
switching frequency, and the buck regulator operates at 125 kHz.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADP1032  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Flyback Regulator....................................................................... 24  
Buck Regulator ........................................................................... 25  
Power Good ................................................................................ 25  
Power-Up Sequence ................................................................... 26  
Oscillator and Synchronization................................................ 26  
Thermal Shutdown .................................................................... 26  
Data Isolation.............................................................................. 26  
Applications Information.............................................................. 29  
Component Selection ................................................................ 29  
Flyback Regulator Components Selection.............................. 29  
Buck Regulator Components Selection................................... 32  
Insulation Lifetime..................................................................... 33  
Thermal Analysis ....................................................................... 34  
Typical Application Circuit....................................................... 35  
PCB Layout Considerations.......................................................... 36  
Outline Dimensions....................................................................... 37  
Ordering Guide .......................................................................... 37  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Companion Products....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Regulatory Information............................................................... 7  
Electromagnectic Compatibility................................................. 7  
Insulation and Safety Related Specifications ............................ 7  
DIN V VDE 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Theory of Operation ...................................................................... 23  
REVISION HISTORY  
1/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 37  
 
Data Sheet  
ADP1032  
SPECIFICATIONS  
VINP voltage (VINP) = 2 4 V, MVDD voltage (VMVDD) = 3.3 V, SVDDx voltage (VSVDDx) = 3.3 V, VOUT1 voltage (VOUT1) = 24 V, VOUT2 voltage  
(VOUT2) = 3.3 V, and ambient temperature (TA) = 25°C for typical specifications. Minimum and maximum specifications apply over the entire  
operating range of 4.5 V ≤ VINP ≤ 60 V, 2 . 3 V ≤ VMVDD ≤ 5.5 V, 1.8 V ≤ VSVDDx ≤ 5.5 V, and −40°C ≤ TJ ≤ +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT SUPPLY VOLTAGE RANGE  
VINP  
MVDD  
SVDDx  
VINP  
VMVDD  
VSVDDx  
4.5  
2.3  
1.8  
60  
5.5  
5.5  
V
V
V
Applies to SVDD1 and SVDD2  
Transformer = Coilcraft ZA9644-AE  
VOUT1 current (IOUT1) = 100 mA  
VOUT2 current (IOUT2) = 30 mA  
IOUT1 = 25 mA, IOUT2 = 7 mA  
OUTPUT POWER AND EFFICIENCY  
Total Output Power  
2.5  
W
623  
86.5  
mW  
%
Efficiency  
IOUT1 = 100 mA, IOUT2 = 30 mA  
84.5  
390  
114  
%
mW  
mW  
IOUT1 = 25 mA, IOUT2 = 7 mA  
IOUT1 = 100 mA, IOUT2 = 30 mA  
IOUT1 = 25 mA, IOUT2 = 7 mA  
Power Dissipation  
QUIESCENT CURRENT  
VINP  
Operating Current  
IQ_VINP  
1.9  
mA  
µA  
Normal operation, VOUT1,  
VOUT2 = no load  
EN voltage (VEN) = 0 V  
Shutdown Current  
MVDD  
ISHDN_VINP  
125  
175  
1
SPI Active Mode  
IQ_MVDD (SPI_ACTIVE)  
4.1  
9.2  
1.6  
1.6  
6.5  
14  
mA  
mA  
mA  
mA  
MSS  
MSS  
VIx = logic low,  
= logic low  
= logic low  
= logic high  
1
VIx = logic high,  
1
SPI Low Power Mode  
IQ_MVDD (SPI_LOWPWR)  
2.5  
2.5  
MSS  
VIx = logic low,  
1
MSS  
VIx = logic high,  
= logic high  
SVDD1  
SPI Active Mode  
1
IQ_SVDD1 (SPI_ACTIVE)  
IQ_SVDD1 (SPI_LOWPWR)  
IQ_SVDD2  
1.8  
5.7  
1.8  
1.8  
15.5  
2
2.7  
8.6  
2.7  
2.7  
22  
mA  
mA  
mA  
mA  
µA  
SSS  
SSS  
VIx = logic low,  
= logic low  
= logic low  
= logic high  
1
VIx = logic high,  
1
SPI Low Power Mode  
SVDD2  
SSS  
VIx = logic low,  
1
SSS  
VIx = logic high,  
= logic high  
VIx1 = logic low  
VIx1 = logic high  
2.5  
mA  
Undervoltage Lockout (UVLO)  
VINP  
Relative to PGNDP  
Relative to MGND  
Rising Threshold  
Falling Threshold  
Hysteresis  
VUVLO_VINP (RISE)  
VUVLO_VINP (FALL)  
4.44  
4.34  
100  
4.49  
2.28  
V
V
mV  
4.29  
1.9  
MVDD  
Rising Threshold  
Falling Threshold  
Hysteresis  
VUVLO_MVDD (RISE)  
VUVLO_MVDD (FALL)  
2.14  
2
140  
V
V
mV  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
TSHDN  
THYS  
150  
15  
°C  
°C  
PRECISION ENABLE  
Rising Input Threshold  
Input Hysteresis  
Leakage Current  
VEN_RISING  
VEN_HYST  
1.10  
1.135  
100  
0.03  
1.20  
0.5  
V
mV  
µA  
VEN = VINP  
Rev. 0 | Page 3 of 37  
 
ADP1032  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER GOOD  
Power-Good Threshold  
Flyback Regulator  
Lower Limit  
VPG_FLYBACK_LL  
VPG_FYLBACK_UL  
87.5  
107.5  
90  
110  
92.5  
112.5  
%
%
Fixed and adjustable output versions  
Fixed and adjustable output versions  
Upper Limit  
Buck Regulator  
Lower Limit  
Upper Limit  
Glitch Rejection  
Output Voltage  
Logic High  
VPG_BUCK_LL  
VPG_BUCK_UL  
87.5  
107.5  
90  
110  
1.36  
92.5  
112.5  
%
%
µs  
Glitch of 15% of the typical output  
VPWRGD_OH  
VPWRGD_OL  
VMVDD − 0.4  
V
V
PWRGD current (IPWRGD) = −1 mA  
IPWRGD = 1 mA  
Logic Low  
0.4  
0.8  
SLEW  
Voltage Level Threshold  
Slow Slew Rate  
Normal Slew Rate  
Input Current  
V
V
2
Slow Slew Rate  
Normal Slew Rate  
Fast Slew Rate  
CLOCK SYNCHRONIZATION  
SYNC Input  
−10  
−1  
µA  
µA  
µA  
Slew voltage (VSLEW) = 0 V to 0.8 V  
VSLEW = 2 V to VINP  
SLEW pin not connected  
10  
+1  
Input Clock  
Range  
fSYNC  
350  
100  
150  
1.3  
750  
kHz  
ns  
ns  
V
Minimum On Pulse Width  
Minimum Off Pulse Width  
High Logic  
tSYNC_MIN_ON  
tSYNC_MIN_OFF  
VH (SYNC)  
Low Logic  
VL (SYNC)  
0.4  
+1  
V
µA  
Leakage Current  
FLYBACK REGULATOR  
Output Voltage Range  
−1  
6
+0.005  
SYNC voltage (VSYNC) = VSVDDx  
VOUT1 (ADJ)  
28  
V
V
ADP1032ACPZ-1, ADP1032ACPZ-2,  
and ADP1032ACPZ-3  
ADP1032ACPZ-4 and  
ADP1032ACPZ-5  
VOUT1 (FIXED)  
24  
Output Voltage Accuracy  
Feedback Voltage  
Feedback Voltage Accuracy  
Feedback Bias Current  
Load Regulation  
−1.5  
−1.5  
1.5  
%
V
%
µA  
%/mA  
Fixed output options  
VFB1  
IFB1  
(ΔVFB1/VFB1)/  
ΔIOUT1  
(ΔVOUT1/VOUT1)/  
ΔVINP  
RON (FLYBACK)  
0.8  
+1.5  
0.05  
Adjustable output options  
−0.0005  
0.0002  
3
IOUT1 = 4 mA to 100 mA, IOUT2 = 30 mA  
Line Regulation  
%/V  
Ω
VINP = 18 V to 32 V, IOUT1 = 80 mA,  
IOUT2 = 10 mA  
SWP current (ISWP) = 100 mA  
Power Field Effect Transistor  
(FET) On Resistance  
Current-Limit Threshold  
SWP Leakage Current  
SWP Capacitance  
ILIM (FLYBACK)  
400  
235  
440  
0.03  
50  
250  
fSYNC/2  
425  
220  
8
480  
0.5  
mA  
µA  
pF  
kHz  
kHz  
ns  
ns  
ms  
V
SWP voltage (VSWP) = 60 V  
CSWP  
fSW (FLYBACK)  
Switching Frequency  
265  
SYNC = low or high  
SYNC = external clock  
Minimum On Time  
Minimum Off Time  
Soft Start Timer  
tSS (FLYBACK)  
SOVPFLYBACK  
Severe Overvoltage Threshold  
29.4  
30  
30.6  
Flyback regulator stops switching until  
the overvoltage is removed  
Severe Overvoltage Hysteresis  
SOVPFLYBACK_HYST  
500  
mV  
Rev. 0 | Page 4 of 37  
Data Sheet  
ADP1032  
Parameter  
Symbol  
Min  
Typ  
Max  
+1.5  
320  
Unit  
Test Conditions/Comments  
BUCK REGULATOR  
Output Voltage  
VOUT2  
5.15  
5.0  
V
V
ADP1032ACPZ-1  
ADP1032ACPZ-2 and  
ADP1032ACPZ-4  
ADP1032ACPZ-3 and  
ADP1032ACPZ-5  
IOUT2 = 10 mA, applies to all models  
IOUT2 = 2 mA to 50 mA  
3.3  
V
Output Voltage Accuracy  
Load Regulation  
−1.5  
%
%/mA  
(ΔVOUT2/VOUT2)/  
ΔIOUT2  
(ΔVOUT2/VOUT2)/  
ΔVOUT1  
RON_NFET (BUCK)  
RON_PFET (BUCK)  
ILIM (BUCK)  
−0.0005  
0.0004  
Line Regulation  
%/V  
VOUT1 = 6 V to 28 V, IOUT2 = 7 mA  
Power FET On Resistance  
1
2.5  
300  
Ω
Ω
mA  
SW2 current (ISW2) = 100 mA  
ISW2 = 100 mA  
Current-Limit Threshold  
SW2 Leakage Current  
280  
P Type Metal-Oxide  
Semiconductor (PMOS)  
N Type Metal-Oxide  
0.03  
0.03  
0.5  
µA  
µA  
VSW2 = 0 V  
0.5  
VSW2 = 28 V  
Semiconductor (NMOS)  
Switching Frequency  
fSW (BUCK)  
117.5  
125  
fSYNC/4  
200  
8
132.5  
kHz  
kHz  
ns  
ms  
kΩ  
SYNC = low or high  
SYNC = external clock  
Minimum On Time  
Soft Start Timer  
Active Pull-Down Resistor  
ISOLATORS, DC SPECIFICATIONS  
tSS (BUCK)  
RPD (BUCK)  
1.7  
1.23 V < VOUT1 < 4.5 V  
MSS  
, MO, SO, MGPI1,  
MCK,  
MGPI2, SGPI3  
Input Threshold  
Logic High  
Logic Low  
Input Current  
2
VIH  
VIL  
II  
0.7 × VxVDD  
−1  
V
V
µA  
2
0.3 × VxVDD  
+1  
2
0 V ≤ VINPUT ≤ VxVDD  
SSS  
, SI, MI  
SCK,  
Output Voltage  
Logic High  
4
VOH  
VOL  
VxVDD2 − 0.1  
VxVDD2 − 0.4  
V
V
V
V
IOx3 = −20 µA, VIx = VIXH  
4
IOx3 = −2 mA, VIx = VIXH  
5
Logic Low  
0.1  
0.4  
IOx3 = 20 µA, VIx = VIXL  
5
0.15  
0.15  
IOx3 = 2 mA, VIx = VIXL  
SGPO1, SGPO2, MGPO3  
Output Voltage  
Logic High  
4
VOH  
VOL  
VxVDD2 − 0.1  
VxVDD2 − 0.4  
V
V
V
V
IOx3 = −20 µA, VIx = VIXH  
IOx3 = −500 µA, VIx = VIXH  
4
5
Logic Low  
0.1  
0.4  
IOx3 = 20 µA, VIx = VIXL  
IOx3 = 500 µA, VIx = VIXL  
5
SCK, SI, MI  
Tristate Leakage  
−1  
−1  
+0.01  
+0.01  
+1  
+1  
µA  
µA  
MSS  
= logic high  
VOX6 = VxVDD  
2
ISOLATORS, SWITCHING  
SPECIFICATION  
MSS  
, MO, SO  
MCK,  
SPI Clock Rate  
MSS  
SPIMCK  
16.6  
125  
MHz  
ns  
100  
MSS  
going low to the  
Latency (  
)
Delay from  
first data out is valid  
Input Pulse Width  
Input Pulse Width Distortion  
tPW  
tPWD  
17  
ns  
ns  
Within PWD limit  
|tPLH − tPHL|  
0.25  
6.5  
Rev. 0 | Page 5 of 37  
ADP1032  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Channel Matching  
Codirectional  
Opposing Direction  
Propagation Delay  
tPSKCD  
tPSKOD  
tPHL, tPLH  
0.5  
0.5  
5.5  
4
ns  
ns  
50% input to 50% output  
VMVDD = 5 V, VSVDD1 = 5 V  
VMVDD = 3.3 V, VSVDD1 = 5 V  
VMVDD = 3.3 V, VSVDD1 = 3.3 V  
VMVDD = 2.3 V, VSVDD1 = 1.8 V  
VMVDD = 5 V, VSVDD1 = 5 V  
VMVDD = 5 V, VSVDD1 = 5 V  
VMVDD = 3.3 V, VSVDD1 = 5 V  
VMVDD = 3.3 V, VSVDD1 = 5 V  
VMVDD = 3.3 V, VSVDD1 = 3.3 V  
VMVDD = 3.3 V, VSVDD1 = 3.3 V  
VMVDD = 2.3 V, VSVDD1 = 1.8 V  
VMVDD = 2.3 V, VSVDD1 = 1.8 V  
7
7
7
11  
12  
15  
12  
ns  
ns  
ns  
ns  
ps p-p  
ps rms  
ps p-p  
ps rms  
ps p-p  
ps rms  
ps p-p  
ps rms  
8.5  
620  
100  
440  
80  
290  
60  
410  
110  
Jitter  
MGPI1, MGPI2, SGPI3  
Data Rate  
Input Pulse Width  
Propagation Delay  
Jitter  
100  
kbps  
μs  
μs  
tPW  
tPHL, tPLH  
10  
Within PWD limit  
50% input to 50% output  
14  
19.5  
μs  
ISOLATORS AC SPECIFICATIONS  
General-Purpose Input/Output  
(GPIO)  
Output Rise Time/Fall Time  
SPI  
Output Rise Time/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
10% to 90%  
tR/tF  
2
ns  
Common-Mode Transient  
Immunity7  
|CM|  
100  
kV/μs  
1 VIx is the Channel x logic input, where Channel x can be MCK, MO, SO, MGPI1, MGPI2, or SGPI3.  
2 VxVDD = VMVDD or VSVDDx. In these places, either VMVDD or VSVDDx can be used.  
3 IOx is the output current of the pin.  
4 VIXH is the input side, logic high.  
5 VIXL is the input side, logic low.  
6 VOX is the voltage where the output is pulled.  
7 |CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VOUT > 0.8 MVDD and/or SVDDx. The common-mode voltage slew  
rates apply to both rising and falling common-mode voltage edges.  
Rev. 0 | Page 6 of 37  
Data Sheet  
ADP1032  
REGULATORY INFORMATION  
See Table 9 and the Insulation Lifetime section for the recommended maximum working voltages for specific cross isolation waveforms  
and insulation levels.  
Table 3. Safety Certifications  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
Recognized Under UL 1577  
Component Recognition Program  
Approved under CSA Component Acceptance Notice 5A  
Certified according to DIN V VDE V  
0884-10 (VDE V 0884-10):2006-12  
2500 V rms Single Protection  
CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition,  
Basic insulation, 565 VPEAK  
+A1+A2: basic insulation at 300 V rms (424 VPEAK  
)
CSA 61010-1-12 and IEC 61010-1 third edition: basic  
insulation at 300 V rms mains, 300 V rms (424 VPEAK) secondary  
ELECTROMAGNECTIC COMPATIBILITY  
Table 4.  
Regulatory Body  
Standard  
Comment  
SGS-CCSR  
CISPR11 Class B  
Pending  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol  
Test Conditions/Comments  
Value Unit  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
Field Power Domain to Master Domain  
1 minute duration  
2500  
V rms  
Measured from field power pins and pads to master  
pins and pads, shortest distance through air  
Measured from field power pins and pads to slave pins  
and pads, shortest distance through air  
Measured from master pins and pads to slave pins and  
pads, shortest distance through air  
2.15  
2.15  
2.15  
mm min  
mm min  
mm min  
Field Power Domain to Slave Domain  
Master Domain to Slave Domain  
Minimum External Tracking (Creepage)  
Field Power Domain to Master Domain  
Measured from field power pins and pads to master  
pins and pads, shortest distance path along body  
Measured from field power pins and pads to slave pins  
and pads, shortest distance path along body  
Measured from master pins and pads to slave pins and  
pads, shortest distance path along body  
2.15  
2.15  
2.15  
mm min  
mm min  
mm min  
Field Power Domain to Slave Domain  
Master Domain to Slave Domain  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
Insulation distance through insulation  
DIN IEC 112/VDE 0303, Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
18  
>400  
II  
µm min  
V
CTI  
Rev. 0 | Page 7 of 37  
 
 
 
 
ADP1032  
Data Sheet  
DIN V VDE 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
Table 6.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to III  
I to II  
I to I  
40/105/21  
2
VIORM  
VPD (M)  
565  
1060  
VPEAK  
VPEAK  
VIORM × 1.875 = VPD (M), 100% production test, tINI = tM = 1 sec,  
partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = VPD (M), tINI = 60 sec, tM = 10 sec, partial  
discharge < 5 pC  
VPD (M)  
847  
678  
VPEAK  
VPEAK  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPD (M), tINI = 60 sec, tM = 10 sec, partial  
and Subgroup 3  
discharge < 5 pC  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Safety Limiting Values  
VIOTM  
VIOSM  
3537  
4000  
VPEAK  
VPEAK  
VPEAK = 12.8 kV, 1.2 µs rise time, 50 µs, 50% fall time  
Maximum value allowed in the event of a failure (see  
Figure 2)  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
2.48  
>109  
°C  
W
Ω
VIO = 500 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per DIN V VDE V 0884-10  
Rev. 0 | Page 8 of 37  
 
 
Data Sheet  
ADP1032  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 7.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
Parameter  
Rating  
VINP to PGNDP  
SWP to VINP  
61 V  
VINP + 70 V or 110 V,  
whichever is lower  
−0.3 V to VINP + 0.3 V  
−0.3 V to +61 V  
35 V  
−0.3 V to VOUT1 + 0.3 V  
−0.3 V to VOUT1 + 0.3 V  
6 V  
θJA is the natural convection, junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
measured at the top of the package and is independent of the  
PCB. The ΨJT value is appropriate for calculating junction to  
case temperature in the application.  
SLEW to GNDP  
EN to GNDP  
VOUT1 to SGND2  
FB1 to SGND2  
SW2 to SGND2  
VOUT2 to SGND2  
SVDD1 to SGND1  
Table 8. Thermal Resistance  
Package Type1, 2, 3, 4  
θJA  
θJC  
ΨJT  
Unit  
6.0 V  
SVDD2 to SGND2  
6.0 V  
CP-41-1  
50.4  
33.1  
25  
°C/W  
SSS, SCK, SI, SO to SGND1  
SGPO1, SGPO2, SGPI3 to SGND2  
SYNC to SGND2  
−0.3 V to SVDD1 + 0.3 V  
−0.3 V to SVDD2 + 0.3 V  
−0.3 V to +6 V  
6.0 V  
1 9 mm × 7 mm LFCSP with omitted pins for isolation purposes.  
2 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with 19 thermal vias. See JEDEC JESD-51.  
3 Case temperature was measured at the center of the package.  
4 Board temperature was measured near Pin 1.  
MVDD to MGND  
MSS, MCK, MO, MI to MGND  
MGPI1, MGPI2, MGPO3 to MGND  
PWRGD to MGND  
−0.3 V to MVDD + 0.3 V  
−0.3 V to MVDD + 0.3 V  
−0.3 V to MVDD + 0.3 V  
100 kV/µs  
ESD CAUTION  
Common-Mode Transients  
Operating Junction Temperature  
Range1  
−40°C to +125°C  
Storage Temperature Range  
Soldering Conditions  
−65°C to +150°C  
JEDEC J-STD-020  
1 Power dissipated on chip must be derated to keep the junction temperature  
below 125°C.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 9. Maximum Continuous Working Voltage1  
Parameter  
Value  
Constraint  
60 Hz AC Voltage  
DC Voltage  
300 V rms  
424 VPEAK  
20-year lifetime at 0.1% failure rate, zero average voltage  
Limited by the creepage of the package, Pollution Degree 2, Material Group II2, 3  
1 See the Insulation Lifetime section for more details.  
2 Other pollution degrees and material group requirements yield a different limit.  
3 Some system level standards allow components to use the printed wiring board (PWB) creepage values. The supported dc voltage may be higher for those standards.  
Rev. 0 | Page 9 of 37  
 
 
 
 
 
ADP1032  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
MI 1  
MSS 2  
MGND 3  
30 VIN  
P
M
FP  
SWP  
29  
EPGNDM  
EPGNDP  
PGND  
P
28  
ADP1032  
TOP VIEW  
SGND2 4  
SGND1 5  
SSS 6  
27 SGND2  
26 DNC  
25 DNC  
(Not to Scale)  
EPGND2  
S
SO 7  
DNC  
24  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. EPGNDP IS INTERNALLY CONNECTED TO PGNDP,  
EPGNDM IS INTERNALLY CONNECTED TO MGND,  
AND EPGND2 IS INTERNALLY CONNECTED TO SGND.  
Figure 3. Pin Configuration  
Table 10. Pin Function Descriptions  
Isolation  
Mnemonic Domain  
Pin No.  
Direction  
Description  
1
MI  
Master  
Output  
SPI Data Output from the Slave MI and SO Line. This pin is paired with SO. On the  
slave domain, SO drives this pin.  
2
MSS  
Master  
Input  
SPI Slave Select Input from the Master Controller. This pin is paired with SSS. On the  
slave domain, this pin drives SSS. This signal uses an active low logic.  
3
4
5
6
MGND  
SGND2  
SGND1  
SSS  
Master  
Slave  
Slave  
Slave  
Ground  
Ground  
Ground  
Output  
Master Domain Signal Ground Connection.  
Slave Domain Ground Connection. This pin can be left unconnected.  
Slave Domain SPI Isolator Ground.  
SPI Slave Select Output. This pin is paired with MSS. On the master domain, MSS  
drives this pin.  
7
SO  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Input  
SPI Data Input Going to the Master MI and SO Line. This pin is paired with MI. On  
the master domain, this pin drives MI.  
SPI Data Output from the Master MO and SI Line. This pin is paired with MO. On  
the master domain, MO drives this pin.  
SPI Clock Output from the Master. This pin is paired with MCK. On the master  
domain, MCK drives this pin.  
SPI Isolator Power Supply. Connect a 100 nF decoupling capacitor from SVDD1 to  
SGND1.  
8
SI  
Output  
Output  
Power  
9
SCK  
SVDD1  
10  
11 to 14, 24 DNC  
to 26  
14  
Not applicable Do Not Connect. Do not connect to this pin.  
SYNC  
Input  
SYNC Pin. To synchronize the switching frequency, connect the SYNC pin to an  
external clock at twice the required switching frequency. Do not leave this pin  
floating. Connect a 100 kΩ pull-down resistor to SGND2.  
15  
16  
17  
18  
19  
20  
VOUT2  
SGND2  
SW2  
VOUT1  
FB1  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Power  
Ground  
Buck Regulator Output Feedback.  
Slave Power Ground. Ground return for buck regulator output capacitors.  
Not applicable Buck Regulator Switch Node.  
Power  
Flyback Regulator Output and Overvoltage Sense. Input to buck regulator.  
Feedback Node for the Flyback Regulator.  
GPIO Isolators Power Supply. Connect a 100 nF decoupling capacitor from SVDD2  
to SGND2.  
SVDD2  
Power  
21  
22  
23  
SGPI3  
SGPO2  
SGPO1  
Slave  
Slave  
Slave  
Input  
Output  
Output  
General-Purpose Input 3. This pin is paired with MGPO3.  
General-Purpose Output 2. This pin is paired with MGPI2.  
General-Purpose Output 1. This pin is paired with MGPI1.  
Rev. 0 | Page 10 of 37  
 
Data Sheet  
ADP1032  
Isolation  
Mnemonic Domain  
Pin No.  
27  
28  
Direction  
Ground  
Ground  
Description  
SGND2  
PGNDP  
Slave  
Field  
Slave Domain Ground Connection. This pin can be left unconnected.  
Ground Return for Flyback Regulator Power Supply.  
power  
29  
30  
31  
32  
SWP  
VINP  
EN  
Field  
power  
Field  
power  
Field  
power  
Field  
power  
Not applicable Flyback Regulator Switching Node. Primary side transformer connection.  
Power  
Input  
Input  
Flyback Regulator Supply Voltage. Connect a minimum of 3.3 µF capacitor from  
VINP to PGNDP.  
Precision Enable. Compare the EN pin to an internal precision reference to enable  
the flyback regulator output.  
Flyback Regulator Slew Rate Control. The SLEW pin sets the slew rate for the SWP  
driver. For the fastest slew rate (best efficiency), leave the SLEW pin open. For the  
normal slew rate, connect the SLEW pin to VINP. For the slowest slew rate (best  
EMI performance), connect the SLEW pin to GNDP.  
SLEW  
33  
GNDP  
Field  
Ground  
Field Power Signal Ground Connection.  
power  
34  
35  
MGND  
PWRGD  
Master  
Master  
Ground  
Ground  
Master Domain Power Ground Connection.  
Power Good. This pin indicates when the secondary side supplies are within their  
programmed range.  
36  
37  
38  
39  
MGPI1  
MGPI2  
MGPO3  
MVDD  
Master  
Master  
Master  
Master  
Input  
Input  
Output  
Power  
General-Purpose Input 1. This pin is paired with SGPO1.  
General-Purpose Input 2. This pin is paired with SGPO2.  
General-Purpose Output 3. This pin is paired with SGPI3.  
Master Domain Power. Connect a 100 nF decoupling capacitor from MVDD to  
MGND.  
40  
41  
MCK  
Master  
Master  
Input  
SPI Clock Input from the Master Controller. Paired with SCK. On the slave domain,  
this pin drives SCK.  
SPI Data Input Going to Slave MO and SI Line. Paired with SI. On the slave domain,  
this pin drives SI.  
MO  
Input  
EPGNDP  
Field  
Ground  
PGNDP Exposed Pad. This pad is internally connected to PGNDP.  
power  
EPGNDM  
EPGND2  
Master  
Slave  
Ground  
Ground  
MGND Exposed Pad. This pad is internally connected to MGND.  
SGND Exposed Pad. This pad is internally connected to SGND.  
Rev. 0 | Page 11 of 37  
ADP1032  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
90  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
V
V
= 5V  
INP  
INP  
INP  
INP  
INP  
= 18V  
= 24V  
= 32V  
= 60V  
85  
80  
75  
70  
65  
60  
V
V
V
V
V
= 5V  
INP  
INP  
INP  
INP  
INP  
= 18V  
= 24V  
= 32V  
= 60V  
55  
50  
0
100  
200  
300  
0
100  
200  
300  
I
(mA)  
I
(mA)  
OUT1  
OUT1  
Figure 4. Overall Efficiency at Various Input Voltages, TA = 25°C,  
VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA, Using a Coilcraft ZA9644-AE  
Transformer and a Zener Clamp Circuit  
Figure 7. Power Dissipation at Various Input Voltages, TA = 25°C,  
VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA, Using a Coilcraft ZA9644-AE  
Transformer and a Zener Clamp Circuit  
1.0  
88  
86  
84  
82  
80  
78  
76  
D-Z CLAMP  
NO CLAMP  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
RCD CLAMP  
74  
D-Z CLAMP  
72  
70  
NO CLAMP  
RCD CLAMP  
0
50  
100  
(mA)  
150  
200  
0
50  
100  
(mA)  
150  
200  
I
I
OUT1  
OUT1  
Figure 5. Overall Efficiency at Various Input Voltages, TA = 25°C,  
VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA, Using a Coilcraft ZA9644-AE  
Transformer over Different Clamp Circuits  
Figure 8. Power Dissipation at Various Input Voltages, TA = 25°C,  
VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA, Using a Coilcraft ZA9644-AE  
Transformer over Different Clamp Circuits  
90  
85  
80  
75  
70  
65  
60  
1.2  
–40°C  
+25°C  
+105°C  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–40°C  
+25°C  
+105°C  
55  
50  
0
50  
100  
(mA)  
150  
200  
0
50  
100  
(mA)  
150  
200  
I
OUT1  
I
OUT1  
Figure 6. Overall Efficiency Across Temperature, VINP = 24 V, VOUT1 = 24 V,  
VOUT2 = 3.3 V, IOUT2 = 30 mA, Using a Coilcraft ZA9644-AE Transformer and a  
Zener Clamp Circuit  
Figure 9. Power Dissipation Across Temperature, VINP = 24 V, VOUT1 = 24 V,  
VOUT2 = 3.3 V, IOUT2 = 30 mA, Using a Coilcraft ZA9644-AE Transformer and a  
Zener Clamp Circuit  
Rev. 0 | Page 12 of 37  
 
 
 
Data Sheet  
ADP1032  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
ZA9644-AE  
750317986  
750318257  
750318377  
ZA9384-AL  
ZA9644-AE  
750317986  
750318257  
750318377  
ZA9384-AL  
70  
0
50  
100  
(mA)  
150  
200  
0
50  
100  
(mA)  
150  
200  
I
I
OUT1  
OUT1  
Figure 13. Power Dissipation Using Various Transformers, TA = 25°C,  
VINP = 24 V, VOUT1 = 19.4 V, VOUT2 = 3.3 V, IOUT2 = 13 mA  
Figure 10. Overall Efficiency Using Various Transformers, TA =25°C,  
VINP = 24 V, VOUT1 = 19.4 V, VOUT2 = 3.3 V, IOUT2 = 13 mA  
1.4  
90  
ZA9644-AE  
750317986  
ZA9644-AE  
750317986  
88  
750318257  
750318257  
750318377  
ZA9384-AL  
1.2  
750318377  
ZA9384-AL  
86  
1.0  
0.8  
0.6  
0.4  
0.2  
0
84  
82  
80  
78  
76  
74  
72  
70  
0
50  
100  
(mA)  
150  
200  
0
50  
100  
(mA)  
150  
200  
I
I
OUT1  
OUT1  
Figure 14. Power Dissipation Using Various Transformers, TA = 105°C,  
VINP = 24 V, VOUT1 = 19.4 V, VOUT2 = 3.3 V, IOUT2 = 13 mA  
Figure 11. Overall Efficiency Using Various Transformers, TA = 105°C,  
V
INP = 24 V, VOUT1 = 19.4 V, VOUT2 = 3.3 V, IOUT2 = 13 mA  
1.0  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
ZA9644-AE  
750317986  
750318257  
750318377  
ZA9384-AL  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
ZA9644-AE  
750317986  
750318257  
750318377  
ZA9384-AL  
0
50  
100  
(mA)  
150  
200  
0
50  
100  
(mA)  
150  
200  
I
I
OUT1  
OUT1  
Figure 12. Overall Efficiency Using Various Transformers, TA = 25°C,  
VINP = 24 V, VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA  
Figure 15. Power Dissipation Using Various Transformers, TA = 25°C,  
VINP = 24 V, VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA  
Rev. 0 | Page 13 of 37  
ADP1032  
Data Sheet  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ZA9644-AE  
750317986  
750318257  
750318377  
ZA9384-AL  
ZA9644-AE  
750317986  
750318257  
750318377  
ZA9384-AL  
70  
0
50  
100  
(mA)  
150  
200  
0
50  
100  
(mA)  
150  
200  
I
I
OUT1  
OUT1  
Figure 19. Power Dissipation Using Various Transformers, TA = 105°C,  
VINP = 24 V, VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA  
Figure 16. Overall Efficiency Using Various Transformers, TA = 105°C,  
VINP = 24 V, VOUT1 = 24 V, VOUT2 = 3.3 V, IOUT2 = 30 mA  
1.5  
1.5  
–40°C  
–40°C  
+25°C  
+25°C  
+125°C  
+125°C  
1.0  
0.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
50  
100  
150  
0
50  
100  
150  
I
(mA)  
I
(mA)  
OUT1  
OUT1  
Figure 17. Flyback Regulator Load Regulation Across Temperature,  
Figure 20. Flyback Regulator Load Regulation Across Temperature,  
VINP = 24 V, VOUT1 = 24 V (Adjustable Output Version),  
Nominal = VOUT1 at 20 mA Load  
V
INP = 24 V, VOUT1 = 24 V (Fixed Output Version),  
Nominal = VOUT1 at 20 mA Load  
1.5  
1.0  
1.5  
V
= 5V  
–40°C  
+25°C  
+125°C  
INP  
V
V
V
V
= 18V  
= 24V  
= 32V  
= 60V  
INP  
INP  
INP  
INP  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
50  
100  
150  
0
10  
20  
30  
40  
50  
I
(mA)  
OUT1  
V
(V)  
INP  
Figure 18. Flyback Regulator Load Regulation at Various Input Voltages,  
TA = 25°C, VOUT1 = 24 V, Nominal = VOUT1 at 20 mA Load  
Figure 21. Flyback Regulator Line Regulation Across Temperature,  
OUT1 = 24 V, IOUT1 = 20 mA, Nominal = VOUT1 with VINP = 24 V  
V
Rev. 0 | Page 14 of 37  
Data Sheet  
ADP1032  
250  
180  
160  
140  
120  
100  
80  
–40°C  
+25°C  
+105°C  
200  
150  
100  
50  
60  
40  
V
V
V
V
= 6V  
OUT1  
OUT1  
OUT1  
OUT1  
= 15V  
= 24V  
= 28V  
20  
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
V
(V)  
INP  
V
(V)  
INP  
Figure 22. Flyback Regulator Maximum Output Current at Various Output  
Voltages, TA = 25°C, Using a Coilcraft ZA9644-AE Transformer and a Zener  
Clamp Circuit, Based on Target of 70% ILIM (FLYBACK)  
Figure 25. Flyback Regulator Maximum Output Current Across Temperature,  
VOUT1 = 24 V, Using a Coilcraft ZA9644-AE Transformer and a Zener Clamp  
Circuit, Based on Target of 70% ILIM (FLYBACK)  
180  
180  
ZA9644-AE  
750317986  
ZA9644-AE  
750317986  
160  
160  
750318257  
750318257  
750318377  
750318377  
ZA9384-AL  
140  
120  
100  
80  
ZA9384-AL  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
V
(V)  
INP  
V
(V)  
INP  
Figure 23. Flyback Regulator Maximum Output Current Over Various  
Transformers, TA = 25°C, VOUT1 = 24 V, Over Various Input Voltages and a  
Zener Clamp Circuit, Based on Target of 70% ILIM (FLYBACK)  
Figure 26. Flyback Regulator Maximum Output Current Over Various  
Transformers, TA = 105°C, VOUT1 = 24 V, Over Various Input Voltages and a  
Zener Clamp Circuit, Based on Target of 70% ILIM (FLYBACK)  
EN  
1
V
OUT1  
EN  
1
V
OUT2  
2
V
V
OUT1  
OUT2  
2
3
4
PWRGD  
3
4
PWRGD  
B
B
B
M4.00ms  
12.1000ms  
CH1 5.00V  
CH3 2.00V  
CH2 10.0V  
CH4 5.00V  
A CH1  
2.40V  
W
W
W
CH1 5.00V B CH2 10.0V  
M4.00ms  
A CH1  
3.00V  
B
B
W
W
W
B
T
W
CH3 2.00V B CH4 5.00V  
T
7.96000ms  
W
Figure 27. Power-Down Sequence at EN Falling, TA = +25°C, VINP = 24 V,  
VOUT1 = 24 V, IOUT1 = 50 mA, VOUT2 = 3.3 V, IOUT2 = 15 mA  
Figure 24. Power-Up Sequence at EN Rising, TA = 25°C, VINP = 24 V,  
VOUT1 = 24 V, IOUT1 = 50 mA, VOUT2 = 3.3 V, IOUT2 = 15 mA  
Rev. 0 | Page 15 of 37  
ADP1032  
Data Sheet  
V
OUT1  
V
OUT1  
2
2
I
SWP  
I
SWP  
3
3
V
SWP  
V
SWP  
4
4
CH2 50.0mV B CH3 100mA B  
M1.00µs  
W
T
CH2 10.0mV B CH3 50.0mA B  
A CH1  
0.00000s  
38.0V  
W
W M1.00µs  
0.00000s  
A CH4  
38.0V  
W
B
CH4 20.0V  
W
B
CH4 20.0V  
W
T
Figure 28. Flyback Regulator Continuous Conduction Mode Operation  
Showing ISWP, Switch Node Voltage, and Output Ripple, TA = 25°C,  
Figure 31. Flyback Regulator Discontinuous Conduction Mode Operation  
Showing ISWP, Switch Node Voltage, and Output Ripple, TA = 25°C,  
V
INP = 24 V, VOUT1 = 24 V, IOUT1 = 80 mA  
VINP = 24 V, VOUT1 = 24 V, IOUT1 = 20 mA  
V
OUT1  
2
EN  
1
2
V
OUT1  
I
SWP  
3
I
SWP  
4
3
V
SWP  
V
SWP  
4
CH2 5.00mV B CH3 100mA B  
M4.00µs  
T
A CH4  
0.00000s  
38.0V  
W
W
CH1 5.00V B CH2 10.0V  
A CH1  
3.00V  
W
B
CH4 50.0V  
W
CH3 50.0V B  
B
CH4 500mA  
T
19.90%  
W
W
Figure 32. Flyback Regulator Short-Circuit Current Limit During Startup,  
VINP = 24 V, VOUT1 = SGND2, TA = 25°C  
Figure 29. Flyback Regulator Pulse Skipping Operation Showing Inductor  
Current (ISWP), Switch Node Voltage, and Output Ripple, TA = 25°C,  
VINP = 48 V, VOUT1 = 24 V, IOUT1 = 4 mA  
I
I
OUT1  
OUT1  
4
4
V
V
OUT1  
OUT1  
2
2
V
SWP  
V
SWP  
3
3
CH2 1.00V B CH3 20.0V  
B
M4.00ms  
CH2 1.00V B CH3 20.0V  
M4.00ms  
12.7800ms  
A CH2  
–120mV  
A CH4  
–14.0mA  
W
W
W
CH4 –20.0mA B  
T
22.50%  
W
CH4 100mA B  
T
W
Figure 33. Flyback Regulator Load Transient Response, VINP = 24 V,  
VOUT1 = 24 V, IOUT1 = 1 mA to 20 mA Step, TA = 25°C  
Figure 30. Flyback Regulator Load Transient Response, VINP = 24 V,  
VOUT1 = 24 V, IOUT1 = 1 mA to 80 mA Step, TA = 25°C  
Rev. 0 | Page 16 of 37  
Data Sheet  
ADP1032  
400µs STEP  
15µs STEP  
V
V
OUT1  
INP  
1
2
1
2
V
I
OUT1  
SWP  
V
V
SWP  
SWP  
3
3
B
CH1 10.0V B CH2 1.00V  
A CH1  
20.6V  
B
CH1 10.0V B CH2 1.00V  
M4.00ms  
20.20%  
A CH1  
20.6V  
W
W
W
W
CH3 50.0V B  
CH3 50.0V B  
T
20.20%  
T
W
W
Figure 34. Flyback Regulator Line Transient Response,  
Figure 37. Flyback Regulator Line Transient Response,  
VINP = 18 V to 32 V at 400 µs Step Time, VOUT1 = 24 V,  
V
INP = 18 V to 32 V at 15 µs Step Time, VOUT1 = 24 V,  
IOUT1 = 80 mA, TA = 25°C  
I
OUT1 = 80 mA, TA = 25°C  
1.5  
1.0  
1.5  
1.0  
–40°C  
+25°C  
+125°C  
–40°C  
+25°C  
+125°C  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
10  
20  
30  
(mA)  
40  
50  
0
50  
100  
150  
I
I
(mA)  
OUT2  
OUT1  
Figure 35. Cross Regulation, Flyback Regulator Regulation vs. Buck Regulator  
Load Current Across Temperature, VINP = 24 V, VOUT1 = 24 V, IOUT1 = 80 mA,  
VOUT2 = 3.3 V  
Figure 38. Cross Regulation, Buck Regulator Regulation vs. Flyback Regulator  
Load Current Across Temperature, VINP = 24 V, VOUT1 = 24 V,  
V
OUT2 = 3.3 V, IOUT2 = 13 mA  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
= 6V  
OUT1  
OUT1  
OUT1  
OUT1  
= 15V  
= 24V  
= 28V  
90  
80  
70  
60  
50  
V
V
V
V
= 6V  
OUT1  
OUT1  
OUT1  
OUT1  
= 15V  
= 24V  
= 28V  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
I (mA)  
OUT2  
I
(mA)  
OUT2  
Figure 36. Buck Regulator Efficiency vs. Load Current over Various VOUT1  
VOUT2 = 5.15 V, TA = 25°C  
,
Figure 39. Buck Regulator Efficiency vs. Load Current over Various VOUT1  
OUT2 = 5.0 V, TA = 25°C  
,
V
Rev. 0 | Page 17 of 37  
ADP1032  
Data Sheet  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
= 6V  
OUT1  
OUT1  
OUT1  
OUT1  
= 15V  
= 24V  
= 28V  
–40°C  
+25°C  
+125°C  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
I
(mA)  
I
(mA)  
OUT2  
OUT2  
Figure 43. Buck Regulator Efficiency vs. Load Current Across Temperature,  
VOUT1 = 24 V, VOUT2 = 5 V  
Figure 40. Buck Regulator Efficiency vs. Load Current over Various VOUT1  
VOUT2 = 3.3 V, TA = 25°C  
,
1.5  
1.5  
–40°C  
–40°C  
+25°C  
+125°C  
+25°C  
+125°C  
1.0  
0.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
5
10  
15  
20  
25  
30  
0
20  
40  
60  
(mA)  
80  
100  
V
(V)  
I
OUT1  
OUT2  
Figure 44. Buck Regulator Line Regulation Across Temperature,  
VOUT2 = 5.15 V, IOUT2 = 7 mA, Nominal Conditions = VOUT2 at 24 V VOUT1  
Figure 41. Buck Regulator Load Regulation Across Temperature,  
VOUT2 = 3.3 V, VOUT1 = 24 V, Nominal Conditions = VOUT2 at 25 mA IOUT2  
180  
160  
V
V
V
= 3.3V  
= 5V  
= 5.15V  
OUT2  
OUT2  
OUT2  
V
V
V
= 3.3V  
= 5V  
= 5.15V  
OUT2  
OUT2  
OUT2  
160  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
5
10  
15  
20  
25  
30  
0
10  
20  
30  
V
(V)  
V
(V)  
OUT1  
OUT1  
Figure 45. Buck Regulator Maximum Output Current Over Various Buck  
Regulator Output Voltages, TA = 25°C, VINP = 24 V, VOUT1 = 24 mA,  
Based on Target of 70% ILIM (FLYBACK) or ILIM (BUCK), Whichever Comes First  
Figure 42. Buck Regulator Maximum Output Current Over Various Buck  
Regulator Output Voltages, TA = 25°C, VINP = 24 V, IOUT1 = 0 mA,  
Based on Target of 70% ILIM (FLYBACK) or ILIM (BUCK), Whichever Comes First  
Rev. 0 | Page 18 of 37  
Data Sheet  
ADP1032  
V
OUT2  
V
OUT2  
1
1
I
SW2  
I
SW2  
2
3
2
3
V
SW2  
V
SW2  
CH1 10.0mV Ω B CH2 20.0mA B  
M10.0µs A CH3  
700.000ns  
20.4V  
W
W
B
CH1 50.0mV Ω B CH2 100mA  
M2.00µs A CH3  
–40.000ns  
3.80V  
W
W
B
CH3 10.0V  
T
W
B
CH3 10.0V  
T
W
Figure 46. Buck Regulator Pulse Skipping Operation Showing Inductor  
Current 2 (ISW2), Switch Node Voltage, and Output Ripple, TA = 25°C,  
VOUT1 = 24 V, VOUT2 = 5.15 V, IOUT2 = 0.3 mA  
Figure 49. Buck Regulator Discontinuous Conduction Mode Operation  
Showing ISW2, Switch Node Voltage, and Output Ripple, TA = 25°C,  
VOUT1 = 21 V, VOUT2 = 5.15 V, IOUT2 = 50 mA  
V
OUT2  
V
1
OUT2  
1
I
I
SW2  
SW2  
2
2
3
V
SW2  
V
SW2  
3
B
CH1 1.00V Ω B  
CH2 200mA  
M200µs A CH2  
595.000µs  
164mA  
CH1 20.0mV Ω B CH2 50.0mA B  
M2.00µs A CH3  
40.0000ns  
16.0V  
W
W
W
W
B
B
CH3 10.0V  
T
W
CH3 10.0V  
T
W
Figure 50. Buck Regulator Short-Circuit Current Limit During Startup,  
VOUT1 = 24 V, VOUT2 = SGND2, TA = 25°C  
Figure 47. Buck Regulator Discontinuous Conduction Mode Operation  
Showing ISW2, Switch Node Voltage, and Output Ripple, TA = 25°C,  
V
OUT1 = 21 V, VOUT2 = 5.15 V, IOUT2 = 7 mA  
I
OUT2  
I
OUT2  
1
2
1
2
V
OUT2  
V
OUT2  
V
SW2  
V
SW2  
3
3
B
B
CH1 5.00mA  
CH3 10.0V  
CH2 500mV  
M2.00ms A CH1  
4.30mA  
B
B
B
W
W
W
CH1 5.00mA  
CH3 10.0V  
CH2 500mV  
M2.00ms A CH1  
4.30mA  
W
B
T
5.92000ms  
W
T
5.92000ms  
W
Figure 51. Buck Regulator Load Transient Response, VOUT1 = 21 V,  
OUT2 = 5.15 V, IOUT2 = 0.3 mA to 7 mA Step, TA = 25°C  
Figure 48. Buck Regulator Load Transient Response, VOUT1 = 24 V,  
OUT2 = 5.15 V, IOUT2 = 0.3 mA to 7 mA Step, TA = 25°C  
V
V
Rev. 0 | Page 19 of 37  
ADP1032  
Data Sheet  
10  
V
10  
8
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
MVDD  
MVDD  
SVDD1  
SVDD1  
SVDD1  
MVDD  
SVDD1  
SVDD1  
SVDD1  
V
V
MVDD  
MVDD  
8
6
4
2
0
6
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 55.SVDD1 Supply Current (ISVDD1) per SPI Input vs. Data Rate at Various  
Figure 52.MVDD Supply Current (IMVDD ) per SPI Input vs. Data Rate at Various  
SSS  
Supply Voltages,  
Low, Clock Signal Applied on Single SPI Channel,  
Other Input Channels Tied Low  
MSS  
Supply Voltages,  
Low, Clock Signal Applied on Single SPI Channel, Other  
Input Channels Tied Low  
16  
16  
V
V
MVDD  
MVDD  
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
SVDD1  
SVDD1  
SVDD1  
MVDD  
MVDD  
MVDD  
SVDD1  
SVDD1  
SVDD1  
V
V
V
V
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
SSS  
Figure 56. ISVDD1 vs. Data Rate at Various Supply Voltages,  
Low, Clock  
MSS  
Figure 53. IMVDD per SPI Output vs. Data Rate at Various Supply Voltages,  
Low,  
Signal Applied on Single SPI Channel, Other Input Channels Tied Low  
Clock Signal Applied on Single SPI Channel, Other Input Channels Tied Low  
10  
10  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
MVDD  
MVDD  
SVDD1  
SVDD1  
SVDD1  
MVDD  
MVDD  
MVDD  
SVDD1  
SVDD1  
SVDD1  
8
6
4
2
0
8
6
4
2
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SSS  
Figure 57. ISVDD1 vs. Temperature at Various Supply Voltages,  
Rate = 10 Mbps on All SPI Channels  
Low, Data  
MSS  
Figure 54. IMVDD vs. Temperature at Various Supply Voltages,  
Rate = 10 Mbps on All SPI Channels  
Low, Data  
Rev. 0 | Page 20 of 37  
Data Sheet  
ADP1032  
14  
14  
12  
10  
8
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
MVDD  
MVDD  
SVDD1  
SVDD1  
SVDD1  
MVDD  
MVDD  
MVDD  
SVDD1  
SVDD1  
SVDD1  
12  
10  
8
6
6
4
4
2
2
0
–50  
0
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 61. SPI Channels tPHL vs. Temperature at Various Supply Voltages  
Figure 58. SPI Channels tPLH vs. Temperature at Various Supply Voltages  
45  
4.0  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
MVDD  
MVDD  
SVDD2  
SVDD2  
SVDD2  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
MVDD  
MVDD  
SVDD2  
SVDD2  
SVDD2  
40  
35  
30  
25  
20  
15  
10  
5
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
DATA RATE (kbps)  
DATA RATE (kbps)  
Figure 62. SVDD2 Supply Current (ISVDD2) vs. Data Rate on All GPIO Channels  
MSS  
Figure 59. IMVDD vs. Data Rate on All GPIO Channels at Various Supply  
MSS  
at Various Supply Voltages,  
High  
Voltages,  
High  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
V
V
V
= 2.5V, V  
= 1.8V  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
MVDD  
MVDD  
SVDD2  
SVDD2  
SVDD2  
MVDD  
MVDD  
MVDD  
SVDD2  
SVDD2  
SVDD2  
= 3.3V, V  
= 5.0V, V  
= 3.3V  
= 5.0V  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SSS  
Figure 63. ISVDD2 vs. Temperature at Various Supply Voltages,  
Rate = 40 kbps on All GPIO Channels  
Low, Data  
Figure 60. IMVDD Supply Current vs. Temperature at Various Supply Voltages,  
MSS  
Low, Data Rate = 40 kbps on All GPIO Channels  
Rev. 0 | Page 21 of 37  
ADP1032  
Data Sheet  
10  
10  
9
8
7
6
5
4
3
2
1
0
V
MVDD  
MVDD  
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
V
V
V
= 2.5V, V  
= 3.3V, V  
= 5.0V, V  
= 1.8V  
= 3.3V  
= 5.0V  
MVDD  
SVDD2  
SVDD2  
SVDD2  
MVDD  
MVDD  
MVDD  
SVDD2  
SVDD2  
SVDD2  
V
V
9
8
7
6
5
4
3
2
1
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 65. GPIO Channels tPHL vs. Temperature at Various Supply Voltages  
Figure 64. GPIO Channels tPLH vs. Temperature at Various Supply Voltages  
Rev. 0 | Page 22 of 37  
Data Sheet  
ADP1032  
THEORY OF OPERATION  
The ADP1032 is a high performance, isolated micro PMU that  
combines an isolated flyback regulator and a buck regulator,  
providing two isolated power rails. Additionally, the ADP1032  
includes seven low power digital isolators in a 41-lead LFCSP  
package for channel to channel isolated applications where  
power dissipation and board space are at a premium.  
D1  
V
OUT1  
R
R
FT1  
FB1  
Tx1  
1:1  
C
FLYBK  
SWP  
FB1  
VOUT1  
SYNC  
FEEDBACK  
AND  
FLYBACK  
CONTROLLER  
OVER VOLTAGE  
CONTROL  
V
INP  
C
VINP  
EN  
PLL  
PG1  
÷2  
R5  
R6  
IN  
V
OUT2  
÷2  
VOUT2  
SW2  
GNDP  
PGNDP  
C
BUCK  
HIGH  
EFFICIENCY  
BUCK  
L1  
SLEW  
PG2  
MVDD  
C1  
MVDD  
MGND  
PWRGD  
SVDD2  
SVDD2  
SGND2  
C3  
PWRGD  
MGPO3  
MGPI2  
SGPI3  
CONTROL  
BLOCK  
CONTROL  
BLOCK  
SGPO2  
SGPO1  
SVDD1  
MGPI1  
SVDD1  
C4  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
MSS  
MCK  
SSS  
SCK  
SI  
MO  
SO  
MI  
SGND1  
MGND  
NOTES  
1. C  
2. C  
IS THE FLYBACK REGULATOR OUTPUT CAPACITOR VALUE.  
IS THE BUCK REGULATOR OUTPUT CAPACITOR VALUE.  
FLYBK  
BUCK  
Figure 66. Simplified Block Diagram  
Rev. 0 | Page 23 of 37  
 
ADP1032  
Data Sheet  
Flyback Undervoltage Lockout (UVLO)  
FLYBACK REGULATOR  
The UVLO circuitry monitors the VINP pin voltage level. If the  
input voltage drops below the VUVLO_VINP (FALL) threshold, the  
flyback regulator turns off. After the VINP pin voltage rises  
above the VUVLO_VINP (RISE) threshold, the soft start period  
initiates, and the flyback regulator enables.  
Flyback Regulator Operation  
The flyback regulator in the ADP1032 generates an isolated output  
supply rail that can be programmed from 6 V to 28 V for the  
adjustable output version or 24 V for the factory programmable  
fixed output versions. The flyback regulator adopts current mode  
control, resulting in a fast, inner current controlled loop that  
regulates the peak inductor current and a slower outer loop via  
an isolated iCoupler channel that adjusts the current controlled  
loop to define a regulated output voltage. When the high voltage  
switch is on, the diode on the secondary side of the transformer  
is reverse biased, which causes an increase in the current in the  
primary inductance of the transformer and is stored as energy.  
When the switch turns off, the diode becomes forward biased,  
and energy stored in the transformer is transferred to the load.  
Flyback Regulator Precision Enable Control  
The flyback regulator in the ADP1032 features a precision  
enable circuit with an accurate reference voltage. If the voltage  
at the EN pin rises above the VEN_RISING threshold, the flyback  
regulator soft start period initiates, and the regulator enables. If  
the EN pin voltage falls below the VEN_RISING − VEN_HYST threshold,  
the flyback regulator turns off.  
Flyback Regulator Soft Start  
The flyback regulator includes a soft start function that limits  
the inrush current from the supply and ramps up the output  
voltage in a controlled manner. The flyback regulator soft start  
period initiates when the voltage at the EN pin rises above the  
Traditionally, in an isolated flyback regulator, a discrete opto-  
coupler is used in the feedback path to transmit the signal from  
the secondary side to the primary side. However, the current  
transfer ratio (CTR) of the optocouplers degrades over time and  
over temperature. Therefore, the optocoupler must be replaced  
every 5 years to 10 years. The ADP1032 eliminates the use of an  
optocoupler and the associated problems by integrating Analog  
Devices, Inc., iCoupler technology for feedback, which reduces  
system cost, PCB area, and complexity, while improving system  
reliability without the issue of CTR degradation.  
VEN_RISING threshold.  
Flyback Slew Rate Control  
The flyback regulator employs programmable output driver slew  
rate control circuitry. This circuitry adjusts the slew rate of the  
switching node as shown in Figure 67, where lower EMI and  
reduced ringing can be achieved at slightly lower efficiency  
operation and vice versa. To program the slew rate, connect the  
SLEW pin to the VINP pin for normal mode, to the GNDP pin  
for slow mode, or leave it open for fast mode.  
The flyback regulator uses a transformer with a single primary  
and secondary winding. This configuration is possible because  
iCoupler technology is used to send an isolated control signal to  
the primary side controller so that a primary sense winding is  
not required. In addition, because the secondary rail is generated  
using a high efficiency switching regulator, extra secondary  
windings are not required. This approach offers a number of  
advantages over an alternative multiwinding solution, such as  
the following:  
Slew rate control causes a trade-off between efficiency and  
low EMI.  
FASTEST  
A smaller transformer solution size due to a lower number  
of turns required on the core and a fewer number of pins.  
Each output can be independently set. The multitap  
approach requires a custom multitap transformer for  
different output voltage combinations.  
SLOWEST  
Outputs are more accurate because the outputs do not rely  
on the discrete ratios between the transformer windings.  
Output accuracy is unaffected by load changes on each rail.  
Figure 67. Switching Node at Various Slew Rate Settings  
Power Saving Mode (PSM)  
Table 11. Slew Rate Settings  
During light load operation, the regulators can skip pulses to  
maintain output voltage regulation. Therefore, no minimum  
load is required. Skipping pulses increases the device efficiency  
but results in larger output ripple.  
SLEW Pin  
Connection  
Slew Rate  
Slow  
Normal  
Fast  
Comment  
GNDP  
VINP  
Unconnected  
Lowest EMI  
Optimized efficiency and EMI  
Highest efficiency  
Rev. 0 | Page 24 of 37  
 
 
Data Sheet  
ADP1032  
Flyback Regulator Overcurrent Protection  
Buck Regulator UVLO  
The flyback regulator features a current-limit function that senses  
the forward current in the switching metal-oxide semiconductor  
field effect transistor (MOSFET) on a cycle by cycle basis. If the  
current exceeds the ILIM (FLYBACK) threshold, the switch turns off.  
The step-down regulator of theADP1032 features an internal  
UVLO circuit that monitors the input voltage to the regulator or  
VOUT1. If the voltage at VOUT1 drops below the internal  
threshold level of 4.5 V, the regulator turns off. If the output at  
VOUT1 rises above the internal threshold, the regulator soft  
start period initiates, and the regulator enables.  
Flyback Regulator Overvoltage Protection  
The flyback regulator of the ADP1032 implements a number of  
OVP methods to detect and prevent an overvoltage condition  
on the flyback regulator output, such as the following:  
Buck Regulator Soft Start  
The step-down regulator in the ADP1032 includes soft start  
circuitry that ramps the output voltage in a controlled manner  
during start-up, limiting the inrush current.  
If the voltage on the FB1 pin exceeds VFB1 by 10% for the  
adjustable output version, or the VOUT1 pin exceeds the  
factory programmed VOUT1 by 10% for the fixed output  
version, an OVP fault is detected, which prevents the  
flyback regulator switch from turning on. The flyback  
regulator primary switch stays off until the OVP condition  
is no longer present.  
Buck Regulator Current-Limit Protection  
The step-down regulator in the ADP1032 includes a current-  
limit protection circuit to limit the amount of forward current  
through the high-side MOSFET switch. The inductor peak current  
is monitored cycle by cycle to detect an overload condition. When  
the overload condition occurs, the current-limit protection  
limits the peak inductor current to ILIM (BUCK), resulting in a drop  
in the output voltage.  
If communication across the isolation barrier from the  
secondary controller to the primary controller fails, the  
flyback regulator shuts down, and a new soft start power-up  
cycle initiates.  
If the voltage on the output of the flyback regulator exceeds  
the severe overvoltage threshold (SOVPFLYBACK), the primary  
controller does not turn on the primary side switch. The  
flyback regulator primary switch stays off until the voltage on  
the VOUT1 pin falls below the SOVPFLYBACK − SOVPFLYBACK_HYST  
threshold.  
Buck Regulator Active Pull-Down Resistor  
The buck regulator has an active pull-down resistor that discharges  
the output capacitor when the output of the VOUT1 pin is  
between 1.23 V and 4.5 V. The pull-down resistor connects  
between VOUT2 and SGND2.  
Buck Regulator OVP  
The step-down regulator of the ADP1032 features an OVP  
circuit that monitors the output voltage. If the voltage on the  
VOUT2 pin exceeds the nominal output voltage by 10%, the  
step-down, dc-to-dc regulator stops switching until the voltage  
falls below the threshold again.  
BUCK REGULATOR  
Buck Regulator Operation  
The step-down, dc-to-dc (or buck) regulator in the ADP1032  
uses a current mode controlled scheme, operating at a fixed  
frequency set by an internal oscillator. Current mode uses a fast  
inner current-controlled loop to regulate peak inductor current  
and a slower outer loop to adjust the current loop to regulate  
the output voltage. At the start of each oscillator cycle, the high-  
side MOSFET switch turns on, applying the input voltage to one  
end of the inductor, which normally causes the buck regulator  
inductor current (IL_BUCK) to increase until the current sense  
signal crosses the peak inductor current threshold that turns  
off the MOSFET switch. The error amplifier output sets this  
threshold. During the high-side MOSFET off time, the inductor  
current declines through the low-side MOSFET switch until  
either the next oscillator clock pulse starts a new cycle that results  
in continuous conduction mode (CCM) operation, or the inductor  
current reaches zero. The low-side MOSFET switch is turned  
off, and the control system waits for the next oscillator clock  
pulse to start a new cycle, resulting in discontinuous mode  
(DCM) operation. Under light load conditions, the regulator  
can skip pulses to maintain regulation and increase power  
conversion efficiency.  
POWER GOOD  
The ADP1032 provides a push pull, power-good output to  
indicate when the two isolated output voltage rails are valid.  
The PWRGD pin pulls high when the voltages on the two  
supplies are within the respective power-good threshold limits.  
Rev. 0 | Page 25 of 37  
 
 
ADP1032  
Data Sheet  
POWER-UP SEQUENCE  
DATA ISOLATION  
High Speed SPI Channels  
The power-up sequence is as follows (see Figure 68):  
The ADP1032 has four high speed channels. The first three,  
CLK, MI/SO, and MO/SI (the slash indicates the connection of  
the input and output forming a datapath across the isolator that  
corresponds to an SPI bus signal), are optimized for low  
propagation delay. With a maximum propagation delay of 15 ns,  
the ADP1032 supports read and write clock rates up to 16.6 MHz  
in the standard 4-wire SPI. However, in practice, the maximum  
clock rate of 16.6 MHz is reduced as a result of the delays added  
across the total ground trip of the signal.  
1. The flyback regulator powers up first (see Label 1 in  
Figure 68).  
2. When VOUT1 rises above the lower power-good threshold  
(VPG_FLYBACK_LL), the buck regulator turns on (see Label 2 in  
Figure 68).  
3. When the buck regulator output (VOUT2) rises above the  
lower power-good threshold (VPG_BUCK_LL), the PWRGD is  
driven high (see 3 in Figure 68).  
4. If any of the two analog supplies move outside the  
power-good threshold ranges, PWRGD drives low after a  
short deglitch delay (see 4 in Figure 68).  
The relationship between the SPI signal paths, the ADP1032 pin  
mnemonics, and the data directions are detailed in Table 13.  
V
OUT1  
PG_FLYBACK_UL  
Table 13. Correspondence of the Pin Mnemonics to the SPI  
Signal Path Names  
V
V
PG_FLYBACK_LL  
SPI Signal Path Master Side  
Data Direction Slave Side  
2
V
INP  
CLK  
MCK  
MO  
MI  
SCK  
SI  
MO/SI  
MI/SO  
SS  
4
V
OUT2  
SO  
SSS  
V
PG_BUCK_LL  
MSS  
1
3
The datapaths are SPI mode agnostic. The CLK and MO/SI SPI  
datapaths are optimized for propagation delay and channel to  
channel matching. The MI/SO SPI datapath is optimized for  
propagation delay. The device does not synchronize to the clock  
channels. Therefore, there are no constraints on the clock  
polarity or timing with respect to the data lines.  
0V  
PWRGD  
HIGH  
LOW  
Figure 68. Power Sequencing and PWRGD  
OSCILLATOR AND SYNCHRONIZATION  
SS  
Slave select ( ) is an active low signal. To save power in a  
A phase-locked loop (PLL)-based oscillator generates the internal  
clock for the flyback and buck regulators and offers an internally  
generated frequency or external clock synchronization. Connect  
the SYNC pin as described in Table 12 to configure the switching  
frequency. For external synchronization, connect the SYNC pin to  
a suitable clock source. The PLL locks to an input clock within  
SS  
multichannel system, puts the other SPI isolator channels in  
SS  
a low power state when the channels are not in use ( = high),  
and these channels are only active when required, which is when  
SS  
SS  
is low. The clock and data channels are gated to the as shown  
in Figure 69. However, this power saving mode adds 100 ns of  
latency. This latency is the time required for the internal circuitry  
to wake up from the low power state and to start transmitting  
data to the isolation barrier. Conversely, the latency is the delay  
the range specified by fSYNC  
.
Table 12. Sync Pin Functionality  
MSS  
from the falling edge of  
to the first clock edge or data edge  
Switching Frequency (fSW  
Flyback Buck  
)
that appears on the slave side, as shown in Figure 70.  
SYNC Pin State  
Low or High  
350 kHz to 750 kHz  
250 kHz  
fSYNC/2  
125 kHz  
fSYNC/4  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
SSS  
SCK  
SI  
MSS  
MCK  
MO  
THERMAL SHUTDOWN  
If the ADP1032 junction temperature rises above TSHDN, the  
thermal shutdown circuit turns the flyback regulator off.  
SO  
MI  
Extreme junction temperatures can be the result of prolonged  
high current operation, poor circuit board design, and/or high  
ambient temperatures. When thermal shutdown occurs, hysteresis  
is included so that the ADP1032 does not return to operation until  
the on-chip temperature drops below TSHDN − THYS. When resuming  
from thermal shutdown, the ADP1032 performs a soft start.  
Figure 69. High Speed Data Isolation Channel Gating  
Rev. 0 | Page 26 of 37  
 
 
 
 
 
 
 
 
Data Sheet  
ADP1032  
SPI  
ACTIVATION  
(LATENCY)  
SPI TRANSMIT  
MSS  
SSS  
tPW  
tP2  
tP1  
MCK, MO, SO  
SCK, SI, MI  
tP3  
HIGH IMPEDANCE  
ADD A PULL HIGH OR PULL LOW RESISTOR  
TO HAVE A KNOWN STATE WHEN MSS IS HIGH.  
LATENCY = MSS FALLING EDGE TO SCK, SI, MI STARTS SENDING DATA (EXIT TO HIGH IMPEDANCE MODE).  
t
t
t
t
= MCK, MO, SO PULSE WIDTH.  
= MSS TO SSS PROPAGATION DELAY.  
= MCK TO SCK, MO TO SI, SO TO MI PROPAGATION DELAY.  
= MSS RISING EDGE TO SCK, SI, MI RETURN TO HIGH IMPEDANCE STATE. SAME AS t  
PW  
P1  
P2  
P3  
.
P1  
Figure 70. SPI Isolators Timing Diagram  
MSS  
The MI, SCK, and SI outputs are also tristated when  
is high  
MSS  
MCK  
MO  
SSS  
SCK  
SI  
(see Table 14) to allow a more flexible design and to avoid the  
requirement for external multiplexing of MI in a multichannel  
system. Figure 71 shows how the SPI busses from multiple  
ADP1032 devices can be connected together.  
MSS  
1
MCK  
MO  
MI  
CHANNEL 1  
MI  
SO  
MSS  
Table 14. SPI  
Parameter  
Gating  
MSS High  
MSS Low  
MSS  
MCK  
MO  
SSS  
SCK  
SI  
MSS  
2
SSS  
SCK  
SI  
High  
Low  
MCK  
MO  
SO  
Tristate  
Tristate  
Tristate  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
SO  
MI  
MI  
Connect a pull-up or pull-down resistor to MI, SCK, and SI to  
MSS  
SSS  
SCK  
SI  
pull these pins to the desired logic state when  
is high.  
MSS  
MCK  
MO  
MSS  
3
SO  
MI  
SSS  
SCK  
SI  
MSS  
MCK  
MO  
MSS  
4
SO  
MI  
TO CHANNEL 5  
THROUGH  
CHANNEL 8  
Figure 71. Multichannel SPI Muxing Scheme  
Rev. 0 | Page 27 of 37  
 
 
 
ADP1032  
Data Sheet  
GPIO Data Channels  
sending these inputs back for similar processing. Because of the  
sampled nature of this process, the general-purpose data channels  
exhibit a sampling uncertainty that resembles 19.5 µs peak jitter.  
The general-purpose data channels are provided as space saving  
isolated datapaths where timing is not critical. The dc value of  
all low speed general-purpose inputs, on a given side of the device,  
are sampled simultaneously, packetized, and shifted across a single  
isolation coil. The process is then reversed by reading the inputs  
on the opposite side of the device, packetizing the inputs and  
For proper operation of the GPIO channels, refer to Table 15.  
Power both the MVDD pin and SVDD2 pin within the specified  
input voltage range for these pins.  
Table 15. Truth Table for GPIO Channels  
MVDD State  
Unpowered  
Powered  
Powered  
Powered  
SVDD2 State  
xGPIx  
MGPOx  
Low  
Low  
High  
Low  
SGPOx  
Low  
Low  
High  
Low  
Test Conditions/Comments  
During startup  
During startup  
Normal operation  
Normal operation  
Powered  
Unpowered  
Powered  
Don’t care  
Don’t care  
High  
Powered  
Low  
Powered  
Powered to Unpowered  
Powered to Unpowered  
Powered  
Don’t care  
Don’t care  
Hold1  
Low  
Low  
Hold1  
1 Hold means that the current state of the outputs are preserved.  
Rev. 0 | Page 28 of 37  
 
Data Sheet  
ADP1032  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
Feedback Resistors  
Capacitor Selection  
Higher output capacitor values reduce the output voltage ripple  
and improve the load transient response. When choosing this  
value, it is also important to account for the loss of capacitance  
due to the output voltage dc bias.  
The ADP1032 provides an adjustable output voltage for the  
flyback regulator. An external resistor divider sets the output  
voltage, for which the divider output must equal the appropriate  
feedback reference voltage, VFB1. To limit the output voltage  
accuracy degradation due to the feedback bias current, ensure  
that the current through the divider is at least 10 times IFB1. The  
recommended first feedback resistor (RFB1) values are in the  
range of 50 kΩ to 250 kΩ to minimize the output voltage error  
due to the bias current and to lessen the power dissipation  
across the feedback resistors. The external feedback resistors are  
not required for the fixed output versions because the feedback  
resistors are already inside the chip.  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure the  
minimum capacitance over the necessary temperature range and  
dc bias conditions. X5R or X7R dielectrics with voltage ratings of  
25 V to 50 V (depending on output) are recommended for best  
performance. Y5V and Z5U dielectrics are not recommended for  
use with any dc-to-dc converter because of their poor temperature  
and dc bias characteristics.  
VOUT1  
6V TO 28V  
D1  
Calculate the worst case capacitance accounting for capacitor  
variation over temperature, component tolerance, and voltage  
using the following equation:  
1:1  
VINP  
RFT1  
RFB1  
CFLYBK  
10µF  
Tx1  
C
EFFECTIVE = CNOMINAL × (1 − TEMPCO) × (1 − DCBIASCO) ×  
(1 − Tolerance)  
where:  
SWP  
VINP  
FB1  
SGND2  
VOUT1  
FLYBACK  
Figure 72. Flyback Regulator Output Voltage Setting  
CEFFECTIVE is the effective capacitance at the operating voltage.  
NOMINAL is the nominal capacitance shown in this data sheet.  
C
TEMPCO is the worst case capacitor temperature coefficient.  
DCBIASCO is the dc bias derating at the output voltage.  
Tolerance is the worst case component tolerance.  
Set the positive output for the flyback regulator by using the  
following equation:  
V
OUT1 = VFB1 × (1 + (RFT1/RFB1))  
To guarantee the performance of the device, it is imperative to  
evaluate the effects of dc bias, temperature, and tolerances on  
the behavior of the capacitors for each application.  
where:  
V
OUT1 is the flyback output voltage.  
V
FB1 is the flyback feedback voltage.  
Capacitors with lower effective series resistance (ESR) and effective  
series inductance (ESL) are preferred to minimize voltage ripple.  
R
R
FT1 is the feedback resistor from VOUT1 to FB1.  
FB1 is the feedback resistor from FB1 to SGND2.  
FLYBACK REGULATOR COMPONENTS SELECTION  
Input Capacitor  
Conversely, calculate the value of the top resistor for the target  
OUT1 by:  
V
An input capacitor must be placed between the VINP pin and  
ground. Ceramic capacitors greater than or equal to 3.3 μF over  
temperature and voltage are recommended. The input capacitor  
reduces the input voltage ripple caused by the switching current.  
Place the input capacitor as close as possible to the VINP pin  
and PGNDP pin to reduce input voltage spikes. The voltage  
rating of the input capacitor must be greater than the maximum  
input voltage.  
R
FT1 = RFB1 × ((VOUT1/VFB1) − 1)  
Table 16. Recommended Feedback Resistor Values  
Flyback Regulator  
Desired Output  
Voltage (V)  
Calculated Output  
RFT1 (MΩ) RFB1 (kΩ) Voltage (V)  
6
0.715  
1.24  
1.54  
2.15  
3.48  
3.4  
110  
121  
110  
121  
120  
100  
6.000  
9
8.998  
12  
15  
24  
28  
12.000  
15.015  
24.000  
28.000  
Output Capacitor  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
the output voltage dc bias. A 10 μF capacitor is recommended as a  
balance between performance and size.  
Rev. 0 | Page 29 of 37  
 
 
 
ADP1032  
Data Sheet  
Ripple Current vs. Capacitor Value  
Series Winding Resistance  
The output capacitor value must be chosen to minimize the  
output voltage ripple while considering the increase in size and  
cost of a larger capacitor. Use the following equation to calculate  
the output capacitance:  
In power loss sensitive applications, keep the series resistance of  
the primary and secondary windings as low as possible to  
improve overall efficiency.  
Leakage Inductance and Clamping Circuits  
C
OUT = (LPRI × ISWP2)/(2 × VOUT1 × ΔVOUT1  
)
When choosing a transformer to operate with the ADP1032,  
minimize transformer leakage inductance. Leakage inductance  
causes a voltage spike to appear on the SWP node when the  
flyback regulator switch is off due to energy storage in the  
leakage inductance that is not transferred to the output. The  
voltage spike is more prominent at higher load currents and  
increases with higher leakage inductance. It is important to  
keep the voltage spikes lower than the voltage rating of the  
flyback switch that drives the SWP pin. Margin must be built  
into any design to avoid exceeding this limit if no clamp or  
snubber circuit is used to protect the flyback switch.  
where:  
C
L
I
OUT is the capacitance of the flyback output capacitor.  
PRI is the primary inductance of the transformer.  
SWP is the peak switch current.  
ΔVOUT1 is the allowable flyback regulator output ripple.  
Schottky Diode  
A Schottky diode with low junction capacitance is recommended  
for the rectification diode D1. At higher output voltages and  
especially at higher switching frequencies, the junction capacitance  
is a significant contributor to efficiency. Choose an output diode  
with a forward current rating (IF) that is greater than the maximum  
load requirement and with a reverse voltage rating (VR) that is  
greater than the summation of the maximum supply voltage  
(VINP (MAX)) and the maximum output voltage (VOUT1 (MAX)).  
To estimate the leading voltage spike at the SWP pin when the  
switch turns off, use the following equation:  
V
PEAK = IPEAK × (LLEAK/(CP + CSWP))1/2 + VINP + VOUT1 + VD  
where:  
Transformer  
V
PEAK is the voltage spike amplitude.  
PEAK is the peak current on the flyback switch.  
LEAK is the leakage inductance of the transformer.  
CP is the parasitic capacitance of the transformer.  
SWP is the capacitance on the flyback switch.  
INP is the input supply voltage.  
I
L
The transformer used with the ADP1032 is an important  
component within the system, in terms of efficiency and  
maximum output power capability. The transformer designs are  
listed in Table 17. A number of factors must be taken into account  
when designing a transformer for use with the ADP1032.  
C
V
VD is the forward voltage drop across the rectifier diode.  
Turn Ratio  
A snubber or clamp circuit can protect the flyback switch for  
cases where the leakage inductance is too high for application  
conditions. Two common types of clamping circuits are the  
resistor, capacitor, diode clamp shown in Figure 73 and the diode  
Zener diode clamp shown in Figure 74. The resistor, capacitor,  
diode clamp quickly dampens the voltage spike and provides  
improved EMI performance, and the diode Zener diode clamp  
can be used when the clamping level must be consistent and well  
defined. The diode Zener diode clamp has slightly higher power  
efficiency over the resistor, capacitor, diode clamp. However, the  
cost of the diode Zener diode clamp solution is typically higher  
than the resistor, capacitor, diode solution.  
The ADP1032 requires the use of a transformer with a primary  
to secondary turn ratio of 1:1 to start up properly.  
Primary Inductance  
The ADP1032 operates with a transformer with an inductance  
in the 80 μH to 560 μH range. However, it is recommended to  
choose an inductance value that results in the flyback regulator  
output voltage (VOUT1) divided by the transformer primary  
inductance being less than or equal to 140,000 to maintain  
control loop stability.  
V
OUT1/LPRI ≤ 140,000  
Using a transformer at the lower end of the inductance range can  
result in a smaller transformer but also reduces the output power  
capabilities due to larger ac ripple current through the transformer.  
Conversely, operating at higher inductance can result in higher  
output power at the expense of a potentially larger transformer.  
Tx1  
1:1  
D1  
V
V
OUT1  
INP  
R
C
CLAMP  
CLAMP  
L
PRI  
Flyback Transformer Saturation Current  
L
LEAK  
D
CLAMP  
Do not exceed the saturation current of the transformer in  
operation, or this may lead to much higher losses and overall  
lower system efficiency. Choose a transformer with a saturation  
current rating that is greater than the expected peak switch  
current (ISWP) across line and load conditions.  
SWP  
Figure 73. Resistor, Capacitor, Diode Clamp  
Rev. 0 | Page 30 of 37  
 
Data Sheet  
ADP1032  
Tx1  
1:1  
D1  
V
V
OUT1  
Clamping Capacitor  
INP  
The clamping capacitor (CCLAMP) is used to minimize the voltage  
ripple level (VRIPPLE) superimposed in VCLAMP. Calculate the  
clamping capacitor by using the following equation for the  
Z
CLAMP  
CLAMP  
L
PRI  
desired VRIPPLE level and the calculated RCLAMP  
:
D
L
LEAK  
CCLAMP = VCLAMP/(VRIPPLE × fSW × RCLAMP)  
where:  
SWP  
CCLAMP is the value of the clamping capacitor.  
V
RIPPLE is the voltage ripple superimposed in VCLAMP. A VRIPPLE of  
about 5% to 10% of VCLAMP is reasonable.  
Clamping Diode  
Figure 74. Diode, Zener Diode Clamp  
Schottky diodes are typically the best choice for clamping diodes.  
However, fast recovery diodes can also be used. The diode reverse  
voltage rating must be higher than the maximum SWP pin voltage  
rating.  
Clamping Resistor  
To calculate the clamping resistor (RCLAMP) value, the clamping  
voltage (VCLAMP) must be determined. The clamping voltage is  
the voltage on which any voltage spike that occurs on the flyback  
switch is clamped. Choose a VCLAMP that provides sufficient margin  
between the SWP maximum voltage rating (SWPVMAX) specified  
in the Absolute Maximum Ratings section and that also is greater  
than the summation of the maximum input supply (VINP (MAX)  
and the maximum flyback output voltage (VOUT1 (MAX)) of the  
application as given by  
Diode, Zener Diode Clamp  
A Zener diode can replace the resistor, capacitor (RC) network  
on the resistor, capacitor, diode clamp when the clamping level  
must be consistent and well defined. Choose the Zener diode  
breakdown voltage to balance power loss and switch voltage  
protection. Calculate the Zener voltage by using the following  
equation:  
)
SWPVMAX > VINP (MAX) + VCLAMP > VINP (MAX) + VOUT1 (MAX)  
SWP  
V
ZENER (MAX) SWPVMAX VINP (MAX)  
VMAX  
where VZENER (MAX) is the maximum Zener diode breakdown  
voltage or the Zener voltage, which can be the same as the  
V
+ V  
INP (MAX)  
OUT1 (MAX)  
V
CLAMP  
V
VCLAMP  
.
INP (MAX)  
The power loss in the clamp determines the power requirement  
for the Zener diode. Use the following equation to calculate the  
Zener diode power dissipation:  
Figure 75. Clamping Waveform  
P
ZENER = (VZENER × LLEAK × IPEAK2 × fSW)/(2 × (VZENER VOUT1))  
where:  
ZENER is the Zener diode power dissipation. Choose a Zener  
diode with power rating higher than the calculated value.  
ZENER is the Zener diode breakdown voltage or the Zener voltage.  
Use the following equation to calculate the value of the clamping  
resistor for a given VCLAMP value:  
P
R
CLAMP = (2 × VCLAMP × (VCLAMP VOUT1))/(LLEAK × IPEAK2 × fSW)  
where fSW is the switching frequency of the flyback regulator.  
V
To calculate the power dissipation across the snubber resistor,  
use the following equation:  
Ripple Current (IAC) vs. Inductance  
Calculate the ripple current by first determining the duty cycle  
in continuous conduction mode.  
P
RCLAMP = (VCLAMP)2/(RCLAMP  
where PRCLAMP is the power dissipation across RCLAMP. Choose  
CLAMP with a power rating of about twice this value to have a  
margin.  
)
D
CCM = (VOUT1 + VD)/(VOUT1 + VD + VINP)  
R
where DCCM is the duty cycle of the flyback switch.  
Then, from the duty cycle, calculate the IAC in the flyback switch  
and transformer primary.  
IAC = (VINP × DCCM)/(fSW × LPRI)  
where IAC is the ripple current through the primary side of the  
transformer and flyback switch.  
Rev. 0 | Page 31 of 37  
 
ADP1032  
Data Sheet  
Maximum Output Current Calculation  
load using the worst case transformer inductance, efficiency,  
diode forward voltage drop, and flyback switching frequency.  
The maximum output power and current that can be achieved  
from the flyback output depends on a number of variables within  
the regulator. These variables include the transformer choice,  
the operating frequency, and the rectifier diode choice. The  
flyback regulator output is the supply to the buck regulator that  
drives VOUT2. Determine the maximum output power capability by  
Calculate the maximum load current on VOUT1 by  
IVOUT1 (MAX) = PVOUT1 (MAX)/VOUT1  
where IVOUT1 (MAX) is the maximum output current from VOUT1  
.
BUCK REGULATOR COMPONENTS SELECTION  
Inductor  
P
VOUT1 (MAX) = 0.5 × (IPEAK2 (IPEAK IAC/2)2) × LPRI × fSW × η  
where:  
VOUT1 (MAX) is the maximum output power from VOUT1  
η is the expected efficiency of the flyback regulator.  
The lower limit of the flyback current-limit threshold, ILIM (FLYBACK)  
The value of the inductor for the ADP1032 buck regulator  
affects the efficiency and the output voltage ripple. Larger value  
inductors typically improve efficiency. However, for a given  
package size, as load increases, the dc resistance (DCR) and core  
losses eventually have an increasing negative impact on efficiency.  
Using a smaller value inductor reduces output voltage ripple but  
can decrease the overall efficiency due to increased switching  
losses.  
P
.
,
limits the maximum IPEAK. However, it is not recommended to  
operate at this level to avoid unwanted current-limit events due to  
variation in transformer inductance, efficiency, flyback switching  
frequency, and rectifier diode forward voltage drop. If the load on  
the flyback causes the current limit to trip, the output voltage may  
not regulate as expected. It is recommended to choose a peak  
operating current with a built-in margin for the variations  
mentioned or to calculate the maximum output power or output  
Output Capacitor  
The output capacitor selection affects the output ripple voltage,  
load step transient, and the loop stability of the regulator. A 4.7 µF  
capacitor is recommended as a balance between performance and  
size, but a larger capacitor reduces output ripple.  
Table 17. Transformer Selection  
Primary  
Saturation  
Current2  
(mA)  
Leakage  
Inductance  
(µH)  
Isolation  
Voltage3  
(V rms)  
Turns  
Ratio1  
Inductance  
(µH)  
Resistance  
(Ω)  
Size, Length × Width  
× Height, (mm)  
Part Number  
ZA9644-AE  
Manufacturer  
Coilcraft  
1:1  
1:1  
470  
470  
1.8  
490  
480  
3.8 maximum  
2000  
1500  
10.92 × 9.25 × 10  
750317986R6A  
Würth Elektronik  
1.27  
3.5 typical,  
10.8 × 13.35 × 9.76  
7 maximum  
750318257R6A  
Würth Elektronik  
1:1  
470  
1.56  
550  
1.0 typical,  
2.0 maximum  
1500  
16 × 16.8 × 7.62  
ZA9384-AL  
Coilcraft  
1:1  
1:1  
470  
470  
1.1  
800  
470  
4.0  
2000  
1500  
15.3 × 16.5 × 6.7  
750318377R6A  
Würth Elektronik  
1.42  
0.8 typical,  
17.78 × 22.35 × 8.89  
1.6 maximum  
751318463R6A  
Würth Elektronik  
1:1  
470  
1.22  
450  
0.5 typical,  
1.0 maximum  
Functional  
isolation  
10.8 × 13.35 × 9.76  
1 Turns ratio between the primary and secondary coils.  
2 20% drop from initial.  
3 1 minute duration. Basic insulation.  
Table 18. Buck Regulator Recommended Inductors  
Size, Length ×  
Part Number  
Manufacturer  
Inductance (µH)  
DC Resistance (Ω)  
Saturation Current1 (mA)  
Width × Height, (mm)  
4.8 × 4.8 × 2.8  
3.2 × 3.2 × 1.3  
3 × 3 × 1.4  
3 × 3 × 1.5  
2.8 × 2.8 × 1.65  
2 × 2 × 0.6  
744043101  
Würth Elektronik 100  
0.55  
2.63  
1.59  
2.92  
4.9  
290  
280  
260  
270  
150  
115  
XFL3012-104MEB  
LQH3NPN101MMEL  
SRN3015-101M  
SRU2016-101Y  
XFL2006-104MEB  
Coilcraft  
Murata  
Bourns  
Bourns  
Coilcraft  
100  
100  
100  
100  
100  
11.1  
1 30% drop in inductance.  
Rev. 0 | Page 32 of 37  
 
 
Data Sheet  
ADP1032  
2
VRMS = VAC RMS2 +VDC  
INSULATION LIFETIME  
(1)  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation as well as on the materials  
and material interfaces.  
or  
2
VAC RMS = VRMS2 VDC  
(2)  
where:  
V
V
V
AC RMS is the time varying portion of the working voltage.  
RMS is the total rms working voltage.  
DC is the dc offset of the working voltage.  
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air, and insulation wear  
out. Surface breakdown is the phenomenon of surface tracking  
and the primary determinant of surface creepage requirements  
in system-level standards. Insulation wear out is the phenomenon  
where charge injection or displacement currents inside the  
insulation material cause long-term insulation degradation.  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
creepage, clearance and lifetime of a device, see Figure 76 and  
the following equations.  
Surface Tracking  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
surface insulation of components that allows the components to be  
categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in  
each system level standard and is based on the total rms voltage  
across the isolation, pollution degree, and material group. The  
material group and creepage for the ADP1032 isolators are  
shown in Table 5.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
TIME  
Insulation Wear Out  
Figure 76. Critical Voltage Example  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. The working voltage applicable  
to tracking is specified in most standards.  
The working voltage across the barrier from Equation 1 is  
2
VRMS = VAC RMS2 +VDC  
VRMS = 2402 + 4002  
V
RMS = 466 V  
Testing and modeling have shown that the primary driver of  
long-term degradation is displacement current in the polyimide  
insulation causing incremental damage. The stress on the insul-  
ation can be broken down into broad categories, such as dc stress,  
which causes very little wear out because there is no displacement  
current, and an ac component time varying voltage stress, which  
causes wear out.  
This VRMS value is the working voltage used together with the  
material group and pollution degree when looking up the creepage  
required by a system standard.  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
2
VAC RMS = VRMS2 VDC  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this reflects isolation from line  
voltage. However, many practical applications have combinations  
of 60 Hz ac and dc across the barrier as shown in Equation 1.  
Because only the ac portion of the stress causes wear out, the  
equation can be rearranged to solve for the ac rms voltage, as is  
shown in Equation 2. For insulation wear out with the polyimide  
materials used in these products, the ac rms voltage determines  
the product lifetime.  
VAC RMS  
AC RMS = 240 V rms  
=
4662 4002  
V
Rev. 0 | Page 33 of 37  
 
 
ADP1032  
Data Sheet  
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for working  
voltage in Table 9 for the expected lifetime, which is less than a  
60 Hz sine wave, and it is well within the limit for a 20-year  
service life.  
reflected in the θJA values from Table 8. The value of θJA is based  
on measurements taken with the devices mounted on a JEDEC  
standard, 4-layer board with fine width traces and still air. Under  
normal operating conditions, the ADP1032 operates at a full  
load across the full temperature range without derating the output  
current. However, following the recommendations in the PCB  
Layout Considerations section decreases thermal resistance to  
the PCB, allowing increased thermal margins in high ambient  
temperatures. Each switching regulator in the ADP1032 has a  
thermal shutdown circuit that turns off the dc-to-dc converter  
and the outputs when a die temperature of approximately 150°C is  
reached. When the die cools below approximately 135°C, the  
ADP1032 dc-to-dc converter outputs turn on again.  
The dc working voltage limit is set by the creepage of the  
package as specified in IEC 60664-1. This value can differ for  
specific system level standards.  
THERMAL ANALYSIS  
For the purpose of thermal analysis, the ADP1032 die are  
treated as a thermal unit, with the highest junction temperature  
Rev. 0 | Page 34 of 37  
 
Data Sheet  
ADP1032  
TYPICAL APPLICATION CIRCUIT  
Figure 77 shows the typical application circuit.  
7 0 9 3 - 0 2 3 6  
SENSOR  
4 0 M 5 C 0 u D A  
Figure 77. Typical Application Circuit  
Rev. 0 | Page 35 of 37  
 
 
ADP1032  
Data Sheet  
PCB LAYOUT CONSIDERATIONS  
To achieve optimum efficiency, proper regulation, strong  
stability, and low noise, a well-designed PCB layout is required.  
Follow these guidelines when designing PCBs:  
Place the SVDD1 decoupling capacitor (C3) as close  
to the SVDD1 pin (Pin 10) and the SGND1 pin  
(Pin 5) as possible.  
Place the SVDD2 decoupling capacitor (C7) as close to  
the SVDD2 pin (Pin 20) and the SGND2 pin (Pin 16) as  
possible.  
Keep the input bypass capacitor (CIN) close to the VINP pin  
and the PGNDP pin.  
Keep the high current switching paths as short as possible.  
These paths include the connections between the following:  
Figure 78 shows a suggested top layer layout for the ADP1032  
CIN, the VINP pin, the primary winding of the  
transformer, and the PGNDP pin  
The VOUT1 pin, CFLYBK, Diode 1 (D1), the secondary  
winding of the transformer, and the SGND2 pin  
The VOUT2 pin, the SW2 pin, Inductance 1 (L1),  
to minimize EMI.  
22mm  
C6 OR D3  
R7  
SGND  
T1  
CBUCK, and the SGND2 pin  
D2  
D1  
VOUT1  
LY BK  
Keep high current traces as short and wide as possible to  
minimize parasitic series inductance, which causes spiking  
and EMI.  
Avoid routing high impedance traces near any node  
connected to the SWP pin and SW2 pin or near the L1  
inductor or the T1 transformer to prevent radiated  
switching noise injection.  
V
INP  
R10  
R9  
PGNDP  
C7  
CIN  
U1  
L1  
VOUT2  
SGND  
MVDD  
MGND  
CBUCK  
C3  
Figure 78. Suggested Top Layer Layout  
Place the feedback resistors as close to the FB1 pin as  
possible to prevent high frequency switching noise injection.  
To minimize EMI, perform the following actions:  
Place the MVDD decoupling capacitor (C1) as close to  
the MVDD pin (Pin 39) and the MGND pin (Pin 3) as  
possible.  
Rev. 0 | Page 36 of 37  
 
 
Data Sheet  
ADP1032  
OUTLINE DIMENSIONS  
9.10  
9.00  
8.90  
2.15  
MIN  
1.72  
1.62  
1.52  
3.88  
3.78  
3.68  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
AREA  
31  
41  
1
0.50  
BSC  
30  
1.46  
1.36  
1.26  
*
*
EXPOSED  
PA D  
EXPOSED  
PA D  
7.10  
7.00  
6.90  
2.15  
MIN  
2.14  
2.04  
1.94  
2.75  
BSC  
*
EXPOSED  
PA D  
24  
7
23  
8
0.45  
0.40  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.435  
0.385  
3.75  
BSC  
7.70  
7.60  
7.50  
0.35  
(Pins 8-41)  
1.00  
0.95  
0.90  
0.335  
(Pins 1-7)  
0.05 MAX  
0.02 NOM  
*
COPLANARITY  
0.08  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.203 REF  
SECTION OF THIS DATA SHEET.  
Figure 79. 41-Lead Lead Frame Chip Scale Package [LFCSP]  
9 mm × 7 mm Body and 0.95 mm Package Height  
(CP-41-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
VOUT1  
VOUT2  
Temperature Range Package Description  
Package Option  
2
ADP1032ACPZ-1-R7  
ADP1032ACPZ-2-R7  
ADP1032ACPZ-3-R7  
ADP1032ACPZ-4-R7  
ADP1032ACPZ-5-R7  
ADP1032CP-1-EVALZ Adjustable 5.15 V  
ADP1032CP-2-EVALZ Adjustable 5 V  
ADP1032CP-3-EVALZ Adjustable 3.3 V  
Adjustable 5.15 V  
Adjustable 5 V  
Adjustable 3.3 V  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
41-Lead Lead Frame Chip Scale Package [LFCSP] CP-41-1  
41-Lead Lead Frame Chip Scale Package [LFCSP] CP-41-1  
41-Lead Lead Frame Chip Scale Package [LFCSP] CP-41-1  
41-Lead Lead Frame Chip Scale Package [LFCSP] CP-41-1  
41-Lead Lead Frame Chip Scale Package [LFCSP] CP-41-1  
Evaluation Board for the ADP1032ACPZ-1  
24 V  
24 V  
5 V  
3.3 V  
Evaluation Board for the ADP1032ACPZ-2  
Evaluation Board for the ADP1032ACPZ-3  
ADP1032CP-4-EVALZ 24 V  
ADP1032CP-5-EVALZ 24 V  
5 V  
3.3 V  
Evaluation Board for the ADP1032ACPZ-4  
Evaluation Board for the ADP1032ACPZ-5  
1 Z = RoHS Compliant Part.  
2 For other VOUT1 voltage options, contact an Analog Devices local sales representatives for additional information.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D20363-0-1/20(0)  
Rev. 0 | Page 37 of 37  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY