ADP1755 [ADI]

CMOS Linear Regulator;
ADP1755
型号: ADP1755
厂家: ADI    ADI
描述:

CMOS Linear Regulator

文件: 总19页 (文件大小:935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 A, Low VIN, Low Noise,  
CMOS Linear Regulator  
ADP1763  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
3 A maximum output current  
Low input voltage supply range  
ADP1763  
V
= 1.5V  
V
= 1.8V  
OUT  
IN  
VIN  
VOUT  
SENSE  
EN  
C
10µF  
C
OUT  
10µF  
IN  
VIN = 1.10 V to 1.98 V, no external bias supply required  
R
ON  
PULL-UP  
Fixed output voltage range: VOUT_FIXED = 0.9 V to 1.5 V  
Adjustable output voltage range: VOUT_ADJ = 0.5 V to 1.5 V  
Ultralow noise: 2 μV rms, 100 Hz to 100 kHz  
Noise spectral density  
100k  
OFF  
PG  
PG  
SS  
VADJ  
C
SS  
VREG  
REFCAP  
10nF  
C
C
1µF  
REF  
1µF  
GND  
REG  
4 nV/√Hz at 10 kHz  
3 nV/√Hz at 100 kHz  
Figure 1. Fixed Output Operation  
Low dropout voltage: 95 mV typical at 3 A load  
Operating supply current: 4.5 mA typical at no load  
1.5ꢀ fixed output voltage accuracy over line, load, and  
temperature  
Excellent power supply rejection ratio (PSRR) performance  
59 dB typical at 10 kHz at 3 A load  
43 dB typical at 100 kHz at 3 A load  
Excellent load/line transient response  
Soft start to reduce inrush current  
Optimized for small 10 μF ceramic capacitors  
Current-limit and thermal overload protection  
Power-good indicator  
ADP1763  
V
= 1.8V  
R
V
= 1.5V  
C
OUT  
IN  
OUT  
VIN  
VOUT  
C
10µF  
IN  
10µF  
SENSE  
ON  
PULL-UP  
100k  
EN  
OFF  
PG  
PG  
SS  
VADJ  
C
R
VREG  
REFCAP  
SS  
ADJ  
10nF  
10kΩ  
C
C
REF  
REG  
1µF  
GND  
1µF  
Figure 2. Adjustable Output Operation  
Precision enable  
16-lead, 3 mm × 3 mm LFCSP package  
APPLICATIONS  
Table 1. Related Devices  
Input  
Voltage Current  
Maximum Fixed/  
Regulation to noise sensitive applications such as radio  
frequency (RF) transceivers, analog-to-digital converter  
(ADC) and digital-to-analog converter (DAC) circuits,  
phase-locked loops (PLLs), voltage controlled oscillators  
(VCOs) and clocking integrated circuits  
Field-programmable gate array (FPGA) and digital signal  
processor (DSP) supplies  
Medical and healthcare  
Device  
Adjustable  
Package  
ADP1761 1.10 V to 1 A  
1.98 V  
ADP1762 1.10 V to 2 A  
1.98 V  
ADP1740/ 1.6 V to  
ADP1741 3.6 V  
ADP1752/ 1.6 V to  
ADP1753 3.6 V  
Fixed/adjustable 16-lead  
LFCSP  
Fixed/adjustable 16-lead  
LFCSP  
2 A  
Fixed/adjustable 16-lead  
LFCSP  
0.8 A  
1.2 A  
Fixed/adjustable 16-lead  
LFCSP  
Fixed/adjustable 16-lead  
LFCSP  
Industrial and instrumentation  
ADP1754/ 1.6 V to  
ADP1755 3.6 V  
GENERAL DESCRIPTION  
The ADP1763 is a low noise, low dropout (LDO) linear regulator. It  
is designed to operate from a single input supply with an input  
voltage as low as 1.10 V without the requirement of an external bias  
supply to increase efficiency and provide up to 3 A of output current.  
The ADP1763 is available in fixed output voltages ranging from  
0.9 V to 1.5 V. The output of the adjustable output model can be  
set from 0.5 V to 1.5 V through an external resistor connected  
between VADJ and ground.  
The low 95 mV typical dropout voltage at a 3 A load allows the  
ADP1763 to operate with a small headroom while maintaining  
regulation and providing better efficiency.  
The ADP1763 has an externally programmable soft start time by  
connecting a capacitor to the SS pin. Short-circuit and thermal  
overload protection circuits prevent damage in adverse conditions.  
The ADP1763 is available in a small 16-lead LFCSP package for the  
smallest footprint solution to meet a variety of applications.  
The ADP1763 is optimized for stable operation with small 10 μF  
ceramic output capacitors. The ADP1763 delivers optimal  
transient performance with minimal board area.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP1763* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Press  
• Analog Devices’ Low Dropout Regulators Enable Cleaner  
and Faster Communications  
Evaluation Kits  
• ADP1761/ADP1762/ADP1763 Evaluation Board  
Design Resources  
• ADP1763 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
• ADP1763: 3 A, Low VIN, Low Noise, CMOS Linear  
Regulator Data Sheet  
User Guides  
Discussions  
View all ADP1763 EngineerZone Discussions  
• UG-954: Evaluating the ADP1761/ADP1762/ADP1763  
Low VIN, Low Noise, CMOS Linear Regulators  
Tools and Simulations  
• ADI Linear Regulator Design Tool and Parametric Search  
Sample and Buy  
Visit the product page to see pricing options  
• ADIsimPower™ Voltage Regulator Design Tool  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADP1763  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Soft Start Function ..................................................................... 11  
Adjustable Output Voltage........................................................ 12  
Enable Feature ............................................................................ 12  
Power-Good (PG) Feature ........................................................ 12  
Applications Information.............................................................. 13  
Capacitor Selection .................................................................... 13  
Undervoltage Lockout ............................................................... 14  
Current-Limit and Thermal Overload Protection................. 14  
Paralleling ADP1763 for High Current Applications ............ 14  
Thermal Considerations............................................................ 15  
PCB Layout Considerations...................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuits............................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor: Recommended Specifications.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
4/16—Revision 0: Initial Version  
Rev. 0 | Page 2 of 18  
 
Data Sheet  
ADP1763  
SPECIFICATIONS  
VIN = VOUT + 0.2 V or VIN = 1.1 V, whichever is greater, ILOAD = 10 mA, CIN = 10 μF, COUT = 10 μF, CREF = 1 μF, CREG = 1 μF, TA = 25°C,  
Minimum and maximum limits at TJ = −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
INPUT VOLTAGE SUPPLY RANGE  
CURRENT  
VIN  
TJ = −40°C to +125°C  
1.10  
1.98  
V
Operating Supply Current  
IGND  
ILOAD = 0 μA  
ILOAD = 10 mA  
ILOAD = 100 mA  
ILOAD = 3 A  
EN = GND  
TJ = −40°C to +85°C,  
VIN = (VOUT + 0.2 V) to 1.98 V  
TJ = 85°C to 125°C,  
VIN = (VOUT + 0.2 V) to 1.98 V  
4.5  
4.9  
5.5  
12  
2
8
8
8.5  
16  
mA  
mA  
mA  
mA  
μA  
Shutdown Current  
OUTPUT NOISE1  
IGND-SD  
180  
800  
μA  
μA  
OUTNOISE  
10 Hz to 100 kHz, VIN = 1.1 V, VOUT = 0.9 V  
100 Hz to 100 kHz, VIN = 1.1 V, VOUT = 0.9 V  
10 Hz to 100 kHz, VIN = 1.5 V, VOUT = 1.3 V  
100 Hz to 100 kHz, VIN = 1.5 V, VOUT = 1.3 V  
10 Hz to 100 kHz, VIN = 1.7 V, VOUT = 1.5 V  
100 Hz to 100 kHz, VIN = 1.7 V, VOUT = 1.5 V  
VOUT = 0.9 V to 1.5 V, ILOAD = 100 mA  
At 10 kHz  
12  
2
15  
2
21  
2
μV rms  
μV rms  
μV rms  
μV rms  
μV rms  
μV rms  
Noise Spectral Density  
OUTNSD  
PSRR  
4
3
nV/√Hz  
nV/√Hz  
At 100 kHz  
POWER SUPPLY REJECTION RATIO1  
ILOAD = 3 A, modulated VIN  
10 kHz, VOUT = 1.3 V, VIN = 1.7 V  
100 kHz, VOUT = 1.3 V, VIN = 1.7 V  
1 MHz, VOUT = 1.3 V, VIN = 1.7 V  
10 kHz, VOUT = 0.9 V, VIN = 1.3 V  
100 kHz, VOUT = 0.9 V, VIN = 1.3 V  
1 MHz, VOUT = 0.9 V, VIN = 1.3 V  
59  
43  
37  
62  
45  
33  
dB  
dB  
dB  
dB  
dB  
dB  
OUTPUT VOLTAGE  
Output Voltage Range  
TA = 25°C  
VOUT_FIXED  
VOUT_ADJ  
VOUT  
0.9  
0.5  
−0.5  
−1  
1.5  
1.5  
+0.5  
+1.5  
V
V
%
%
Fixed Output Voltage Accuracy  
ILOAD = 100 mA, TA = 25°C  
10 mA < ILOAD < 3 A, VIN = (VOUT + 0.2 V) to  
1.98 V, TJ = 0°C to 85°C  
10 mA < ILOAD < 3 A, VIN = (VOUT + 0.2 V) to  
1.98 V  
−1.5  
+1.5  
%
ADJUSTABLE PIN CURRENT  
IADJ  
AD  
TA = 25°C  
VIN = (VOUT + 0.2 V) to 1.98 V  
TA = 25°C  
49.5  
48.8  
50.0 50.5  
50.0 51.0  
3.0  
μA  
μA  
ADJUSTABLE OUTPUT VOLTAGE GAIN FACTOR  
VIN = (VOUT + 0.2 V) to 1.98 V  
2.95  
3.055  
REGULATION  
Line Regulation  
Load Regulation2  
DROPOUT VOLTAGE3  
∆VOUT/∆VIN  
∆VOUT/∆IOUT ILOAD = 10 mA to 3 A  
VIN = (VOUT + 0.2 V) to 1.98 V  
−0.15  
+0.15 %/V  
0.12 0.45  
%/A  
mV  
mV  
ms  
μA  
A
VDROPOUT  
ILOAD = 100 mA, VOUT ≥ 1.2 V  
12  
95  
0.6  
10  
4
23  
ILOAD = 3 A, VOUT ≥ 1.2 V  
CSS = 10 nF, VOUT = 1.3 V  
1.1 V ≤ VIN ≤ 1.98 V  
145  
START-UP TIME1, 4  
tSTART-UP  
ISS  
SOFT START CURRENT  
CURRENT-LIMIT THRESHOLD5  
8
12  
5
ILIMIT  
3.3  
Rev. 0 | Page 3 of 18  
 
ADP1763  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
THERMAL SHUTDOWN  
Threshold  
Hysteresis  
TSSD  
TSSD-HYS  
TJ rising  
150  
15  
°C  
°C  
POWER-GOOD (PG) OUTPUT THRESHOLD  
Output Voltage  
Falling  
PGFALL  
PGRISE  
1.1 V ≤ VIN ≤ 1.98 V  
1.1 V ≤ VIN ≤ 1.98 V  
−7.5  
−5  
%
%
Rising  
PG OUTPUT  
Output Voltage Low  
Leakage Current  
Delay1  
PGLOW  
IPG-LKG  
PGDELAY  
1.1 V ≤ VIN ≤ 1.98 V, IPG ≤ 1 mA  
1.1 V ≤ VIN ≤ 1.98 V  
ENRISING to PGRISING  
0.35  
1
V
μA  
ms  
0.01  
0.75  
PRECISION EN INPUT  
Logic Input  
1.1 V ≤ VIN ≤ 1.98 V  
High  
Low  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
tIEN-DLY  
UVLO  
595  
550  
625  
580  
45  
0.01  
100  
690  
630  
mV  
mV  
mV  
μA  
μs  
Input Logic Hysteresis  
Input Leakage Current  
Input Delay Time  
UNDERVOLTAGE LOCKOUT  
Input Voltage  
Rising  
EN = VIN or GND  
From EN rising from 0 V to VIN to 0.1 × VOUT  
1
UVLORISE  
UVLOFALL  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
1.01 1.06  
0.93  
80  
V
V
mV  
Falling  
Hysteresis  
0.87  
1 Guaranteed by design and characterization; not production tested.  
2 Based on an endpoint calculation using 10 mA and 3 A loads.  
3 Dropout voltage is defined as the input to output voltage differential when the input voltage is set to the nominal output voltage, which applies only for output  
voltages above 1.1 V.  
4 Start-up time is defined as the time from the rising edge of EN to VOUT being at 90% of its nominal value.  
5 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 1.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 1.0 V, or 0.9 V.  
INPUT AND OUTPUT CAPACITOR: RECOMMENDED SPECIFICATIONS  
Table 3.  
Parameter  
CAPACITANCE1  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
TA = −40°C to +125°C  
Input  
Output  
Regulator  
Reference  
CIN  
7.0  
7.0  
0.7  
0.7  
10  
10  
1
μF  
μF  
μF  
μF  
COUT  
CREG  
CREF  
RESR  
1
CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)  
TA = −40°C to +125°C  
CIN, COUT  
CREG, CREF  
0.001  
0.001  
0.5  
0.2  
Ω
Ω
1 The minimum input and output capacitance must be >7.0 μF over the full range of the operating conditions. Consider the full range of the operating conditions in the  
application during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended. Y5V and Z5U  
capacitors are not recommended for use with any LDO.  
Rev. 0 | Page 4 of 18  
 
Data Sheet  
ADP1763  
ABSOLUTE MAXIMUM RATINGS  
The junction to ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending on  
PCB material, layout, and environmental conditions. The specified  
values of θJA are based on a 4-layer, 4 in × 3 in circuit board. For  
details about board construction, refer to JEDEC JESD51-7.  
Table 4.  
Parameter  
Rating  
VIN to GND  
EN to GND  
VOUT to GND  
SENSE to GND  
VREG to GND  
REFCAP to GND  
VADJ to GND  
SS to GND  
−0.3 V to +2.16 V  
−0.3 V to +3.96 V  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to VIN  
−0.3 V to +3.96 V  
−65°C to +150°C  
−40°C to +125°C  
125°C  
ΨJB is the junction to board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
a calculation using a 4-layer board. The JEDEC JESD51-12  
document, Guidelines for Reporting and Using Package Thermal  
Information, states that thermal characterization parameters are  
not the same as thermal resistances. ΨJB measures the component  
power flowing through multiple thermal paths rather than a single  
path, as in thermal resistance (θJB). Therefore, ΨJB thermal paths  
include convection from the top of the package as well as radiation  
from the package, factors that make ΨJB more useful in real-world  
applications. The maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD), using  
the following formula:  
PG to GND  
Storage Temperature Range  
Operating Temperature Range  
Operating Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
300°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TJ = TB + (PD × ΨJB)  
Refer to the JEDEC JESD51-8 and JESD51-12 documents for  
more detailed information about ΨJB.  
THERMAL DATA  
THERMAL RESISTANCE  
Absolute maximum ratings apply only individually, not in  
combination. The ADP1763 may be damaged when junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that the junction temperature is within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature may need to be derated.  
θJA and ΨJB are specified for the worst case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 5. Thermal Resistance for a 4-Layer 6400 mm2 Copper Size  
Package Type  
θJA  
ΨJB  
Unit  
16-Lead LFCSP  
56  
28.4  
°C/W  
In applications with moderate power dissipation and low printed  
circuit board (PCB) thermal resistance, the maximum ambient  
temperature can exceed the maximum limit as long as the junction  
temperature is within specification limits. The junction temperature  
(TJ) of the device is dependent on the ambient temperature (TA),  
the power dissipation of the device (PD), and the junction to  
ambient thermal resistance of the package (θJA). TJ is calculated  
using the following formula:  
ESD CAUTION  
TJ = TA + (PD × θJA)  
The junction to ambient thermal resistance (θJA) of the package  
is based on modeling and a calculation using a 4-layer board.  
Rev. 0 | Page 5 of 18  
 
 
 
 
ADP1763  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VIN 1  
VIN 2  
VIN 3  
12 VOUT  
11 VOUT  
ADP1763  
TOP VIEW  
10  
9
VOUT  
VOUT  
(Not to Scale)  
4
VIN  
NOTES  
1. THE EXPOSED PAD IS ELECTRICALLY  
CONNECTED TO GND. IT IS RECOMMENDED  
THAT THIS PAD BE CONNECTED TO A GROUND  
PLANE ON THE PCB. THE EXPOSED PAD IS  
ON THE BOTTOM OF THE PACKAGE.  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1 to 4  
VIN  
Regulator Input Supply. Bypass VIN to GND with a 10 μF or greater capacitor. Note that all four VIN pins must be  
connected to the source supply.  
5
6
REFCAP  
VREG  
Reference Filter Capacitor. Connect a 1 μF capacitor from the REFCAP pin to ground. Do not connect a load to  
ground.  
Regulated Input Supply to LDO Amplifier. Bypass VREG to GND with a 1 μF or greater capacitor. Do not connect  
a load to ground.  
7
8
GND  
VADJ  
Ground.  
Adjustable Voltage Pin for the Adjustable Output Option. Connect a 10 kΩ external resistor between the VADJ  
pin and ground to set the output voltage to 1.5 V. For the fixed output option, leave this pin floating.  
9 to 12  
13  
VOUT  
Regulated Output Voltage. Bypass VOUT to GND with a 10 μF or greater capacitor. Note that all four VOUT pins  
must be connected to the load.  
Sense Input. The SENSE pin measures the actual output voltage at the load and feeds it to the error amplifier.  
Connect VSENSE as close to the load as possible to minimize the effect of IR voltage drop between VOUT and the load.  
SENSE  
14  
15  
SS  
PG  
Soft Start Pin. A 10 nF capacitor connected to the SS pin and ground sets the start-up time to 0.6 ms.  
Power-Good Output. This open-drain output requires an external pull-up resistor. If the device is in shutdown  
mode, current-limit mode, or thermal shutdown mode, or if VOUT falls below 90% of the nominal output  
voltage, the PG pin immediately transitions low.  
16  
EN  
EP  
Enable Input. Drive the EN pin high to turn on the regulator. Drive the EN pin low to turn off the regulator. For  
automatic startup, connect the EN pin to the VIN pin.  
Exposed Pad. The exposed pad is electrically connected to GND. It is recommended that this pad be connected  
to a ground plane on the PCB. The exposed pad is on the bottom of the package.  
Rev. 0 | Page 6 of 18  
 
Data Sheet  
ADP1763  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 1.5 V, VOUT = 1.3 V, TA = 25°C, unless otherwise noted.  
1.305  
16  
14  
12  
10  
8
NO LOAD  
I
I
I
I
I
= 10mA  
= 100mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
1.303  
1.301  
1.299  
1.297  
1.295  
= 2A  
= 3A  
6
4
I
I
I
= 10mA  
= 500mA  
= 2A  
LOAD  
LOAD  
LOAD  
2
= 100mA  
= 1A  
0
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
–25  
0
25  
50  
75  
100  
125  
150  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 4. Output Voltage (VOUT) vs. Junction Temperature  
Figure 7. Ground Current vs. Junction Temperature  
1.303  
14  
12  
10  
8
1.303  
1.302  
1.302  
1.301  
6
4
2
0
0.01  
0.01  
0.1  
1
10  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 5. Output Voltage (VOUT) vs. Load Current  
Figure 8. Ground Current vs. Load Current  
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.298  
14  
12  
10  
8
I
I
I
I
= 100mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
= 2A  
= 3A  
6
NO LOAD  
4
I
I
I
I
I
I
= 10mA  
= 100mA  
= 500mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
2
= 2A  
= 3A  
0
1.5  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
1.6  
1.7  
1.8  
1.9  
2.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 6. Output Voltage vs. Input Voltage  
Figure 9. Ground Current vs. Input Voltage  
Rev. 0 | Page 7 of 18  
 
ADP1763  
Data Sheet  
14  
12  
10  
8
200  
V
V
V
V
V
V
= 1.5V  
= 1.7V  
= 1.9V  
= 1.6V  
= 1.8V  
= 1.98V  
IN  
IN  
IN  
IN  
IN  
IN  
180  
160  
140  
120  
100  
80  
6
60  
NO LOAD  
4
40  
I
I
I
I
I
I
= 10mA  
= 100mA  
= 500mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
20  
2
0
= 2A  
= 3A  
0
1.1  
–20  
–50  
1.2  
1.3  
1.4  
1.5  
1.6  
–25  
0
25  
50  
75  
100  
125  
150  
INPUT VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
Figure 10. Shutdown Current vs. Junction Temperature at  
Figure 13. Ground Current vs. Input Voltage (in Dropout), VOUT = 1.3 V  
Various Input Voltages (VIN  
)
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3A/µs SLEW RATE  
LOAD  
2
V
OUT  
1
B
CH1 50.0mV  
CH2 2.00A M4.00µs  
18.70%  
A CH2  
640mA  
W
0.1  
1
10  
T
LOAD CURRENT (A)  
Figure 11. Dropout Voltage vs. Load Current, VOUT = 1.3 V  
Figure 14. Load Transient Response, COUT = 10 μF, VIN = 1.8 V, VOUT = 1.3 V  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
I
I
I
I
= 100mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
= 2A  
3A/µs SLEW RATE  
= 3A  
LOAD  
2
V
OUT  
1
B
CH1 50.0mV  
CH2 2.00A M4.00µs  
18.70%  
A CH2  
640mA  
W
1.2  
1.3  
1.4  
1.5  
T
INPUT VOLTAGE (V)  
Figure 12. Output Voltage vs. Input Voltage (in Dropout), VOUT = 1.3 V  
Figure 15. Load Transient Response, COUT = 47 μF, VIN = 1.8 V, VOUT = 1.3 V  
Rev. 0 | Page 8 of 18  
Data Sheet  
ADP1763  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
V
V
V
V
V
V
= 1.1V  
= 1.2V  
= 1.3V  
= 1.4V  
= 1.5V  
= 1.6V  
IN  
IN  
IN  
IN  
IN  
IN  
1V/µs SLEW RATE  
V
IN  
2
1
V
OUT  
CH1 5.00mV  
CH2 500mV  
M2.00µs  
17.50%  
A CH2  
1.68V  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
T
FREQUENCY (Hz)  
Figure 19. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various Loads, VOUT = 0.9 V, Load Current = 3 A  
Figure 16. Line Transient Response, Load Current = 3 A,  
VIN = 1.5 V to 1.98 V Step, VOUT = 1.3 V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
16  
14  
12  
10  
8
V
V
= 1.3V (100Hz TO 100kHz)  
= 1.3V (10Hz TO 100kHz)  
OUT  
OUT  
6
V
V
V
V
V
V
= 1.5V  
= 1.6V  
= 1.7V  
= 1.8V  
= 1.9V  
= 1.98V  
4
IN  
IN  
IN  
IN  
IN  
IN  
–90  
–100  
–110  
2
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 17. Noise vs. Load Current for Various Output Voltages  
Figure 20. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various Loads, VOUT = 1.3 V, Load Current = 3 A  
10k  
–10  
V
V
V
V
= 1.7V  
= 1.8V  
= 1.9V  
= 1.98V  
IN  
IN  
IN  
IN  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
1k  
100  
10  
1
V
V
V
= 0.9V  
= 1.3V  
= 1.5V  
OUT  
OUT  
OUT  
0.1  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various Loads, VOUT = 1.5 V, Load Current = 3 A  
Figure 18. Noise Spectral Density vs. Frequency for Various Output Voltages,  
LOAD = 100 mA  
I
Rev. 0 | Page 9 of 18  
ADP1763  
Data Sheet  
–10  
I
I
I
I
= 500mA  
= 1A  
LOAD  
LOAD  
LOAD  
LOAD  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
= 2A  
= 3A  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 22. Power Supply Rejection Ratio (PSRR) vs. Frequency for  
Various Input Voltages, VOUT = 1.3 V, VIN = 1.7 V  
Rev. 0 | Page 10 of 18  
Data Sheet  
ADP1763  
THEORY OF OPERATION  
The ADP1763 is an LDO, low noise linear regulator that uses an  
advanced proprietary architecture to achieve high efficiency  
regulation. It also provides high PSRR and excellent line and load  
transient response using a small 10 F ceramic output capacitor.  
The device operates from a 1.10 V to 1.98 V input rail to  
provide up to 3 A of output current. Supply current in  
shutdown mode is typically 2 μA.  
operating conditions. When EN is high, VOUT turns on. When  
EN is low, VOUT turns off. For automatic startup, tie EN to VIN.  
SOFT START FUNCTION  
For applications that require a controlled startup, the ADP1763  
provides a programmable soft start function. The programmable  
soft start is useful for reducing inrush current upon startup and  
for providing voltage sequencing. To implement soft start, connect  
a small ceramic capacitor from SS to GND. At startup, a 10 μA  
current source charges this capacitor. The voltage at SS limits  
the ADP1763 start-up output voltage, providing a smooth ramp-up  
to the nominal output voltage. To calculate the start-up time for  
the fixed output and adjustable output, use the following equations:  
ADP1763  
VIN  
VOUT  
INTERNAL  
BIAS SUPPLY  
SHORT-CIRCUIT,  
THERMAL PROJECT  
VREG  
SENSE  
t
START-UP_FIXED = tDELAY + VREF × (CSS/ISS)  
(1)  
t
START-UP_ADJ = tDELAY + VADJ × (CSS/ISS)  
(2)  
where:  
DELAY is a fixed delay of 100 μs.  
REF is a 0.5 V internal reference for the fixed output model option.  
CSS is the soft start capacitance from SS to GND.  
ISS is the current sourced from SS (10 μA).  
PG  
SS  
REFERENCE,  
BIAS  
EN  
t
V
GND  
SS BLOCK  
V
ADJ is the voltage at the VADJ pin equal to RADJ × IADJ.  
REFCAP  
1.7  
Figure 23. Functional Block Diagram, Fixed Output  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
ADP1763  
VIN  
VOUT  
INTERNAL  
BIAS SUPPLY  
SHORT-CIRCUIT,  
THERMAL PROJECT  
VREG  
SENSE  
I
ADJ  
EN  
VADJ  
0.3  
EN  
PG  
SS  
C
C
C
= 0nF  
SS  
SS  
SS  
0.1  
= 10nF  
= 22nF  
–0.1  
–0.2  
0.3  
0.8  
1.3  
1.8  
TIME (ms)  
GND  
SS BLOCK  
Figure 25. Fixed VOUT Ramp-Up with External Soft Start Capacitor (VOUT, EN) vs. Time  
2.0  
REFCAP  
Figure 24. Functional Block Diagram, Adjustable Output  
1.5  
1.0  
0.5  
Internally, the ADP1763 consists of a reference, an error amplifier,  
and a pass device. The output current is delivered via the pass  
device, which is controlled by the error amplifier, forming a  
negative feedback system that ideally drives the feedback voltage  
to equal the reference voltage. If the feedback voltage is lower  
than the reference voltage, the negative feedback drives more  
current, increasing the output voltage. If the feedback voltage is  
higher than the reference voltage, the negative feedback drives  
less current, decreasing the output voltage.  
EN  
0
V
V
V
V
= 0.5V; C = 10nF  
SS  
OUT  
OUT  
OUT  
OUT  
= 0.5V; C = 22nF  
SS  
= 1.5V; C = 10nF  
SS  
= 1.5V; C = 22nF  
SS  
The ADP1763 is available in output voltages ranging from 0.9 V to  
1.5 V for a fixed output. Contact a local Analog Devices, Inc.,  
sales representative for other fixed voltage options. The adjustable  
output option can be set from 0.5 V to 1.5 V. The ADP1763 uses  
the EN pin to enable and disable the VOUT pin under normal  
–0.5  
–0.2  
0.3  
0.8  
1.3  
1.8  
TIME (ms)  
Figure 26. Adjustable VOUT Ramp-Up with External Soft Start Capacitor  
(VOUT, EN) vs. Time  
Rev. 0 | Page 11 of 18  
 
 
ADP1763  
Data Sheet  
ADJUSTABLE OUTPUT VOLTAGE  
POWER-GOOD (PG) FEATURE  
The output voltage of the ADP1763 can be set over a 0.5 V to  
1.5 V range. Connect a resistor (RADJ) from the VADJ pin to  
ground to set the output voltage. To calculate the output voltage,  
use the following equation:  
The ADP1763 provides a power-good pin (PG) to indicate the  
status of the output. This open-drain output requires an external  
pull-up resistor that can be connected to VIN or VOUT. If the  
device is in shutdown mode, current-limit mode, or thermal  
shutdown, or if it falls below 90% of the nominal output voltage,  
PG immediately transitions low. During soft start, the rising  
threshold of the power-good signal is 95% of the nominal  
output voltage.  
V
OUT = AD × (RADJ × IADJ  
)
(3)  
where:  
AD is the gain factor with a typical value of 3.0 between the  
VADJ pin and the VOUT pin.  
The open-drain output is held low when the ADP1763 has  
sufficient input voltage to turn on the internal PG transistor. An  
optional soft start delay can be detected. The PG transistor is  
terminated via a pull-up resistor to VOUT or VIN.  
I
ADJ is the 50.0 μA constant current out of the VADJ pin.  
ENABLE FEATURE  
The ADP1763 uses the EN pin to enable and disable the VOUT  
pins under normal operating conditions. As shown in Figure 27,  
when a rising voltage on EN crosses the active threshold, VOUT  
turns on. When a falling voltage on EN crosses the inactive  
threshold, VOUT turns off.  
Power-good accuracy is 92.5% of the nominal regulator output  
voltage when this voltage is rising, with a 95% trip point when  
this voltage is falling.  
Regulator input voltage brownouts or glitches trigger a power  
no good if VOUT falls below 92.5%.  
EN  
A normal power-down triggers a power good when VOUT is at 95%.  
V
OUT  
V
IN  
1
2
4
V
OUT  
1
B
B
W
CH1 200mV  
CH2 200mV  
M4.0ms  
A CH1  
768mV  
W
PG  
T
8.26ms  
Figure 27. Typical EN Pin Operation  
CH1 1.00V  
CH2 1.00V  
CH4 1.00V  
M100µs  
A CH4  
420mV  
As shown in Figure 28, the EN pin has hysteresis built in. This  
hysteresis prevents on/off oscillations that can occur due to  
noise on the EN pin as it passes through the threshold points.  
T
228.0000µs  
Figure 29. Typical PG Behavior vs. VOUT, VIN Rising (VOUT = 1.3 V)  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
IN  
1
2
4
V
OUT  
PG  
0
0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65  
CH1 1.00V  
CH2 1.00V  
CH4 1.00V  
M200µs  
0.000000s  
A CH1  
3.00V  
EN VOLTAGE (V)  
T
Figure 28. Output Voltage vs. Typical EN Pin Voltage, VOUT = 1.3 V  
Figure 30. Typical PG Behavior vs. VOUT, VIN Falling (VOUT = 1.3 V)  
Rev. 0 | Page 12 of 18  
 
 
 
 
 
Data Sheet  
ADP1763  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Input and Output Capacitor Properties  
Use any good quality ceramic capacitors with the ADP1763, as  
long as they meet the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate to  
ensure the minimum capacitance over the necessary temperature  
range and dc bias conditions. X5R or X7R dielectrics with a  
voltage rating of 6.3 V or 10 V are recommended. Y5V and Z5U  
dielectrics are not recommended, due to their poor temperature  
and dc bias characteristics.  
Output Capacitor  
The ADP1763 is designed for operation with small, space-saving  
ceramic capacitors, but it can function with most commonly used  
capacitors as long as care is taken with the effective series  
resistance (ESR) value. The ESR of the output capacitor affects  
the stability of the LDO control loop. A minimum of 10 μF  
capacitance with an ESR of 500 mΩ or less is recommended to  
ensure the stability of the ADP1763. Transient response to changes  
in load current is also affected by output capacitance. Using a  
larger value of output capacitance improves the transient response  
of the ADP1763 to large changes in load current. Figure 31 and  
Figure 32 show the transient responses for output capacitance  
values of 10 μF and 47 μF, respectively.  
Figure 33 shows the capacitance vs. bias voltage characteristics  
of an 0805 case, 10 μF, 10 V, X5R capacitor. The voltage stability  
of a capacitor is strongly influenced by the capacitor size and  
voltage rating. In general, a capacitor in a larger package or with  
a higher voltage rating exhibits better stability. The temperature  
variation of the X5R dielectric is about 15% over the −40°C to  
+85°C temperature range and is not a function of package size  
or voltage rating.  
I
LOAD  
2
12  
V
OUT  
10  
8
1
6
B
CH1 50.0mV  
CH2 2.00A M1.00µs  
18.70%  
A CH2  
640mA  
W
4
T
Figure 31. Output Transient Response, COUT = 10 μF  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
I
LOAD  
Figure 33. Capacitance vs. DC Bias Voltage  
2
1
Use Equation 4 to determine the worst case capacitance,  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
V
OUT  
CEFF = COUT × (1 − tempco) × (1 − TOL)  
(4)  
where:  
CEFF is the effective capacitance at the operating voltage.  
C
OUT is the output capacitor.  
CH1 50.0mV  
CH2 2.00A M1.00µs  
19.00%  
A CH2  
640mA  
T
Tempco is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
Figure 32. Output Transient Response, COUT = 47 μF  
Input Bypass Capacitor  
In this example, the worst case temperature coefficient  
(tempco) over −40°C to +85°C is assumed to be 15% for an X5R  
dielectric. The tolerance of the capacitor (TOL) is assumed to  
be 10%, and COUT = 10 μF at 1.0 V, as shown in Figure 33.  
Connecting a 10 μF capacitor from the VIN pin to the GND pin  
to ground reduces the circuit sensitivity to the PCB layout,  
especially when long input traces or a high source impedance  
is encountered. If output capacitance greater than 10 μF is  
required, it is recommended that the input capacitor be increased  
to match it.  
Substituting these values in Equation 4 yields  
CEFF = 10 ꢀF × (1 − 0.15) × (1 − 0.1) = 7.65 ꢀF  
Rev. 0 | Page 13 of 18  
 
 
 
 
 
ADP1763  
Data Sheet  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temperature  
and tolerance at the chosen output voltage.  
Consider the case where a hard short from VOUT to ground  
occurs. At first, the ADP1763 reaches the current limit so that  
only 4 A is conducted into the short circuit. If self heating of the  
junction becomes great enough to cause its temperature to rise  
above 150°C, thermal shutdown activates, turning off the output  
and reducing the output current to zero. As the junction  
temperature cools and drops below 135°C, the output turns on  
and conducts 4 A into the short circuit, again causing the  
junction temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation between  
4 A and 0 A that continues as long as the short circuit remains  
at the output.  
To guarantee the performance of the ADP1763, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
UNDERVOLTAGE LOCKOUT  
The ADP1763 has an internal undervoltage lockout circuit that  
disables all inputs and the output when the input voltage is less  
than approximately 1.06 V. The UVLO ensures that the ADP1763  
inputs and the output behave in a predictable manner during  
power-up.  
Current-limit and thermal overload protections are intended to  
protect the device against accidental overload conditions. For  
reliable operation, limit device power dissipation externally so that  
junction temperatures do not exceed 125°C.  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP1763 is protected against damage due to excessive power  
dissipation by current-limit and thermal overload protection  
circuits. The ADP1763 is designed to reach the current limit  
when the output load reaches 4 A (typical). When the output  
load exceeds 4 A, the output voltage is reduced to maintain a  
constant current limit.  
PARALLELING ADP1763 FOR HIGH CURRENT  
APPLICATIONS  
In applications where high output current is required while  
maintaining low noise and high PSRR performance, connect two  
ADP1763 devices in parallel to handle loads up to 5 A.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and power  
dissipation) when the junction temperature begins to rise above  
150°C, the output is turned off, reducing the output current to  
zero. When the junction temperature drops below 135°C (typical),  
the output is turned on again, and the output current is restored  
to its nominal value.  
When paralleling the ADP1763, the two outputs must be of the  
same voltage setting to maintain stable current sharing between  
the two LDO regulators. To improve current sharing accuracy, add  
identical ballast resistors (RBALLAST) at the output of each regulator,  
as shown in Figure 34. Note that large ballast resistors improve  
current sharing accuracy but degrade the load regulation perform-  
ance and increase the losses along the power line; therefore, it is  
recommended to keep the ballast resistors at a minimum. In  
addition, tie the VADJ, SS, and REFCAP pins of the LDO regu-  
lators together to minimize error between the two outputs.  
ADP1763  
R
= 5m  
V
= 1.5V  
BALLAST  
V
= 1.2V/5A  
IN  
OUT  
VIN  
VOUT  
C
C
OUT  
IN  
10µF  
10µF  
SENSE  
EN  
R
PULLUP  
ENABLE  
100kΩ  
PG  
SS  
VADJ  
R
ADJ  
C
1nF  
4.02kΩ  
SS  
VREG  
REFCAP  
C
1µF  
REF  
C
1µF  
GND  
REG  
ADP1763  
R
= 5mΩ  
BALLAST  
VIN  
VOUT  
C
C
OUT  
IN  
10µF  
10µF  
SENSE  
EN  
PG  
SS  
VADJ  
VREG  
REFCAP  
C
1µF  
C
1µF  
REF  
GND  
REG  
Figure 34. Two ADP1763 Devices Connected in Parallel to Achieve Higher Current Output  
Rev. 0 | Page 14 of 18  
 
 
 
 
Data Sheet  
ADP1763  
Use Equation 5 to calculate the output of the two paralleled  
ADP1763 LDOs.  
Figure 35 through Figure 40 show junction temperature calculations  
for different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
140  
V
OUT = 2 × AD × (RADJ × IADJ  
)
(5)  
where:  
T
MAX  
J
AD is the gain factor with a typical value of 3.0 between the  
VADJ pin and the VOUT pin.  
120  
100  
80  
60  
40  
20  
0
3A  
2A  
I
ADJ is the 50.0 μA constant current out of the VADJ pin.  
1A  
THERMAL CONSIDERATIONS  
500mA  
To guarantee reliable operation, the junction temperature of the  
ADP1763 must not exceed 125°C. To ensure that the junction  
temperature stays below this maximum value, the user needs to be  
aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and thermal resistance between  
the junction and ambient air (θJA). The θJA value is dependent  
on the package assembly compounds used and the amount of  
copper to which the GND pin and the exposed pad (EPAD) of the  
package are soldered on the PCB. Table 7 shows typical θJA values  
for the 16-lead LFCSP for various PCB copper sizes. Table 8  
shows typical ΨJB values for the 16-lead LFCSP.  
100mA  
10mA  
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
Figure 35. 6400 mm2 of PCB Copper, TA = 25°C  
140  
120  
100  
80  
T
MAX  
J
2A  
3A  
1A  
Table 7. Typical θJA Values  
Copper Size (mm2)  
θJA (°C/W), LFCSP  
500mA  
25  
138.1  
102.9  
76.9  
67.3  
56  
100  
500  
1000  
6400  
60  
100mA  
40  
10mA  
1.2  
20  
Table 8. Typical ΨJB Values  
0
0.2  
Copper Size (mm2)  
ΨJB (°C/W) at 1 W  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.4  
1.6  
V
IN  
OUT  
100  
500  
1000  
33.3  
28.9  
28.5  
Figure 36. 500 mm2 of PCB Copper, TA = 25°C  
140  
120  
100  
80  
T
MAX  
J
To calculate the junction temperature of the ADP1763, use the  
following equation:  
3A  
1A  
2A  
TJ = TA + (PD × θJA)  
where:  
(6)  
500mA  
TA is the ambient temperature.  
60  
PD is the power dissipation in the die, given by  
100mA  
40  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
VIN and VOUT are the input and output voltages, respectively.  
)
(7)  
10mA  
20  
0
0.2  
I
I
LOAD is the load current.  
GND is the ground current.  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
Figure 37. 25 mm2 of PCB Copper, TA = 25°C  
As shown in Equation 6, for a given ambient temperature, and  
computed power dissipation, a minimum copper size  
requirement exists for the PCB to ensure that the junction  
temperature does not rise above 125°C.  
Rev. 0 | Page 15 of 18  
 
 
 
 
ADP1763  
Data Sheet  
140  
Figure 41 through Figure 44 show junction temperature calculations  
for different board temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
140  
T
MAX  
J
120  
3A  
1A  
2A  
100  
80  
60  
40  
20  
500mA  
T
MAX  
J
120  
100  
80  
60  
40  
20  
0
3A  
100mA  
10mA  
2A  
1A  
500mA  
100mA  
10mA  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
Figure 38. 6400 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
T
MAX  
J
V
IN  
OUT  
Figure 41. 500 mm2 of PCB Copper, TB = 25°C  
3A  
2A  
1A  
140  
120  
100  
80  
T
MAX  
J
500mA  
3A  
2A  
100mA  
10mA  
60  
1A  
40  
500mA  
100mA  
10mA  
60  
20  
40  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
20  
Figure 39. 500 mm2 of PCB Copper, TA = 50°C  
0
140  
120  
100  
80  
0.2  
0.4  
0.6  
0.8  
– V  
1
1.2  
1.4  
1.6  
3A  
T
MAX  
J
V
(V)  
OUT  
IN  
Figure 42. 500 mm2 of PCB Copper, TB = 50°C  
2A  
1A  
500mA  
140  
120  
100  
80  
T
MAX  
J
3A  
100mA  
60  
2A  
1A  
10mA  
40  
60  
20  
500mA  
100mA  
10mA  
40  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
20  
Figure 40. 25 mm2 of PCB Copper, TA = 50°C  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
In cases where the board temperature is known, the thermal  
characterization parameter (ΨJB) can be used to estimate the  
junction temperature rise. The maximum junction temperature  
(TJ) is calculated from the board temperature (TB) and power  
dissipation (PD) using the following formula:  
V
IN  
OUT  
Figure 43. 1000 mm2 of PCB Copper, TB = 25°C  
TJ = TB + (PD × ΨJB)  
(8)  
Rev. 0 | Page 16 of 18  
 
 
Data Sheet  
ADP1763  
140  
120  
100  
80  
Use of 0603 or 0805 size capacitors and resistors achieves the  
smallest possible footprint solution on boards where area is  
limited.  
T
MAX  
J
2A  
3A  
1A  
500mA  
100mA  
10mA  
60  
40  
20  
0
0.2  
0.4  
0.6  
0.8  
– V  
1.0  
(V)  
1.2  
1.4  
1.6  
V
IN  
OUT  
Figure 44. 1000 mm2 of PCB Copper, TB = 50°C, LFCSP  
T
= 112°C  
ADP1763  
Figure 46. Evaluation Board  
T
= 92°C  
B
Figure 45. Thermal Image of the ADP1763 Evaluation Board at ILOAD = 3 A,  
IN = 1.5 V, VOUT = 1.3 V, TB = 92°C  
V
Figure 45 shows a thermal image of the ADP1763 evaluation  
board operating at a 3 A current load. The total power dissipation  
on the ADP1763 is 600 mW, which makes the temperature on  
the surface of the device higher by 30°C than the temperature of  
the evaluation board.  
PCB LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of ADP1763. However,  
as shown in Table 8, a point of diminishing returns is eventually  
reached, beyond which an increase in the copper size does not  
yield significant heat dissipation benefits.  
Figure 47. Typical Board Layout, Top Side  
Use the following recommendations when designing PCBs:  
Place the input capacitor as close as possible to the VIN  
and GND pins.  
Place the output capacitor as close as possible to the VOUT  
and GND pins.  
Place the soft start capacitor (CSS) as close as possible to the  
SS pin.  
Place the reference capacitor (CREF) and regulator capacitor  
(CREG) as close as possible to the REFCAP pin and VREG pin,  
respectively.  
Connect the load as close as possible to the VOUT and  
SENSE pins.  
Figure 48. Typical Board Layout, Bottom Side  
Rev. 0 | Page 17 of 18  
 
 
 
ADP1763  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 49. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-22)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Package  
Option  
Model1  
Temperature Range Voltage (V)2 Package Description  
Branding  
ADP1763ACPZ-R7  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Adjustable  
0.9  
0.95  
1.0  
1.1  
1.2  
1.25  
1.3  
1.5  
1.3  
1.1  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS0  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS1  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LUQ  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS2  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS3  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS4  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS5  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS6  
16-Lead Lead Frame Chip Scale Package [LFCSP] CP-16-22 LS7  
Evaluation Board  
ADP1763ACPZ-0.9-R7  
ADP1763ACPZ0.95-R7  
ADP1763ACPZ-1.0-R7  
ADP1763ACPZ-1.1-R7  
ADP1763ACPZ-1.2-R7  
ADP1763ACPZ1.25-R7  
ADP1763ACPZ-1.3-R7  
ADP1763ACPZ-1.5-R7  
ADP1763-1.3-EVALZ  
ADP1763-ADJ-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For additional options, contact a local Analog Devices sales or distribution representative. Additional voltage output options available include the following: 0.5 V,  
0.55 V, 0.6 V, 0.65 V, 0.7 V, 0.75 V, 0.8 V, 0.85 V, 1.05 V, 1.15 V, 1.35 V, 1.4 V, or 1.45 V.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12923-0-4/16(0)  
Rev. 0 | Page 18 of 18  
 
 

相关型号:

ADP1755-EVALZ

1.2 A, Low VIN, Low Dropout Linear Regulator
ADI

ADP1755ACPZ

1.2 A, Low VIN, Low Dropout Linear Regulator
ADI

ADP1755ACPZ-R7

1.2 A, Low VIN, Low Dropout Linear Regulator
ADI

ADP175ARMZ-0.75R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-0.8-R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-0.85R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-0.9-R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-0.95R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-1.0-R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-1.05R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-1.1-R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI

ADP175ARMZ-1.15R7

500 mA, Low Dropout, CMOS Linear Regulator
ADI