ADP160AUJZ-2.5-R7 [ADI]

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator; 超低静态电流150毫安, CMOS线性稳压器
ADP160AUJZ-2.5-R7
型号: ADP160AUJZ-2.5-R7
厂家: ADI    ADI
描述:

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
超低静态电流150毫安, CMOS线性稳压器

稳压器
文件: 总20页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Quiescent Current,  
150 mA, CMOS Linear Regulator  
ADP160/ADP161  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
ADP160  
Ultralow quiescent current  
V
= 2.3V  
1µF  
V
= 1.8V  
IN  
OUT  
I
I
Q = 560 nA with 0 μA load  
Q = 860 nA with 1 μA load  
5
1
2
3
VIN  
GND  
EN  
VOUT  
1µF  
Stable with 1 μF ceramic input and output capacitors  
Maximum output current: 150 mA  
Input voltage range: 2.2 V to 5.5 V  
Low shutdown current: <50 nA typical  
Low dropout voltage: 195 mV @ 150 mA load  
Initial accuracy: 1ꢀ  
Accuracy over line, load, and temperature: 3.5ꢀ  
15 fixed output voltage options: 1.2 V to 4.2 V  
Adjustable output available  
ON  
4
NC  
OFF  
NC = NO CONNECT  
Figure 1. 5-Lead TSOT ADP160 with Fixed Output Voltage, 1.8 V  
ADP161  
V
= 4.2V  
1µF  
V
= 3.2V  
1µF  
IN  
OUT  
5
4
1
2
3
VIN  
GND  
EN  
VOUT  
R1  
R2  
ON  
ADJ  
PSRR performance of 72 dB @ 100 Hz  
Current limit and thermal overload protection  
Logic-control enable  
OFF  
Figure 2. 5-Lead TSOT ADP161 with Adjustable Output Voltage, 3.2 V  
Integrated output discharge resistor  
5-lead TSOT package  
ADP160  
1
2
V
= 2.8V  
4-ball, 0.5 mm pitch WLCSP  
V
= 3.3V  
1µF  
OUT  
IN  
VIN  
VOUT  
A
B
1µF  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
ON  
EN  
GND  
OFF  
Mobile phones  
Digital cameras and audio devices  
Portable and battery-powered equipment  
Post dc-to-dc regulation  
Figure 3. 4-Ball WLCSP ADP160 with Fixed Output Voltage, 2.8 V  
Portable medical devices  
GENERAL DESCRIPTION  
The ADP160/ADP161 are ultralow quiescent current, low  
dropout, linear regulators that operate from 2.2 V to 5.5 V and  
provide up to 150 mA of output current. The low 195 mV dropout  
voltage at 150 mA load improves efficiency and allows operation  
over a wide input voltage range.  
The ADP160 is available in 15 fixed output voltage options,  
ranging from 1.2 V to 4.2 V. The ADP160/ADP161 also include  
a switched resistor to discharge the output automatically when  
the LDO is disabled.  
The ADP161 is available as an adjustable output voltage regulator.  
It is only available in a 5-lead TSOT package.  
The ADP160/ADP161 are specifically designed for stable operation  
with tiny 1 μF ꢀ0ꢁ ceramic input and output capacitors to  
meet the requirements of high performance, space-constrained  
applications.  
Short-circuit and thermal overload protection circuits prevent  
damage in adverse conditions. The ADP160 is available in a tiny  
5-lead TSOT and a 4-ball, 0.5 mm pitch WLCSP package for the  
smallest footprint solution to meet a variety of portable power  
applications.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
ADP160/ADP161  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 12  
Applications Information.............................................................. 1ꢀ  
Capacitor Selection .................................................................... 1ꢀ  
Enable Feature ............................................................................ 14  
Current Limit and Thermal Overload Protection ................. 14  
Thermal Considerations............................................................ 15  
PCB Layout Considerations...................................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... ꢀ  
Input and Output Capacitor, Recommended Specifications.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
6/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP160/ADP161  
SPECIFICATIONS  
VIN = (VOUT + 0.5 V) or 2.2 V, whichever is greater; EN = VIN, IOUT = 10 mA, CIN = COUT = 1 μF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min Typ  
2.2  
Max  
Unit  
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = −40°C to +125°C  
IOUT = 0 μA  
IOUT = 0 μA, TJ = −40°C to +125°C  
IOUT = 1 μA  
IOUT = 1 μA, TJ = −40°C to +125°C  
IOUT = 100 μA  
IOUT = 100 μA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
EN = GND  
5.5  
V
IGND  
560  
1250 nA  
2.3 μA  
1800 nA  
2.8  
4.5  
5.8  
860  
2.6  
11  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
nA  
μA  
19  
65  
1
42  
SHUTDOWN CURRENT  
IGND-SD  
50  
EN = GND, TJ = −40°C to +125°C  
OUTPUT VOLTAGE ACCURACY  
VOUT  
IOUT = 10 mA  
0 μA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V  
0 μA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V,  
TJ = −40°C to +125°C  
−1  
−2  
−3.5  
+1  
+2  
+3.5  
%
%
%
ADJUSTABLE-OUTPUT VOLTAGE  
ACCURACY (ADP161)1  
VADJ  
IOUT = 10 mA  
0.99 1.0  
1.01  
V
0 μA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V  
0 μA < IOUT < 150 mA, VIN = (VOUT + 0.5 V) to 5.5 V,  
TJ = −40°C to +125°C  
0.98  
0.97  
1.02  
1.03  
V
V
REGULATION  
Line Regulation  
Load Regulation2  
∆VOUT/∆VIN  
VIN = (VOUT + 0.5 V) to 5.5 V, TJ = −40°C to +125°C  
−0.1  
+0.1  
0.01  
%/V  
%/mA  
%/mA  
∆VOUT/∆IOUT IOUT = 100 ꢀA to 150 mA  
IOUT = 100 ꢀA to 150 mA, TJ = −40°C to +125°C  
0.004  
DROPOUT VOLTAGE3  
4-Ball WLCSP  
VOUT = 3.3 V  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
2.2 V ≤ VIN ≤ 5.5 V, ADJ connected to VOUT  
VOUT = 2.8 V, RLOAD = ∞, ADP160 only  
VOUT = 3.3 V  
VDROPOUT  
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
nA  
13  
105  
8
195  
15  
5-Lead TSOT  
120  
225  
600  
500  
ADJ INPUT BIAS CURRENT (ADP161)  
ACTIVE PULL-DOWN RESISTANCE  
START-UP TIME4  
ADJI-BIAS  
TSHUTDOWN  
TSTART-UP  
ILIMIT  
10  
300  
1100  
320  
Ω
μs  
CURRENT LIMIT THRESHOLD5  
220  
1.2  
mA  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
En Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
VIH  
VIL  
VI-LEAKAGE  
2.2 V ≤ VIN ≤ 5.5 V  
2.2 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
V
V
μA  
μA  
0.4  
1
0.1  
Rev. 0 | Page 3 of 20  
 
ADP160/ADP161  
Parameter  
Symbol  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
OUTNOISE  
Conditions  
Min Typ  
Max  
Unit  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
2.19  
V
V
1.60  
100  
105  
100  
80  
mV  
μV rms  
μV rms  
μV rms  
dB  
OUTPUT NOISE  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 1.2 V  
100 Hz, VIN = 5 V, VOUT = 3.3 V  
POWER SUPPLY REJECTION RATIO  
PSRR  
60  
100 Hz, VIN = 5 V, VOUT = 2.5 V  
65  
dB  
100 Hz, VIN = 5 V, VOUT = 1.2 V  
72  
dB  
1 kHz, VIN = 5 V, VOUT = 3.3 V  
50  
dB  
1 kHz, VIN = 5 V, VOUT = 2.5 V  
50  
dB  
1 kHz, VIN = 5 V, VOUT = 1.2 V  
62  
dB  
1 Accuracy when VOUT is connected directly to ADJ. When the VOUT voltage is set by external feedback resistors, the absolute accuracy in adjust mode depends on the  
tolerances of resistors used.  
2 Based on an end-point calculation using 0 ꢀA and 150 mA loads.  
3 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.2 V.  
4 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
5 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
CMIN  
Conditions  
Min  
0.7  
Typ  
Max  
Unit  
μF  
MINIMUM INPUT AND OUTPUT CAPACITANCE1  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
CAPACITOR ESR  
RESR  
0.001  
0.2  
Ω
1 The minimum input and output capacitance should be greater than 0.7 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
however, Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. 0 | Page 4 of 20  
 
ADP160/ADP161  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on the  
application and board layout. In applications where high maximum  
power dissipation exists, close attention to thermal board design  
is required. The value of θJA may vary, depending on PCB material,  
layout, and environmental conditions. The specified values of  
θJA are based on a 4-layer, 4 inches × ꢀ inches, circuit board. Refer  
to JESD 51-7 and JESD 51-9 for detailed information on the  
board construction. For additional information, see Application  
Note AN-617, MicroCSP™ Wafer Level Chip Scale Package.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +6.5 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to VIN  
Storage Temperature Range  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Soldering Conditions  
−65°C to +150°C  
−40°C to +125°C  
−40°C to +125°C  
JEDEC J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Ψ
JB is the junction to board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a 4-layer board. The JESD51-12, Guidelines for  
Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package, factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
THERMAL DATA  
Absolute maximum ratings only apply individually; they do not  
apply in combination. The ADP160/ADP161 can be damaged  
when the junction temperature limits are exceeded. Monitoring  
ambient temperature does not guarantee that TJ is within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature may have to be derated.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction to ambient  
thermal resistance of the package (θJA).  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
43  
58  
Unit  
°C/W  
°C/W  
Maximum junction temperature (TJ) is calculated from the ambient  
temperature (TA) and power dissipation (PD) using the formula  
5-Lead TSOT  
4-Ball, 0.4 mm Pitch WLCSP  
170  
260  
TJ = TA + (PD × θJA)  
ESD CAUTION  
Rev. 0 | Page 5 of 20  
 
ADP160/ADP161  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
5
VIN  
GND  
EN  
1
2
3
VOUT  
ADP160  
TOP VIEW  
(Not to Scale)  
4
NC  
NC = NO CONNECT  
Figure 4. 5-Lead TSOT, Fixed Output Pin Configuration, ADP160  
Table 5. 5-Lead TSOT Pin Function Descriptions, ADP160  
Pin No.  
Mnemonic  
Description  
1
2
3
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic startup,  
connect EN to VIN.  
4
5
NC  
VOUT  
No Connect. This pin is not connected internally.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
5
VIN  
GND  
EN  
1
2
3
VOUT  
ADP161  
TOP VIEW  
(Not to Scale)  
4
ADJ  
Figure 5. 5-Lead TSOT, Adjustable Output Pin Configuration, ADP161  
Table 6. 5-Lead TSOT Pin Function Descriptions, ADP161  
Pin No.  
Mnemonic  
Description  
1
2
3
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic startup,  
connect EN to VIN.  
4
5
ADJ  
Output Voltage Adjust Pin. Connect the midpoint of the voltage divider between VOUT and GND to this pin to set  
the output voltage.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
VOUT  
Rev. 0 | Page 6 of 20  
 
ADP160/ADP161  
1
2
A
B
VIN  
VOUT  
ADP160  
EN  
GND  
TOP VIEW  
(Not to Scale)  
Figure 6. 4-Ball WLCSP Pin Configuration, ADP160  
Table 7. 4-Ball WLCSP Pin Function Descriptions, ADP160  
Pin No.  
Mnemonic  
Description  
A1  
B1  
VIN  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
A2  
B2  
VOUT  
GND  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
Ground.  
Rev. 0 | Page 7 of 20  
ADP160/ADP161  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = ꢀ.8 V, VOUT = ꢀ.ꢀ V, IOUT = 1 mA, CIN = COUT = 1 μF, TA = 25°C, unless otherwise noted.  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
100  
10  
1
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
NO LOAD  
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
0.1  
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 7. Output Voltage (VOUT) vs. Junction Temperature  
Figure 10. Ground Current vs. Junction Temperature  
100  
10  
1
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 11. Ground Current vs. Load Current (ILOAD  
)
Figure 8. Output Voltage (VOUT) vs. Load Current (ILOAD  
)
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
100  
10  
1
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 150mA  
NO LOAD  
LOAD = 1µA  
LOAD = 100µA  
LOAD = 1mA  
0.1  
3.7  
3.7  
3.9  
4.1  
4.3  
4.5  
V
4.7  
(V)  
4.9  
5.1  
5.3  
5.5  
3.9  
4.1  
4.3  
4.5  
V
4.7  
(V)  
4.9  
5.1  
5.3  
5.5  
IN  
IN  
Figure 9. Output Voltage (VOUT) vs. Input Voltage  
Figure 12. Ground Current vs. Input Voltage (VIN  
)
Rev. 0 | Page 8 of 20  
 
ADP160/ADP161  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
140  
120  
100  
80  
V
V
V
V
V
V
= 2.9V  
= 3.2V  
= 3.8V  
= 4.1V  
= 4.7V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
60  
40  
I
I
I
I
I
I
= 1mA  
= 5mA  
= 10mA  
= 50mA  
= 100mA  
= 150mA  
GND  
GND  
GND  
GND  
GND  
GND  
20  
0
3.1  
–40  
–5  
25  
85  
125  
3.2  
3.3  
3.4  
3.5  
3.6  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 16. Ground Current vs. Input Voltage(VIN) in Dropout  
Figure 13. Shutdown Current vs. Temperature at Various Input Voltages  
0
250  
LOAD = 200mA  
LOAD = 100mA  
–10  
V
= 2V  
OUT  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 100µA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
200  
150  
100  
50  
V
= 3.3V  
OUT  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 17. Power Supply Rejection Ratio vs. Frequency, VOUT = 1.2 V, VIN = 2.2 V  
Figure 14. Dropout Voltage vs. Load Current  
0
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
–10  
–20  
LOAD = 100µA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
V
V
V
V
V
= 1mA  
= 5mA  
= 10mA  
= 50mA  
= 100mA  
= 250mA  
DROP  
DROP  
DROP  
DROP  
DROP  
DROP  
10  
100  
1k  
10k  
100k  
1M  
10M  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 18. Power Supply Rejection Ratio vs. Frequency, VOUT = 2.5 V, VIN = 3.5 V  
Figure 15. Output Voltage (VOUT) vs. Input Voltage (in Dropout)  
Rev. 0 | Page 9 of 20  
ADP160/ADP161  
0
1k  
100  
10  
LOAD = 200mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
V
V
V
= 3.3V  
= 2.5V  
= 1.2V  
OUT  
OUT  
OUT  
–10  
ADJ 3.3V  
–20  
LOAD = 100µA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
Figure 19. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V, VIN = 4.3 V  
Figure 22. Output Noise vs. Load Current and Output Voltage,  
VIN = 5 V, COUT = 1 μF  
0
10  
LOAD = 3.3V/200mA  
LOAD = 2.5V/200mA  
LOAD = 1.2V/200mA  
LOAD = 3.3V/1mA  
V
V
V
= 1.2V  
= 3.3V  
= 2.5V  
OUT  
OUT  
OUT  
–10  
–20  
LOAD = 2.5V/1mA  
LOAD = 1.2V/1mA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
0.1  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Power Supply Rejection Ratio vs. Frequency  
Figure 23. Output Noise Spectral Density, VIN = 5 V, ILOAD = 10 mA, COUT = 1 μF  
Various Output Voltages and Load Currents, VIN − VOUT = 1 V  
0
T
LOAD = 200mA  
LOAD = 100mA  
LOAD CURRENT  
–10  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 100µA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
2
V
OUT  
CH1 100mA CH2 200mV  
M200µs  
A CH1  
62mA  
10  
100  
1k  
10k  
100k  
1M  
10M  
T
10.40%  
FREQUENCY (Hz)  
Figure 24. Load Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA to 150 mA,  
200 ns Rise Time, CH1 = Load Current, CH2 = VOUT  
Figure 21. Adjustable ADP161 Power Supply Rejection Ratio vs. Frequency,  
VOUT = 3.3 V, VIN = 4.3 V  
Rev. 0 | Page 10 of 20  
ADP160/ADP161  
T
T
LOAD CURRENT  
V
IN  
1
V
OUT  
V
OUT  
2
1
2
CH1 20mA CH2 5mV  
M200µs  
A CH1  
24mA  
CH1 1V Ω  
CH2 20mV  
M200µs  
A CH1  
4.56V  
T
10.40%  
T 10.20%  
Figure 25. Load Transient Response, CIN, COUT = 1 ꢀF, ILOAD = 1 mA to 50 mA,  
200 ns Rise Time, CH1 = Load Current, CH2 = VOUT  
Figure 27. Line Transient Response, VIN = 4 V to 5 V , CIN, - 1ꢀF, COUT =10 ꢀF,  
ILOAD = 150 mA, CH1 = VIN, CH2 = VOUT  
T
V
IN  
V
OUT  
2
1
CH1 1V Ω  
CH2 20mV  
M200µs  
A CH1  
4.34V  
T
10.20%  
Figure 26. Line Transient Response, VIN = 4 V to 5 V, CIN, COUT = 1 ꢀF,  
ILOAD = 150 mA, CH1 = VIN, CH2 = VOUT  
Rev. 0 | Page 11 of 20  
ADP160/ADP161  
THEORY OF OPERATION  
The ADP160/ADP161 are ultralow quiescent current, low dropout  
linear regulators that operate from 2.2 V to 5.5 V and can provide  
up to 150 mA of output current. Drawing only 560 nA (typical)  
at no load and a low 42 μA of quiescent current (typical) at full  
load makes the ADP160 ideal for battery-operated portable  
equipment. Shutdown current consumption is typically 50 nA.  
Internally, the ADP160 consists of a reference, an error amplifier,  
a feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device, which is controlled  
by the error amplifier. The error amplifier compares the reference  
voltage with the feedback voltage from the output and amplifies  
the difference. If the feedback voltage is lower than the reference  
voltage, the gate of the PMOS device is pulled lower, allowing  
more current to pass and increasing the output voltage. If the  
feedback voltage is higher than the reference voltage, the gate  
of the PMOS device is pulled higher, allowing less current to pass  
and decreasing the output voltage.  
Using new innovative design techniques, the ADP160 provides  
ultralow quiescent current and superior transient performance  
for digital and RF applications. The ADP160 is also optimized  
for use with small 1 μF ceramic capacitors.  
VIN  
VOUT  
The adjustable ADP161 has an output voltage range of 1.0 V to  
4.2 V. The output voltage is set by the ratio of two external resistors,  
as shown in Figure 2. The device servos the output to maintain  
the voltage at the ADJ pin at 1.0 V referenced to ground. The  
current in R1 is then equal to 1.0 V/R2, and the current in R1 is  
the current in R2 plus the ADJ pin bias current. The ADJ pin  
bias current, 10 nA at 25°C, flows through R1 into the ADJ pin.  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
R1  
R2  
R3  
PROTECT  
EN  
SHUTDOWN  
REFERENCE  
The output voltage can be calculated using the equation:  
ADP160  
Figure 28. Internal Block Diagram, Fixed Output with Output Discharge Function  
V
OUT = 1.0 V(1 + R1/R2) + (ADJI-BIAS)(R1)  
The value of R1 should be less than 200 kΩ to minimize errors in  
the output voltage caused by the ADJ pin bias current. For example,  
when R1 and R2 each equal 200 kΩ, the output voltage is 2.0 V.  
The output voltage error introduced by the ADJ pin bias current is  
2 mV or 0.10ꢁ, assuming a typical ADJ pin bias current of  
10 nA at 25°C.  
VIN  
VOUT  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
R1  
PROTECT  
Note that in shutdown, the output is turned off and the divider  
current is zero.  
ADJ  
EN  
SHUTDOWN  
REFERENCE  
The ADP160/ADP161 also include an output discharge resistor to  
force the output voltage to zero when the LDO is disabled. This  
ensures that the output of the LDO is always in a well-defined state,  
whether it is enabled or not.  
ADP161  
Figure 29. Internal Block Diagram, Adjustable Output with  
Output Discharge Function  
The ADP160 is available in 15 output voltage options, ranging from  
1.2 V to 4.2 V. The ADP160/ADP161 use the EN pin to enable  
and disable the VOUT pin under normal operating conditions.  
When EN is high, VOUT turns on, and when EN is low, VOUT  
turns off. For automatic startup, EN can be tied to VIN.  
Rev. 0 | Page 12 of 20  
 
ADP160/ADP161  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the ADP160/  
ADP161, as long as they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufactured  
with a variety of dielectrics, each with different behavior over  
temperature and applied voltage. Capacitors must have a dielectric  
adequate to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R dielectrics  
with a voltage rating of 6.ꢀ V or 10 V are recommended. Y5V  
and Z5U dielectrics are not recommended due to their poor  
temperature and dc bias characteristics.  
Output Capacitor  
The ADP160/ADP161 are designed for operation with small,  
space-saving ceramic capacitors, but functions with most  
commonly used capacitors as long as care is with regard to the  
effective series resistance (ESR) value. The ESR of the output  
capacitor affects stability of the LDO control loop. A minimum  
of 1 μF capacitance with an ESR of 1 ꢂ or less is recommended  
to ensure stability of the ADP160/ADP161. Transient response  
to changes in load current is also affected by output capacitance.  
Using a larger value of output capacitance improves the transient  
response of the ADP160/ADP161 to large changes in load current.  
Figure ꢀ0 and Figure ꢀ1 show the transient responses for output  
capacitance values of 1 μF and 10 μF, respectively.  
Figure ꢀ2 depicts the capacitance vs. voltage bias characteristic  
of a 0402, 1 μF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the X5R  
dielectric is about 15ꢁ over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
T
LOAD CURRENT  
1
1.0  
0.8  
0.6  
0.4  
0.2  
0
2
V
OUT  
CH1 100mA CH2 200mV  
M200µs  
T
A CH1  
62mA  
10.40%  
Figure 30. Output Transient Response, COUT = 1 μF,  
CH1 = Load Current, CH2 = VOUT  
T
0
2
4
6
8
10  
LOAD CURRENT  
VOLTAGE  
Figure 32. Capacitance vs. Voltage Characteristic  
1
Use Equation 1 to determine the worst-case capacitance accounting  
for capacitor variation over temperature, component tolerance,  
and voltage.  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
2
where:  
V
OUT  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15ꢁ for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10ꢁ, and  
CH1 100mA CH2 200mV  
M200µs  
A CH1  
74mA  
T
10.00%  
Figure 31. Output Transient Response, COUT = 10 μF,  
CH1 = Load Current, CH2 = VOUT  
C
BIAS is 0.94 μF at 1.8 V, as shown in Figure ꢀ2.  
Substituting these values in Equation 1 yields  
EFF = 0.94 ꢃF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Input Bypass Capacitor  
Connecting a 1 μF capacitor from VIN to GND reduces the circuit  
sensitivity to the printed circuit board (PCB) layout, especially  
when long input traces or high source impedance are encountered.  
If greater than 1 μF of output capacitance is required, the input  
capacitor should be increased to match it.  
C
Therefore, the capacitor chosen in this example meets  
the minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Rev. 0 | Page 13 of 20  
 
 
 
 
ADP160/ADP161  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
To guarantee the performance of the ADP160/ADP161, it is  
imperative that the effects of dc bias, temperature, and tolerances  
on the behavior of the capacitors are evaluated for each.  
3.3V  
2.5V  
ENABLE FEATURE  
The ADP160/ADP161 use the EN pin to enable and disable the  
VOUT pin under normal operating conditions. As shown in  
Figure ꢀꢀ, when a rising voltage on EN crosses the active threshold,  
VOUT turns on. When a falling voltage on EN crosses the inactive  
threshold, VOUT turns off.  
EN  
1.2V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
TIME (µs)  
Figure 35. Typical Start-Up Behavior  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.2V  
EN  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
EN VOLTAGE (V)  
Figure 33. Typical EN Pin Operation  
1.2V  
As shown in Figure ꢀꢀ, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
0
200  
400  
600  
TIME (µs)  
800  
1000  
The EN pin active/inactive thresholds are derived from the VIN  
voltage. Therefore, these thresholds vary with changing input  
voltage. Figure ꢀ4 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.2 V to 5.5 V.  
1.1  
Figure 36. Typical Shutdown Behavior  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP160/ADP161 are protected against damage due to  
excessive power dissipation by current and thermal overload  
protection circuits. The ADP160/ADP161 are designed to  
current limit when the output load reaches ꢀ20 mA (typical).  
When the output load exceeds ꢀ20 mA, the output voltage is  
reduced to maintain a constant current limit.  
1.0  
0.9  
EN RISE  
0.8  
Thermal overload protection is included, which limits the junction  
temperature to a maximum of 150°C (typical). Under extreme  
conditions (that is, high ambient temperature and power dissipation),  
when the junction temperature starts to rise above 150°C, the  
output is turned off, reducing the output current to zero. When  
the junction temperature drops below 1ꢀ5°C, the output is turned  
on again and the output current is restored to its nominal value.  
EN FALL  
0.7  
0.6  
0.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
Figure 34. Typical EN Pin Thresholds vs. Input Voltage  
The start-up and shutdown behavior of the ADP160 is shown in  
Figure ꢀ5 and Figure ꢀ6.  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
ADP160/ADP161  
Consider the case where a hard short from OUT to ground occurs.  
At first, the ADP160/ADP161 current limits so that only ꢀ20 mA is  
conducted into the short. If self-heating of the junction is great  
enough to cause its temperature to rise above 150°C, thermal  
shutdown activates, turning off the output and reducing the  
output current to zero. As the junction temperature cools and  
drops below 1ꢀ5°C, the output turns on and conducts ꢀ20 mA  
into the short, again causing the junction temperature to rise  
above 150°C. This thermal oscillation between 1ꢀ5°C and  
150°C causes a current oscillation between ꢀ20 mA and 0 mA  
that continues as long as the short remains at the output.  
Table 9. Typical ΨJB Values  
ΨJB (°C/W)  
TSOT  
WLCSP  
42.8  
58.4  
The junction temperature of the ADP160/ADP161 can be  
calculated from the following equation:  
TJ = TA + (PD × θJA)  
(2)  
(ꢀ)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so junction temperatures do not exceed 125°C.  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
where:  
LOAD is the load current.  
GND is the ground current.  
I
I
V
THERMAL CONSIDERATIONS  
IN and VOUT are input and output voltages, respectively.  
In most applications, the ADP160/ADP161 do not dissipate  
much heat due to their high efficiency. However, in applications  
with high ambient temperature and high supply voltage to output  
voltage differential, the heat dissipated in the package is large  
enough that it can cause the junction temperature of the die to  
exceed the maximum junction temperature of 125°C.  
Power dissipation due to ground current is quite small and can be  
ignored. Therefore, the junction temperature equation simplifies to  
the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
the junction temperature does not rise above 125°C. Figure ꢀ7 to  
Figure 44 show the junction temperature calculations for the  
different ambient temperatures, load currents, VIN-to-VOUT  
differentials, and areas of PCB copper.  
When the junction temperature exceeds 150°C, the converter enters  
thermal shutdown. It recovers only after the junction temperature  
has decreased below 1ꢀ5°C to prevent any permanent damage.  
Therefore, thermal analysis for the chosen application is very  
important to guarantee reliable performance over all conditions.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
In the case where the board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the junction  
temperature rise (see Figure 45 and Figure 46). Maximum junction  
temperature (TJ) is calculated from the board temperature (TB)  
and power dissipation (PD) using the following formula:  
To guarantee reliable operation, the junction temperature of the  
ADP160/ADP161 must not exceed 125°C. To ensure the junction  
temperature stays below this maximum value, the user needs to  
be aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistances between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds that are used and the amount  
of copper used to solder the package GND pins to the PCB.  
Table 8 shows the typical θJA values of the 5-lead TSOT and the  
4-ball WLCSP for various PCB copper sizes. Table 9 shows the  
typical ΨJB value of the 5-lead TSOT and 4-ball WLCSP.  
TJ = TB + (PD × ΨJB)  
(5)  
The typical value of ΨJB is 58°C/W for the 4-ball WLCSP package  
and 4ꢀ°C/W for the 5-lead TSOT package.  
140  
MAXIMUM JUNCTION TEMPERATURE  
120  
100  
80  
Table 8. Typical θJA Values  
60  
θJA (°C/W)  
Copper Size (mm2)  
TSOT  
170  
152  
146  
134  
131  
WLCSP  
260  
159  
157  
153  
40  
01  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
50  
100  
300  
500  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
IN  
OUT  
151  
Figure 37. 500 mm2 of PCB Copper, WLCSP, TA = 25°C  
1 Device soldered to minimum size pin traces.  
Rev. 0 | Page 15 of 20  
 
 
 
 
ADP160/ADP161  
140  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
4.8  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 38. 100 mm2 of PCB Copper, WLCSP, TA = 50°C  
Figure 41. 500 mm2 of PCB Copper, TSOT, TA = 25°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
V
IN  
OUT  
IN  
OUT  
Figure 39. 500 mm2 of PCB Copper, WLCSP, TA = 85°C  
Figure 42. 100 mm2 of PCB Copper, TSOT, TA = 25°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
0.3  
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
V
V
IN  
OUT  
IN  
OUT  
Figure 40. 100 mm2 of PCB Copper,WLCSP, TA = 50°C  
Figure 43. 500 mm2 of PCB Copper, TSOT, TA = 50°C  
Rev. 0 | Page 16 of 20  
ADP160/ADP161  
140  
120  
100  
80  
140  
120  
100  
80  
MAXIMUM JUNCTION TEMPERATURE  
MAXIMUM JUNCTION TEMPERATURE  
60  
60  
40  
40  
20  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
V
IN  
OUT  
IN  
OUT  
Figure 44. 100 mm2 of PCB Copper, TSOT, TA = 50°C  
Figure 46. TSOT, TA = 85°C  
140  
120  
100  
80  
PCB LAYOUT CONSIDERATIONS  
MAXIMUM JUNCTION TEMPERATURE  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP160/ADP161.  
However, as listed in Table 8, a point of diminishing returns is  
reached eventually, beyond which an increase in the copper size  
does not yield significant heat dissipation benefits.  
60  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0402 or 060ꢀ size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
40  
20  
I
I
I
= 1mA  
= 10mA  
= 50mA  
I
I
I
= 100mA  
= 150mA  
= 200mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0
0.3  
0.8  
1.3  
1.8  
2.3  
– V  
2.8  
(V)  
3.3  
3.8  
4.3  
4.8  
V
IN  
OUT  
Figure 45. WLCSP, TA = 85°C  
Rev. 0 | Page 17 of 20  
 
 
 
ADP160/ADP161  
Figure 47. Example of 5-Lead TSOT PCB Layout  
Figure 48. Example of 4-Ball WLCSP PCB Layout  
Rev. 0 | Page 18 of 20  
ADP160/ADP161  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
0.95 BSC  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 49. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
0.640  
0.595  
0.550  
1.000  
0.965 SQ  
0.925  
0.370  
0.355  
0.340  
SEATING  
PLANE  
2
1
A
B
BALL A1  
IDENTIFIER  
0.340  
0.320  
0.300  
0.50  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.270  
0.240  
0.210  
0.030 NOM  
COPLANARITY  
Figure 50.4-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-4-1)  
Dimensions shown in millimeters  
Rev. 0 | Page 19 of 20  
 
ADP160/ADP161  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage (V)  
Package Description  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
Evaluation board kit  
Package Option  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
CB-4-1  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
Branding  
5K  
5L  
5N  
5P  
5Q  
5R  
5S  
5T  
ADP160ACBZ-1.2-R7  
ADP160ACBZ-1.5-R7  
ADP160ACBZ-1.8-R7  
ADP160ACBZ-2.1-R7  
ADP160ACBZ-2.5-R7  
ADP160ACBZ-2.75-R7  
ADP160ACBZ-2.8-R7  
ADP160ACBZ-2.85-R7  
ADP160ACBZ-3.0-R7  
ADP160ACBZ-3.3-R7  
ADP160ACBZ-4.2-R7  
ADP160AUJZ-1.2-R7  
ADP160AUJZ-1.5-R7  
ADP160AUJZ-1.8-R7  
ADP160AUJZ-2.5-R7  
ADP160AUJZ-2.8-R7  
ADP160AUJZ-3.0-R7  
ADP160AUJZ-3.3-R7  
ADP160AUJZ-4.2-R7  
ADP161AUJZ-R7  
1.2  
1.5  
1.8  
2.1  
2.5  
2.75  
2.8  
2.85  
3.0  
3.3  
4.2  
1.2  
1.5  
1.8  
2.5  
2.8  
3.0  
3.3  
5U  
5V  
6U  
LDQ  
LDR  
LE0  
LFZ  
LG0  
Y2U  
LG1  
LGY  
LHW  
4.2  
Adjustable  
ADP160UJZ-REDYKIT  
1 Z = RoHS Compliant Part.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08628-0-6/10(0)  
Rev. 0 | Page 20 of 20  
 
 

相关型号:

ADP160AUJZ-2.7-R7

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulators
ADI

ADP160AUJZ-2.8-R7

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI

ADP160AUJZ-3.0-R7

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI

ADP160AUJZ-3.3-R7

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI

ADP160AUJZ-4.2-R7

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI

ADP160UJZ-REDYKIT

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI

ADP160_12

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulators
ADI

ADP161

Ultralow Quiescent Current, 150 mA, CMOS Linear Regulator
ADI

ADP1610

1.2 MHz DC-DC Step-Up Switching Converter
ADI

ADP1610ARMZ-R7

1.2 MHz DC-DC Step-Up Switching Converter
ADI

ADP1611

20 V,1.2 MHz Step-Up DC-to-DC Switching Converter
ADI

ADP1611-EVAL

20 V,1.2 MHz Step-Up DC-to-DC Switching Converter
ADI