ADP1606 [ADI]

2 MHz, Synchronous Boost DC-to-DC Converters;
ADP1606
型号: ADP1606
厂家: ADI    ADI
描述:

2 MHz, Synchronous Boost DC-to-DC Converters

文件: 总16页 (文件大小:520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 MHz, Synchronous Boost  
DC-to-DC Converters  
Data Sheet  
ADP1606/ADP1607  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
L
Up to 96% efficiency  
2.2µH  
0.8 V to VOUT input voltage range  
Low 0.9 V input start-up voltage  
1.8 V fixed output voltage (ADP1606)  
1.8 V to 3.3 V adjustable output voltage range (ADP1607)  
23 µA quiescent current  
Fixed pulse-width modulation (PWM) and light load pulse  
frequency modulation (PFM) mode options  
Synchronous rectification  
INPUT VOLTAGE  
ADP1606  
0.8V TO V  
OUT  
FIXED  
OUTPUT VOLTAGE  
1.8V  
1
2
5
6
VIN  
EN  
SW  
C
VOUT  
MODE  
IN  
10µF  
ON  
PWM  
C
OUT  
3
OFF  
AUTO  
GND  
4
10µF  
True shutdown output isolation  
Figure 1. ADP1606  
Internal soft start, compensation, and current limit  
2 mm × 2 mm, 6-lead LFCSP  
L
2.2µH  
Compact solution size  
INPUT VOLTAGE  
ADP1607  
0.8V TO V  
OUT  
ADJUSTABLE  
OUTPUT VOLTAGE  
1.8V TO 3.3V  
1
5
6
VIN  
SW  
APPLICATIONS  
C
10µF  
VOUT  
IN  
1-cell and 2-cell alkaline and NiMH/NiCd powered devices  
Portable audio players, instruments, and medical devices  
Solar cell applications  
R1  
R2  
ON  
C
OUT  
3
FB  
OFF  
2
EN  
GND  
4
10µF  
Miniature hard disk power supplies  
Power LED status indicators  
Figure 2. ADP1607  
GENERAL DESCRIPTION  
The ADP1606/ADP1607 are high efficiency, synchronous, fixed  
frequency, step-up dc-to-dc switching converters with a 1.8 V  
fixed output voltage option and a 1.8 V to 3.3 V adjustable  
output voltage option for use in portable applications.  
current limit, and current mode architecture allow excellent  
transient response and a minimal external part count.  
Other key features include fixed PWM and light load PFM  
mode options, true output isolation, thermal shutdown (TSD),  
and logic controlled enable. Available in a lead-free, thin, 6-lead  
LFCSP package, the ADP1606/ADP1607 are ideal for providing  
efficient power conversion in portable devices.  
The 2 MHz operating frequency enables the use of small  
footprint, low profile external components. Additionally, the  
synchronous rectification, internal compensation, internal fixed  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP1606/ADP1607  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overview ..................................................................................... 10  
Enable/Shutdown ....................................................................... 10  
Modes of Operation................................................................... 10  
Internal Control Features.......................................................... 11  
Applications Information.............................................................. 12  
Setting the Output Voltage........................................................ 12  
Inductor Selection...................................................................... 12  
Choosing the Input Capacitor .................................................. 13  
Choosing the Output Capacitor............................................... 13  
Layout Guidelines........................................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Operating Ranges......................................................... 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
REVISION HISTORY  
7/14—Rev. C to Rev. D  
Added ADP1606.................................................................Universal  
Change to Features Section and General Description Section... 1  
Added Figure 1; Renumbered Sequentially .................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2 and Thermal Resistance Section................... 4  
Added Figure 3 and Table 5; Renumbered Sequentially ............. 5  
Changes to Table 4............................................................................ 5  
Changes to Figure 11........................................................................ 7  
Added Figure 26 and Figure 27....................................................... 9  
Changes to Figure 28, Overview Section, Modes of Operation  
Section, and PWM Mode Section ................................................ 10  
Added Table 6.................................................................................. 10  
Changes to Auto Mode Section, PFM Mode Section, and Mode  
Transition Section........................................................................... 11  
Changes to Setting the Output Voltage Section and Inductor  
Selection Section............................................................................. 12  
Changes to Layout Guidelines Section ........................................ 14  
Added Figure 30.............................................................................. 14  
Changes to Ordering Guide .......................................................... 15  
12/13—Rev. B to Rev. C  
Changes to Figure 21.........................................................................9  
7/13—Rev. A to Rev. B  
Changes to Captions for Figure 22 and Figure 23.........................9  
Changed Synchronous Rectification Section.............................. 11  
12/12—Rev. 0 to Rev. A  
Changes to Features Section ............................................................1  
Changed TJ to TA in Specifications Section ...................................3  
Changed Figure 6, Figure 7, and Figure 8 Captions .....................6  
Changes to Table 5.......................................................................... 12  
Changes to Choosing the Output Capacitor Section ................ 13  
10/12—Revision 0: Initial Version  
Rev. D | Page 2 of 16  
 
Data Sheet  
ADP1606/ADP1607  
SPECIFICATIONS  
VIN = VEN = 1.2 V, V OUT = 3.3 V at TA = −40°C to +85°C for minimum/maximum specifications, and TA = 25°C for typical specifications,  
unless otherwise noted. All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
Specifications are subject to change without notice.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLY  
Minimum Start-Up Voltage1  
Operating Input Voltage Range2  
Shutdown Current  
Quiescent Current  
Measured on VOUT  
RMIN = 22 Ω  
0.9  
0.8  
V
V
µA  
VIN  
IQSD  
VOUT  
0.67  
VEN = GND, VOUT = GND, TA = −40°C to +45°C3  
Nonswitching, auto operating mode only  
TA = −40°C to +45°C, ADP1607  
0.06  
23  
23  
25  
25  
6
29  
40  
35  
55  
11  
14.6  
µA  
µA  
µA  
µA  
µA  
µA  
ms  
TA = −40°C to +85°C, ADP1607  
TA = −40°C to +45°C, ADP1606, VOUT = 1.8 V  
TA = −40°C to +85°C, ADP1606, VOUT = 1.8 V  
TA = −40°C to +45°C  
Measured on VIN  
TA = −40°C to +85°C  
6
1.3  
Soft Start Time  
SWITCH  
Current Limit  
ICL  
ADP1607, VOUT = 3.3 V  
ADP1606, VOUT = 1.8 V  
ISW = 500 mA  
ISW = 500 mA  
VSW = 1.2 V, VOUT = 0 V, TA = −40°C to +45°C3  
0.8  
0.8  
1
1
120  
160  
0.18  
1.3  
1.3  
165  
225  
2
A
A
mΩ  
mΩ  
µA  
NMOS On Resistance  
PMOS On Resistance  
SW Leakage Current3  
OSCILLATOR  
RDSON_N  
RDSON_P  
Switching Frequency  
Maximum Duty Cycle  
OUTPUT  
fSW  
DMAX  
1.8  
85  
2
90  
2.2  
MHz  
%
VOUT Range  
VOUT Accuracy  
FB Pin Voltage  
FB Pin Current  
VOUT  
VOUT  
VFB  
ADP1607  
1.8  
1.764  
1.2338  
3.3  
V
V
V
µA  
ADP1606, VOUT = 1.8 V  
PWM mode, ADP1607  
VFB = 1.26 V, ADP1607  
1.8  
1.259  
0.1  
1.836  
1.2842  
0.25  
IFB  
EN/MODE LOGIC  
Input Voltage Threshold Low  
Input Voltage Threshold High  
EN Leakage Current  
MODE Leakage Current  
THERMAL SHUTDOWN (TSD)4  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
VIL  
VIH  
0.25  
V
V
µA  
µA  
0.8  
VEN = GND or VIN, VOUT = 0 V  
VMODE = GND or VIN, VOUT = 0 V, ADP1606  
0.001  
0.001  
0.25  
0.25  
150  
15  
°C  
°C  
1 Guaranteed by design, but not production tested. VIN can never exceed VOUT once the ADP1606/ADP1607 is enabled.  
2 Minimum value is characterized by design. Maximum value is characterized on the bench.  
3 This parameter is the semiconductor leakage current. The semiconductor leakage current doubles with every 10°C increase in temperature. The maximum limit  
follows the same trend over temperature.  
4 TSD protection is only active in PWM mode.  
Rev. D | Page 3 of 16  
ADP1606/ADP1607  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
The junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package (θJA). Maximum junction temperature (TJ) is calculated  
from the ambient temperature (TA) and power dissipation (PD)  
using the following formula:  
Parameter  
Rating  
VIN, VOUT to GND  
FB to GND  
−0.3 V to +3.6 V  
−0.3 V to +1.4 V  
EN, SW, MODE to GND (When VIN ≥ VOUT) −0.3 V to VIN + 0.3 V  
EN, SW, MODE to GND (When VIN < VOUT) −0.3 V to VOUT + 0.3 V  
TJ = TA + (PD × θJA)  
EPAD to GND  
−0.3 V to + 0.3 V  
−40°C to +85°C  
90°C  
THERMAL RESISTANCE  
Operating Ambient Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Junction-to-ambient thermal resistance (θJA) of the package  
is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. The  
junction-to-ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, attention to thermal board  
design is required. The value of θJA may vary, depending on  
PCB material, layout, and environmental conditions.  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
θ
JA and θJC (junction to case) are determined according to  
JESD51-9 on a 4-layer PCB with natural convection cooling  
and the exposed pad soldered to the board with thermal vias.  
Absolute maximum ratings apply individually only, not in  
combination.  
THERMAL OPERATING RANGES  
Table 3.  
Package Type  
θJA  
θJC  
Unit  
The ADP1606/ADP1607 can be damaged when the junction  
temperature limits are exceeded. The maximum operating  
junction temperature (TJ (MAX)) takes precedence over the  
maximum operating ambient temperature (TA (MAX)).  
6-Lead LFCSP  
66.06  
4.3  
°C/W  
For additional information on thermal resistance, refer to the  
Thermal Characteristics of IC Assembly.  
Monitoring ambient temperature does not guarantee that the  
ESD CAUTION  
junction temperature (TJ) is within the specified temperature  
limits.  
In applications with high power dissipation and poor printed  
circuit board (PCB) thermal resistance, the maximum ambient  
temperature may need to be derated. In applications with  
moderate power dissipation and low PCB thermal resistance,  
the maximum ambient temperature can exceed the maximum  
limit as long as the junction temperature is within specification  
limits.  
Rev. D | Page 4 of 16  
 
 
 
 
Data Sheet  
ADP1606/ADP1607  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VIN 1  
EN 2  
6 VOUT  
5 SW  
VIN 1  
EN 2  
FB 3  
6 VOUT  
ADP1606  
TOP VIEW  
(Not to Scale)  
ADP1607  
TOP VIEW  
(Not to Scale)  
5 SW  
7
7
EPAD  
EPAD  
4 GND  
4 GND  
MODE 3  
NOTES  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
1. CONNECT THE EXPOSED PAD TO GND.  
Figure 3. ADP1606 Pin Configuration  
Figure 4. ADP1607 Pin Configuration  
Table 4. ADP1606 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VIN  
EN  
MODE  
Analog and Power Supply Pin.  
Shutdown Control Pin. Drive EN high to turn on the synchronous boost; drive EN low to turn it off.  
Mode Select Pin. This pin toggles between auto mode (automatic transitioning between PFM and PWM mode)  
and fixed PWM mode. Set MODE low to allow the device to operate in auto mode. Pull MODE high to force the  
device to operate in PWM mode. The voltage applied to MODE cannot be higher than the voltage applied to VIN.  
Do not leave this pin floating.  
4
5
6
7
GND  
SW  
VOUT  
EPAD  
Analog and Power Ground Pin.  
Drain Connection for NMOS and PMOS Power Switches.  
Output Voltage and Source Connection of PMOS Power Switch.  
Exposed Pad. Connect to GND.  
Table 5. ADP1607 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VIN  
EN  
FB  
GND  
SW  
Analog and Power Supply Pin.  
Shutdown Control Pin. Drive EN high to turn on the synchronous boost; drive EN low to turn it off.  
Output Voltage Feedback Pin.  
Analog and Power Ground Pin.  
Drain Connection for NMOS and PMOS Power Switches.  
Output Voltage and Source Connection of PMOS Power Switch.  
Exposed Pad. Connect to GND.  
VOUT  
EPAD  
Rev. D | Page 5 of 16  
 
 
 
ADP1606/ADP1607  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 1.2 V, VOUT = 3.3 V, L = 2.2 µH (DCRMAX = 66 mΩ, VLF302512MT-2R2M), CIN = 10 µF, COUT = 10 µF (10 V, 20%,  
LMK107BJ106MALTD), VEN = VIN, and TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
V
= 1.8V  
V
= 1.8V  
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
OUT  
OUT  
IN  
IN  
IN  
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
IN  
IN  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 5. ADP1607 Auto Mode Efficiency vs. Load Current, VOUT = 1.8 V  
Figure 8. ADP1607 Auto Mode Output Voltage Load Regulation, VOUT = 1.8 V  
100  
2.56  
V
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
= 2.2V  
V
= 2.5V  
V
= 2.5V  
IN  
IN  
IN  
IN  
OUT  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
VIN = 0.8V  
VIN = 1.2V  
VIN = 1.5V  
VIN = 2.2V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 6. ADP1607 Auto Mode Efficiency vs. Load Current, VOUT = 2.5 V  
Figure 9. ADP1607 Auto Mode Output Voltage Load Regulation, VOUT = 2.5 V  
100  
3.40  
V
= 3.3V  
V
= 3.3V  
V
V
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
= 2.2V  
= 3.0V  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
V
V
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
= 2.2V  
= 3.0V  
IN  
IN  
IN  
IN  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 7. ADP1607 Auto Mode Efficiency vs. Load Current, VOUT = 3.3 V  
Figure 10. ADP1607 Auto Mode Output Voltage Load Regulation,  
OUT = 3.3 V  
V
Rev. D | Page 6 of 16  
 
Data Sheet  
ADP1606/ADP1607  
270  
240  
210  
180  
150  
120  
30  
27  
24  
21  
18  
I
= 500mA  
SW  
T
T
= +90°C  
A
= +25°C  
= –40°C  
A
T
T
T
T
= –40°C  
= +25°C  
= +45°C  
= +85°C  
A
A
A
A
T
A
15  
1.8  
1.8  
2.3  
2.8  
3.3  
2.3  
2.8  
3.3  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 14. PMOS Drain-to-Source On Resistance  
Figure 11. ADP1607 Nonswitching PFM Mode Quiescent Current Measured  
on VOUT vs. Input Voltage  
1200  
1100  
1000  
900  
5
T
T
T
T
= –40°C  
= +25°C  
= +45°C  
= +90°C  
V
= 3.3V  
A
A
A
A
OUT  
V
= 2.5V  
OUT  
4
3
2
1
0
V
= 1.8 V  
OUT  
800  
700  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
0.9  
1.4  
1.9  
2.4  
2.9  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 15. Switch Current Limit vs. Input Voltage  
Figure 12. Shutdown Current vs. Input Voltage  
170  
155  
140  
125  
110  
95  
140  
120  
100  
80  
I
= 500mA  
SW  
T
= +90°C  
A
PWM OPERATION  
60  
T
T
= +25°C  
= –40°C  
A
40  
20  
PFM OPERATION  
A
V
= 2.5V  
OUT  
0
1.8  
2.3  
2.8  
3.3  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Auto Mode Transition Thresholds  
Figure 13. NMOS Drain-to-Source On Resistance  
Rev. D | Page 7 of 16  
 
ADP1606/ADP1607  
Data Sheet  
88.4  
V
V
= 1.2V  
IN  
= 3.3V  
OUT  
I
= 1mA TO 50mA  
LOAD  
88.0  
1
T
= +90°C  
A
T
= –40°C  
A
OUTPUT VOLTAGE (100mV/DIV)  
87.6  
87.2  
86.8  
86.4  
AC-COUPLED  
T
= +25°C  
A
LOAD CURRENT  
(50mA/DIV)  
4
TIME (200µs/DIV)  
1.8  
2.3  
2.8  
3.3  
OUTPUT VOLTAGE (V)  
Figure 17. Maximum Duty Cycle vs. Output Voltage  
Figure 20. PFM Mode Load Transient Response (Auto Mode Part)  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
V
V
= 1.2V  
IN  
= 3.3V  
OUT  
I
= 50mA TO 100mA  
LOAD  
1
V
= 3.3V  
OUT  
OUTPUT VOLTAGE (100mV/DIV)  
AC-COUPLED  
V
V
= 2.5V  
= 1.8V  
OUT  
OUT  
LOAD CURRENT  
(50mA/DIV)  
4
TIME (200µs/DIV)  
–40  
–10  
20  
TEMPERATURE (°C)  
50  
80  
Figure 21. PWM Mode Load Transient Response (Fixed PWM Mode Part)  
Figure 18. Frequency vs. Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
V
R
= 1.2V  
= 3.3V  
IN  
OUT  
OUTPUT VOLTAGE  
(1V/DIV)  
= 3.3kΩ  
LOAD  
V
= 2.5V  
OUT  
V
= 3.3V  
V
= 1.8 V  
OUT  
OUT  
SW PIN VOLTAGE  
(2V/DIV)  
1
2
INDUCTOR  
CURRENT  
(200mA/DIV)  
4
3
EN PIN VOLTAGE  
(1V/DIV)  
TIME (200µs/DIV)  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
INPUT VOLTAGE (V)  
Figure 22. Startup, RLOAD = 3.3 kΩ  
Figure 19. Maximum Output Current vs. Input Voltage  
Rev. D | Page 8 of 16  
Data Sheet  
ADP1606/ADP1607  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
R
= 1.2V  
IN  
= 3.3V  
OUT  
OUTPUT VOLTAGE  
(1V/DIV)  
= 33Ω  
LOAD  
SW PIN VOLTAGE  
(2V/DIV)  
1
2
INDUCTOR CURRENT  
(500mA/DIV)  
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
IN  
IN  
IN  
4
3
ADP1606  
= 1.8 V  
EN PIN VOLTAGE  
(1V/DIV)  
V
OUT  
TIME (200µs/DIV)  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 26. ADP1606 Auto Mode Efficiency vs. Load Current, VOUT = 1.8 V  
Figure 23. Startup, RLOAD = 33 Ω  
1.850  
OUTPUT VOLTAGE (100mV/DIV)  
AC COUPLED  
1.840  
1.830  
1.820  
1.810  
1
2
SW PIN VOLTAGE  
(2V/DIV)  
V
V
I
= 1.2V  
= 3.3V  
IN  
OUT  
V
V
V
= 0.8V  
= 1.2V  
= 1.5V  
IN  
IN  
IN  
1.800  
1.790  
1.780  
1.770  
= 10mA  
LOAD  
INDUCTOR CURRENT  
(200mA/DIV)  
ADP1606  
4
V
= 1.8 V  
OUT  
TIME (10µs/DIV)  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 24. Typical PFM Mode Operation, ILOAD = 10 mA  
Figure 27. ADP1606 Auto Mode Output Voltage Load Regulation, VOUT = 1.8 V  
OUTPUT VOLTAGE (20mV/DIV)  
AC COUPLED  
1
2
SW PIN VOLTAGE  
(2V/DIV)  
INDUCTOR CURRENT  
(100mA/DIV)  
V
V
= 1.2V  
IN  
= 3.3V  
OUT  
I
= 100mA  
LOAD  
4
TIME (400ns/DIV)  
Figure 25. Typical PWM Mode Operation, ILOAD = 100 mA  
Rev. D | Page 9 of 16  
ADP1606/ADP1607  
Data Sheet  
THEORY OF OPERATION  
L1  
V
IN  
SW  
5
VIN  
V
1
DD  
PMOS  
BULK  
CONTROL  
BULK  
CONTROL  
V
C
IN  
V
IN  
V
OUT  
SEL  
V
SEL  
+
A
+
V
6
OUT  
PWM  
COMPARATOR  
CURRENT  
SENSING  
ERROR  
AMPLIFIER  
C
OUT  
P
OSCILLATOR  
P DRIVER  
N DRIVER  
V
REF  
R
COMP  
QP  
QN  
S
C
COMP  
1
CURRENT-LIMIT  
COMPARATOR  
ADP1607  
ADJUSTABLE  
V
OUT  
SW  
N
R
SOFT  
START  
V
OUT  
RP  
RESET  
ZERO  
CROSS  
TSD  
R1  
R2  
FB  
COMPARATOR  
3
T
SENSE  
T
REF  
2
ADP1606  
SHUTDOWN  
FIXED V  
OUT  
V
OUT  
PFM  
COMPARATOR  
R1  
R2  
AGND  
PFM  
CONTROL  
V
REF  
MODE  
3
2
4
EN  
GND  
PWM  
AUTO  
THRESHOLD  
DETECT  
ON  
OFF  
1
2
PIN 3 CONNECTION FOR ADP1607  
PIN 3 CONNECTION FOR ADP1606  
Figure 28. Block Diagram  
ADP1606 has a MODE pin for application controlled selection  
of fixed PWM mode or automatic switching from PFM to  
PWM.  
OVERVIEW  
The ADP1606/ADP1607 are current mode, synchronous, step-up  
dc-to-dc switching converters available in a 1.8 V fixed output  
voltage option and a 1.8 V and 3.3 V adjustable output voltage  
option. Other features include logic controlled enable, fixed  
PWM and light load PFM mode options, true output isolation,  
internal soft start, internal fixed current limit, internal  
compensation, and TSD protection.  
Table 6. ADP1606/ADP1607 Options  
Output  
Voltage  
Operating  
Modes  
Model No.  
ADP1606ACPZN1.8-R7  
ADP1607ACPZN001-R7 Adjustable  
ADP1607ACPZN-R7  
1.8 V  
MODE pin  
Fixed PWM  
Fixed auto  
Adjustable  
ENABLE/SHUTDOWN  
PWM Mode  
The EN input turns the ADP1606/ADP1607 on or off. Connect  
EN to GND or logic low to shut down the device and reduce the  
current consumption to 0.06 μA (typical). Connect EN to VIN  
or logic high to enable the device. Do not exceed VIN. Do not  
leave this pin floating.  
The PWM version of the ADP1607 and the PWM mode of the  
ADP1606 use a current mode PWM control scheme to force  
the device to maintain a fixed 2 MHz fixed frequency while  
regulating the output voltage over all load conditions. The auto  
mode version of the ADP1607 and the auto mode of the  
ADP1606 operate in PWM for higher load currents. In PWM,  
the output voltage is monitored at the FB pin through the  
external resistive voltage divider. The voltage at FB is compared  
to the internal 1.259 V reference by the internal error amplifier.  
MODES OF OPERATION  
The ADP1606/ADP1607 are available in a fixed PWM mode  
option for noise sensitive applications or in an auto PFM-to-PWM  
transitioning mode option to optimize power at light loads. The  
Rev. D | Page 10 of 16  
 
 
 
 
 
Data Sheet  
ADP1606/ADP1607  
This current-mode PWM regulation system allows fast  
transient response and tight output voltage regulation. PWM  
mode operation results in lower efficiencies than PFM mode at  
light loads.  
The output voltage in PWM can be greater than or less than the  
PFM voltage of that device.  
INTERNAL CONTROL FEATURES  
Input to Output Isolation  
Auto Mode  
While in shutdown, the ADP1606/ADP1607 manage the  
voltage of the bulk of the PMOS to force it off and internally  
isolate the path from the input to output. This isolation allows  
the output to drop to ground, reducing the current  
consumption of the application in shutdown.  
Auto mode is a power saving feature that forces the auto mode  
version of the ADP1607 and the auto mode of the ADP1606 to  
switch between PFM and PWM in response to output load  
changes. In auto mode, the ADP1606/ADP1607 operate in PFM  
mode for light load currents and switch to PWM mode for  
medium and heavy load currents.  
Soft Start  
The ADP1606/ADP1607 soft start sequence is designed for  
optimal control of the device. When EN goes high, or when the  
device recovers from a TSD, the start-up sequence begins. The  
output voltage increases through a sequence of stages to ensure  
that the internal circuitry is powered up in the correct order as  
the output voltage rises to its final value.  
PFM Mode  
When the auto mode version of the ADP1607 and the auto  
mode of the ADP1606 are operating under light load  
conditions, the effective switching frequency and supply current  
are decreased and varied using PFM to regulate the output  
voltage. This results in improved efficiencies and lower  
quiescent currents. In PFM mode, the converter only switches  
when necessary to keep the output voltage between the PFM  
comparator high output voltage threshold and the lower sleep  
mode exit voltage threshold. Switching stops when the upper  
PFM limit is reached and resumes when the lower sleep mode  
exit threshold is reached.  
Current Limit  
The ADP1606/ADP1607 are designed with a fixed 1 A typical  
current limit that does not vary with duty cycle.  
Synchronous Rectification  
In addition to the N-channel MOSFET switch, the  
ADP1606/ADP1607 have a P-channel MOSFET switch to build  
the synchronous rectifier. The synchronous rectifier improves  
efficiency, especially for heavy load currents, and reduces cost  
and board space by eliminating the need for an external  
Schottky diode.  
When VOUT exceeds the upper PFM threshold, switching stops  
and the device enters sleep mode. In sleep mode, the  
ADP1606/ADP1607 are mostly shut down, significantly  
reducing the quiescent current. The output voltage is  
discharged by the load until the output voltage reaches the  
lower sleep mode exit threshold. After crossing the lower sleep  
mode exit threshold, switching resumes and the process repeats.  
Compensation  
The PWM control loop of the ADP1606/ADP1607 is internally  
compensated to deliver maximum performance with no  
additional external components. The ADP1606/ADP1607 are  
designed to work with 2.2 μH chip inductors and 10 μF ceramic  
capacitors. Other values may reduce performance and/or  
stability.  
Mode Transition  
The auto mode version of the ADP1607 and the auto mode of  
the ADP1606 switch automatically between PFM and PWM  
modes to maintain optimal efficiency. Switching to PFM allows  
the converter to save power by supplying the lighter load  
current with fewer switching cycles. The mode transition point  
depends on the operating conditions. See Figure 16 for typical  
transition levels for VOUT = 2.5 V. Hysteresis exists in the  
transition point to prevent instability and decreased efficiencies  
that may result if the converter oscillates between PFM and  
PWM for a fixed input voltage and load current.  
TSD Protection  
The ADP1606/ADP1607 include TSD protection when the  
device is in PWM mode only. If the die temperature exceeds  
150°C (typical), the TSD protection activates and turns off the  
power devices. They remain off until the die temperature falls  
below 135°C (typical), at which point the converter restarts.  
Rev. D | Page 11 of 16  
 
ADP1606/ADP1607  
Data Sheet  
APPLICATIONS INFORMATION  
2.2 µH inductors, which have favorable saturation currents and  
lower series resistances for their given physical size.  
SETTING THE OUTPUT VOLTAGE  
The ADP1606 is available with a 1.8 V fixed output voltage. The  
output voltage is set by an internal resistive feedback divider,  
and no external resistors are necessary.  
To ensure stable and efficient performance with the  
ADP1606/ADP1607, take care to select a compatible inductor  
with a sufficient current rating, saturation current, and low dc  
resistance (DCR.)  
The ADP1607 has an adjustable output voltage and can be  
configured for output voltages between 1.8 V and 3.3 V. The  
output voltage is set by a resistor voltage divider, R1, from the  
output voltage (VOUT) to the 1.259 V feedback input at FB and  
R2 from FB to GND (see Figure 28). Resistances between 100 kΩ  
and 1 MΩ are recommended.  
The maximum rated rms current of the inductor must be  
greater than the maximum input current to the regulator.  
Likewise, the saturation current of the chosen inductor must be  
able to support the peak inductor current (the maximum input  
current plus half the inductor ripple current) of the application.  
For larger R1 and R2 values, the voltage drop due to the FB pin  
current (IFB) on R1 becomes proportionally significant and must  
be factored in.  
The inductor ripple current (IL) in steady state continuous  
mode can be calculated with Equation 2.  
To account for the effect of IFB for all values of R1 and R2,  
use the following equation to determine R1 and R2 for the  
VIN × D  
L × fSW  
IL =  
(2)  
desired VOUT  
:
where:  
R1  
R2  
D is the duty cycle of the application.  
L is the inductor value.  
VOUT = 1+  
V
FB  
+ IFB (R1)  
(1)  
f
SW is the switching frequency of the ADP1606/ADP1607.  
where:  
FB = 1.259 V, typical.  
FB = 0.1 µA, typical.  
V
I
The duty cycle (D) can be determined with Equation 3.  
VOUT VIN  
D =  
(3)  
INDUCTOR SELECTION  
VOUT  
The ADP1606/ADP1607 are designed with a 2 MHz operating  
frequency, enabling the use of small chip inductors ideal for use  
in applications with limited solution size constraints. The  
ADP1606/ADP1607 are designed for optimal performance with  
Inductors with a low DCR minimize power loss and improve  
efficiency. DCR values below 100 mΩ are recommended.  
Table 7. Suggested Inductors  
Inductance  
(µH)  
DCR (mΩ)  
Current  
Rating (A)  
Saturation  
Current (A)  
Manufacturer Part Number  
Typ  
110  
110  
57  
70  
42  
Size (L × W × H) (mm) Package  
TDK  
MLP2016S2R2M  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 30%  
2.2 20%  
2.2 30%  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 20%  
2.2 10%  
1.20  
1.20  
1.67  
1.23  
2.71  
1.30  
1.85  
1.50  
2.50  
1.00  
1.35  
1.10  
1.40  
1.9  
2.00 × 1.60 × 1.00  
2.50 × 2.00 × 1.00  
2.50 × 2.00 × 1.00  
3.00 × 2.50 × 1.00  
3.00 × 2.50 × 1.40  
2.50 × 2.00 × 0.90  
3.20 × 2.50 × 1.55  
2.50 × 2.00 × 1.00  
4.80 × 48.0 × 2.80  
2.00 × 1.25 × 1.40  
2.50 × 2.00 × 1.00  
3.20 × 3.00 × 1.00  
3.20 × 3.00 × 1.50  
3.00 × 3.00 × 1.20  
4.00 × 4.00 × 2.10  
0806  
1008  
1008  
MLP2520S2R2S  
1.20  
1.04  
1.37  
1.57  
VLF252012MT-2R2M  
VLF302510MT-2R2M  
VLF302515MT-2R2M  
LQM2HPN2R2MG0  
LQH32PN2R2NNC  
74479787222  
Murata  
Wurth  
80  
64  
1008  
1210  
1008  
80  
23  
0.70  
2.35  
1.10  
7440430022  
Taiyo Yuden  
Toko  
BRC2012T2R2MD  
MDT2520-CR2R2M  
DEM2810C (1224AS-H-2R2M)  
DEM2815C (1226AS-H-2R2M)  
XFL3012-222  
110  
90  
85  
0805  
1008  
1.40  
2.20  
1.6  
43  
Coilcraft  
81  
21  
1212  
1515  
XFL4020-222  
8.0  
3.1  
Rev. D | Page 12 of 16  
 
 
 
Data Sheet  
ADP1606/ADP1607  
CHOOSING THE INPUT CAPACITOR  
12  
10  
8
The ADP1606/ADP1607 require a 10 µF or greater input bypass  
capacitor (CIN) between VIN and GND to supply transient  
currents while maintaining a constant input voltage. The value  
of the input capacitor can be increased without any limit for  
smaller input voltage ripple and improved input voltage filtering.  
The capacitor must have a 4 V or higher voltage rating to support  
the maximum input operating voltage. It is recommended that  
6
C
IN be placed as close to the ADP1606/ADP1607 as possible.  
4
Different types of capacitors can be considered, but for battery-  
powered applications, the best choice is the multilayer ceramic  
capacitor, due to its small size, low equivalent series resistance  
(ESR), and low equivalent series inductance (ESL). X5R or X7R  
dielectrics are recommended. Do not use Y5V capacitors due to  
their variation in capacitance over temperature. Alternatively,  
use a high value, medium ESR capacitor in parallel with a 0.1 µF  
low ESR capacitor.  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 29. Typical Ceramic Capacitor Performance  
The value and characteristics of the output capacitor greatly  
affect the output voltage ripple, transient performance, and  
stability of the regulator. The output voltage ripple (VOUT) in  
continuous operation is calculated as follows:  
CHOOSING THE OUTPUT CAPACITOR  
The ADP1606/ADP1607 require a 10 µF output capacitor  
(COUT) to maintain the output voltage and supply current to the  
load. The output capacitor supplies the current to the load when  
the N-channel switch is on. Similar to CIN, a 4 V or greater, low  
QC  
COUT  
I
OUT ×tON  
COUT  
VOUT  
=
=
(4)  
ESR, X5R or X7R ceramic capacitor is recommended for COUT  
.
where:  
QC is the charge removed from the capacitor.  
OUT is the output load current.  
ON is the on time of the N-channel switch.  
When choosing the output capacitor, it is also important to account  
for the loss of capacitance due to output voltage dc bias. The  
loss of capacitance due to output voltage dc bias may necessitate  
the use of a capacitor with a higher rated voltage to achieve the  
desired capacitance value. See Figure 29 for an example of how  
the capacitance of a 10 µF ceramic capacitor changes with the  
dc bias voltage.  
I
t
COUT is the effective output capacitance.  
D
fSW  
tON  
=
(5)  
(6)  
and,  
VOUT VIN  
D =  
VOUT  
As shown in the duty cycle and output ripple voltage equations,  
the output voltage ripple increases with the load current.  
Rev. D | Page 13 of 16  
 
 
 
ADP1606/ADP1607  
LAYOUT GUIDELINES  
Data Sheet  
For high efficiency, good regulation, and stability, a well  
C
C
IN  
0402  
OUT  
0402  
designed PCB layout is required.  
Use the following guidelines when designing a PCB. See  
Figure 28 for a block diagram, and Figure 3 and Figure 4 for pin  
configurations.  
VOUT  
1
6
5
VIN  
EN  
ADP1606  
TOP VIEW  
2
3
SW  
Keep the low ESR input capacitor, CIN, close to VIN and  
GND. This minimizes noise injected into the device from  
board parasitic inductance.  
7
EPAD  
GND  
4
MODE  
Keep the high current path from CIN through the L  
inductor to SW as short as possible.  
For ADP1607, place the feedback resistors, R1 and R2, as  
close to FB as possible to prevent noise pickup. Connect  
the ground of the feedback network directly to an AGND  
plane that makes a Kelvin connection to the GND pin. See  
Figure 31 for more information.  
L
2.2µH  
0805  
2.25mm  
Figure 30. ADP1606 Recommended Layout Showing the Smallest Footprint  
Avoid routing high impedance traces from feedback  
resistors near any node connected to SW or near the  
inductor to prevent radiated noise injection.  
Keep the low ESR output capacitor, COUT, close to VOUT  
and GND. This minimizes noise injected into the device  
from board parasitic inductance.  
C
C
IN  
0402  
OUT  
0402  
VOUT  
1
6
5
VIN  
EN  
ADP1607  
Connect Pin 7 (EPAD) and GND to a large copper plane  
for proper heat dissipation.  
TOP VIEW  
2
3
SW  
7
EPAD  
GND  
4
FB  
R1  
0402  
R2  
0402  
L
2.2µH  
0805  
3.0mm  
Figure 31. ADP1607 Recommended Layout Showing the Smallest Footprint  
Rev. D | Page 14 of 16  
 
 
Data Sheet  
ADP1606/ADP1607  
OUTLINE DIMENSIONS  
1.70  
1.60  
1.50  
2.10  
2.00 SQ  
1.90  
0.65 BSC  
6
4
0.15 REF  
PIN 1 INDEX  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
AREA  
0.425  
0.350  
0.275  
0.20 MIN  
3
1
PIN 1  
TOP VIEW  
BOTTOM VIEW  
INDICATOR  
(R 0.15)  
0.60  
0.55  
0.50  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.35  
0.30  
0.25  
0.20 REF  
Figure 32. 6-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2.00 mm × 2.00 mm Body, Ultra Thin, Dual Lead  
(CP-6-3)  
Dimensions Shown in Millimeters  
ORDERING GUIDE  
Output  
Voltage  
Operating Temperature  
Package  
Option  
Model1  
Modes  
MODE Pin  
MODE Pin  
Auto  
Range  
Package Description  
Branding  
ADP1606ACPZN1.8-R7  
ADP1606-1.8-EVALZ  
ADP1607ACPZN-R7  
ADP1607ACPZN001-R7 Adjustable  
ADP1607-EVALZ  
1.8 V  
1.8 V  
–40°C to +85°C 6-Lead LFCSP_UD  
–40°C to +85°C Evaluation Board, VOUT = 1.8 V  
–40°C to +85°C 6-Lead LFCSP_UD  
–40°C to +85°C 6-Lead LFCSP_UD  
CP-6-3  
LM8  
Adjustable  
CP-6-3  
CP-6-3  
LJ5  
LJ1  
PWM  
Auto  
Evaluation Board, Automatic PFM/PWM  
Switching Modes  
ADP1607-001-EVALZ  
1 Z = RoHS Compliant Part.  
PWM  
Evaluation Board, PWM Mode Only  
Rev. D | Page 15 of 16  
 
 
ADP1606/ADP1607  
NOTES  
Data Sheet  
©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10276-0-7/14(D)  
Rev. D | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY