ADP198CP-EVALZ [ADI]

Logic Controlled, 1 A, High-Side Load; 逻辑控制, 1 ,高端负载
ADP198CP-EVALZ
型号: ADP198CP-EVALZ
厂家: ADI    ADI
描述:

Logic Controlled, 1 A, High-Side Load
逻辑控制, 1 ,高端负载

文件: 总16页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Logic Controlled, 1 A, High-Side Load  
Switch with Reverse Current Blocking  
Data Sheet  
ADP198  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Low RDSON of 50 mΩ @ 3.3 V (WLCSP only)  
Low input voltage range: 1.65 V to 6.5 V  
1 A continuous operating current  
ADP198  
REVERSE  
POLARITY  
PROTECTION  
VOUT  
VIN  
+
Built-in level shift for control logic that can be operated by  
1.2 V logic  
GND  
Low 2.5 μA quiescent current @ VIN = 2.8 V  
Low 1.1 μA shutdown current @ VIN = 2.8 V  
Reverse current blocking  
LEVEL SHIFT  
AND SLEW  
RATE CONTROL  
LOAD  
EN  
ON  
OFF  
Programmable start-up time  
Figure 1. WLCSP  
Ultrasmall 1 mm × 1 mm, 4-ball, 0.5 mm pitch (WLCSP)  
Tiny 8-lead lead frame chip scale package (LFCSP)  
2.0 mm × 2.0 mm × 0.55 mm, 0.5 mm pitch  
ADP198  
REVERSE  
POLARITY  
PROTECTION  
APPLICATIONS  
VIN  
VOUT  
VOUT  
+
Mobile phones  
Digital cameras and audio devices  
Portable and battery-powered equipment  
VIN  
SEL0  
SLEW  
RATE CONTROL  
LOAD  
SEL1  
ON  
EN  
LEVEL SHIFT  
OFF  
GND  
Figure 2. LFCSP  
GENERAL DESCRIPTION  
The ADP198 is a high-side load switch designed for operation  
between 1.65 V and 6.5 V that is protected against reverse  
current flow from output to input. A load switch provides power  
domain isolation, thereby helping to keep subsystems isolated and  
powered independently and enabling reduced power consumption.  
The ADP198 contains a low on-resistance P-channel MOSFET  
that supports more than 1 A of continuous load current. The  
low 2.5 μA quiescent current and ultralow shutdown current  
make the ADP198 ideal for battery-operated portable  
equipment. The built-in level shifter for enable logic makes the  
ADP198 compatible with modern processors and general-purpose  
input/output (GPIO) controllers. The LFCSP version also allows  
the user to program the start-up time to control the inrush  
current at turn on.  
The ADP198 is available in an ultrasmall 1 mm × 1 mm, 4-ball,  
0.5 mm pitch WLCSP. An 8-lead, 2 mm × 2 mm × 0.55 mm,  
0.5 mm pitch LFCSP is also available.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP198  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Theory of Operation ...................................................................... 11  
Applications Information .............................................................. 12  
Ground Current.......................................................................... 12  
Enable Feature ............................................................................ 13  
Timing.......................................................................................... 14  
Diode OR’ing Applications ....................................................... 15  
Packaging and Ordering Information ......................................... 16  
Outline Dimensions................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings ....................................................... 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
6/12—Rev. C to Rev. D  
Changes to Table Headings in Table 6 ......................................... 14  
Added Text to Diode OR’ing Applications Section.................... 15  
Updated Outline Dimensions....................................................... 16  
4/12—Rev. B to Rev. C  
Changes to VOUT Time Parameters ............................................. 3  
11/11—Rev. A to Rev. B  
Changes to WLCSP Turn-On Delay Time Parameter................. 3  
Changes to Ordering Guide .......................................................... 16  
10/11—Rev. 0 to Rev. A  
Change to Features Section ............................................................. 1  
Changes to Table 1, Specifications Section ................................... 3  
Change to Ground Current Section............................................. 12  
Changes to Enable Feature Section .............................................. 13  
Updated Outline Dimensions....................................................... 16  
10/11—Revision 0: Initial Version  
Rev. D | Page 2 of 16  
 
Data Sheet  
ADP198  
SPECIFICATIONS  
VIN = 2.8 V, EN = VIN, IOUT = 200 mA, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
INPUT VOLTAGE RANGE  
EN INPUT  
Symbol Test Conditions/Comments  
Min Typ  
Max Unit  
VIN  
TJ = −40°C to +85°C  
1.65  
6.5  
V
Threshold  
High  
VIH  
VIN ≤ 5 V, TJ = −40°C to +85°C  
5 V < VIN, TJ = −40°C to +85°C  
1.2  
1.3  
V
V
Low  
VIL  
IEN  
1.65 V ≤ VIN ≤ 6.5 V, TJ = −40°C to +85°C  
0.43  
13  
V
nA  
Pull-Down Current  
REVERSE BLOCKING  
VOUT Current  
500  
7
VEN = 0, VIN = 0, VOUT = 6.5 V  
VEN = 0, VIN = 0, VOUT = 6.5 V, TJ = −40°C to +85°C  
µA  
µA  
mV  
Hysteresis  
CURRENT  
|VIN − VOUT  
|
75  
Quiescent Current  
IQ  
IOUT = 0 mA, TJ = −40°C to +85°C, includes EN pull-down current  
VIN = VOUT = 2.8 V  
2.5  
1.1  
µA  
µA  
µA  
µA  
µA  
VIN = VOUT = 6.5 V  
EN = GND  
EN = GND, TJ = −40°C to +85°C  
EN = GND, VOUT = 0 V, TJ = −40°C to +85°C  
20  
Off State Current  
IOFF  
2
2
VIN to VOUT RESISTANCE  
WLCSP  
RDSON  
VIN = 5 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 3.3 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 2.8 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 1.8 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 1.65 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 5 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 3.3 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 2.8 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 1.8 V, ILOAD = 200 mA, VEN = 1.5 V  
VIN = 1.65 V, ILOAD = 200 mA, VEN = 1.5 V  
40  
50  
60  
130  
180  
75  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
80  
LFCSP  
120  
90  
100  
120  
200  
VOUT TIME  
WLCSP  
Turn-On Delay Time  
ADP198ACBZ-11-R7  
LFCSP  
tON_DLY  
VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF  
VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF  
7
450  
μs  
μs  
Turn-On Delay Time  
tON_DLY  
VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = L, SEL1 = L  
VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = H, SEL1 = L  
VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = L, SEL1 = H  
VIN = 3.6 V, ILOAD = 200 mA, VEN = 1.5 V, CLOAD = 1 μF; SEL0 = H, SEL1 = H  
30  
μs  
μs  
μs  
μs  
200  
450  
1100  
Rev. D | Page 3 of 16  
 
ADP198  
Data Sheet  
Timing Diagram  
V
EN  
TURN-ON  
DELAY  
TURN-OFF  
DELAY  
V
OUT  
90%  
10%  
TURN-ON  
RISE  
TURN-OFF  
FALL  
Figure 3. Timing Diagram  
Rev. D | Page 4 of 16  
Data Sheet  
ADP198  
ABSOLUTE MAXIMUM RATINGS  
The junction-to-ambient thermal resistance (θJA) of the package  
is based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending on  
PCB material, layout, and environmental conditions. The speci-  
fied values of θJA are based on a 4-layer, 4 inch × 3 inch PCB. Refer  
to JESD 51-7 and JESD 51-9 for detailed information regarding  
board construction. For additional information, see the AN-617  
Application Note, MicroCSPWafer Level Chip Scale Package.  
Table 2.  
Parameter  
Rating  
VIN to GND Pins  
VOUT to GND Pins  
EN to GND Pins  
Continuous Drain Current  
TA = 25°C  
TA = 85°C  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
1000 mA  
1000 mA  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
ΨJB is the junction-to-board thermal characterization parameter  
with units of °C/W. The ΨJB of the package is based on modeling  
and calculation using a 4-layer board. The JESD51-12, Guidelines  
for Reporting and Using Package Thermal Information, states that  
thermal characterization parameters are not the same as thermal  
resistances. ΨJB measures the component power flowing through  
multiple thermal paths rather than a single path as in thermal  
resistance, θJB. Therefore, ΨJB thermal paths include convection  
from the top of the package as well as radiation from the package,  
factors that make ΨJB more useful in real-world applications.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP198 can be damaged if the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
need to be derated.  
Maximum junction temperature (TJ) is calculated from the  
board temperature (TB) and power dissipation (PD) using the  
formula  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8, JESD51-9, and JESD51-12 for more detailed  
information about ΨJB.  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long  
as the junction temperature is within specification limits. The  
junction temperature (TJ) of the device is dependent on the  
ambient temperature (TA), the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package (θJA).  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
ΨJB  
Unit  
4-Ball, 0.5 mm Pitch WLCSP  
8-Lead, 2 mm × 2 mm LFCSP  
260  
72.1  
4
58.4 °C/W  
42.3 47.1 °C/W  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
ESD CAUTION  
TJ = TA + (PD × θJA)  
Rev. D | Page 5 of 16  
 
 
 
 
ADP198  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
A
VIN  
VOUT  
TOP VIEW  
(Not to Scale)  
B
EN  
GND  
Figure 4. 4-Ball WLCSP Pin Configuration  
Table 4. Pin Function Descriptions, WLCSP  
Pin No.  
Mnemonic  
Description  
A1  
A2  
B1  
B2  
VIN  
VOUT  
EN  
Input Voltage.  
Output Voltage.  
Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch.  
Ground.  
GND  
Rev. D | Page 6 of 16  
 
Data Sheet  
ADP198  
VOUT  
VOUT  
GND  
1
2
3
8 VIN  
7 VIN  
6 EN  
ADP198  
TOP VIEW  
(Not to Scale)  
SEL1 4  
5 SEL0  
NOTES  
1. THE EXPOSED PAD IS CONNECTED TO THE SUBSTRATE OF THE ADP198  
AND MUST BE CONNECTED TO GROUND.  
Figure 5. 8-Lead LFCSP Pin Configuration  
Table 5. Pin Function Descriptions, LFCSP  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
VOUT  
VOUT  
GND  
SEL1  
SEL0  
EN  
Output Voltage. Connect Pin 1 and Pin 2 together.  
Output Voltage. Connect Pin 1 and Pin 2 together.  
Ground.  
Select Turn-On Time.  
Select Turn-On Time.  
Enable Input. Drive EN high to turn on the switch and drive EN low to turn off the switch.  
Input Voltage. Connect Pin 7 and Pin 8 together.  
Input Voltage. Connect Pin 7 and Pin 8 together.  
VIN  
VIN  
EP  
Exposed Pad. The exposed pad is connected to the substrate of the ADP198 and must be connected to ground.  
Rev. D | Page 7 of 16  
ADP198  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.12  
0.10  
0.08  
0.06  
0.25  
0.20  
0.15  
0.10  
0.05  
0
I
= 10mA  
LOAD  
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
0.04  
0.02  
0
–40  
–5  
25  
TEMPERATURE (°C)  
85  
125  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
6.0  
6.5  
V
IN  
Figure 6. RDSON vs. Temperature, WLCSP  
Figure 9. RDSON vs. Input Voltage (VIN), LFCSP  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.25  
V
V
V
V
V
V
V
V
V
V
= 1.65V  
= 1.80V  
= 2.10V  
= 2.50V  
= 2.80V  
= 3.30V  
= 3.80V  
= 4.50V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.20  
0.15  
0.10  
0.05  
0
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
–40  
–5  
25  
TEMPERATURE (°C)  
85  
125  
10  
100  
1000  
LOAD (mA)  
Figure 7. RDSON vs. Temperature, LFCSP  
Figure 10. Voltage Drop vs. Load Current, WLCSP  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
I
= 10mA  
LOAD  
V
V
V
V
V
V
V
V
V
V
= 1.65V  
= 1.80V  
= 2.10V  
= 2.50V  
= 2.80V  
= 3.30V  
= 3.80V  
= 4.50V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
6.0  
6.5  
10  
100  
1000  
V
IN  
LOAD (mA)  
Figure 8. RDSON vs. Input Voltage (VIN), WLCSP  
Figure 11. Voltage Drop vs. Load Current, LFCSP  
Rev. D | Page 8 of 16  
 
Data Sheet  
ADP198  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
INPUT CURRENT  
1
OUTPUT VOLTAGE  
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
2
ENABLE  
3
B
B
CH1 200mA Ω  
CH2 1.00V  
M40.0µs  
10.20%  
A CH3 1.48V  
W
W
–40  
–5  
25  
TEMPERATURE (°C)  
85  
125  
B
T
CH3 2.00V  
W
Figure 12. Typical Rise Time and Inrush Current,  
VIN = 1.8 V, ILOAD = 200 mA, Select Code 00  
Figure 15. Ground Current vs. Temperature  
20  
18  
16  
14  
12  
10  
8
I
= 10mA  
INPUT CURRENT  
LOAD  
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
1
OUTPUT VOLTAGE  
6
2
3
4
ENABLE  
2
0
1.5  
B
B
CH1 200mA Ω  
CH2 2.00V  
M20.0µs  
10.20%  
A CH3 1.48V  
W
W
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
6.0  
6.5  
B
T
CH3 2.00V  
W
V
IN  
Figure 13. Typical Rise Time and Inrush Current,  
VIN = 3.6 V, ILOAD = 200 mA, Select Code 00  
Figure 16. Ground Current vs. Input Voltage (VIN)  
10  
9
8
7
6
5
4
3
2
1
0
V
V
V
V
V
V
V
= 1.65V  
= 2.10V  
= 2.50V  
= 3.30V  
= 3.80V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
INPUT CURRENT  
1
2
OUTPUT VOLTAGE  
ENABLE  
3
B
B
CH1 500mA Ω  
CH2 5.00V  
M10.0µs  
10.20%  
A CH3 1.48V  
W
W
–40  
–20  
0
20  
40  
60  
80  
100  
120  
B
T
CH3 2.00V  
W
TEMPERATURE (°C)  
Figure 17. IGND Shutdown Ground Current vs. Temperature, VOUT Open  
Figure 14. Typical Rise Time and Inrush Current,  
VIN = 6.5 V, ILOAD = 200 mA, Select Code 00  
Rev. D | Page 9 of 16  
ADP198  
Data Sheet  
10.00  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0
V
V
V
V
V
V
V
= 1.65V  
= 2.10V  
= 2.50V  
= 3.30V  
= 3.80V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1.00  
0.10  
0.01  
V
V
V
V
V
V
V
= 1.65V  
= 2.10V  
= 2.50V  
= 3.30V  
= 3.80V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Shutdown Ground Current vs. Temperature, VOUT = 0 V  
Figure 20. Reverse Input Shutdown Current vs. Temperature, VIN = 0 V  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
10.00  
V
V
V
V
V
V
V
= 1.65V  
= 2.10V  
= 2.50V  
= 3.30V  
= 3.80V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1.00  
0.10  
0.01  
V
V
V
V
V
V
V
= 1.65V  
= 2.10V  
= 2.50V  
= 3.30V  
= 3.80V  
= 5.50V  
= 6.50V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.80  
0.60  
0.40  
0.20  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. IOUT Shutdown Current vs. Temperature, VOUT = 0 V  
Figure 21. Reverse Shutdown Ground Current vs. Temperature, VOUT = 0 V  
Rev. D | Page 10 of 16  
Data Sheet  
ADP198  
THEORY OF OPERATION  
The enable input incorporates a nominal 4 MΩ pull-down  
resistor. SEL0 and SEL1 program the start-up time of the load  
switch to reduce inrush current when the switch is turned on.  
ADP198  
REVERSE  
POLARITY  
PROTECTION  
VIN  
VOUT  
The reverse current protection circuitry prevents current from  
flowing backwards through the ADP198 when the output voltage  
is greater than the input voltage. A comparator senses the differ-  
ence between the input and output voltages. When the difference  
between the input voltage and output voltage exceeds 75 m V,  
the body of the PFET is switched to VOUT and turned off or  
opened. In other words, the gate is connected to VOUT.  
SEL0  
SEL1  
SLEW  
RATE CONTROL  
EN  
LEVEL SHIFT  
GND  
The packaging is a space-saving 1 mm × 1 mm, 4-ball WLCSP.  
The ADP198 is also available in a 2 mm × 2 mm × 0.55 mm,  
0.5 mm pitch LFCSP.  
Figure 22. Functional Block Diagram  
The ADP198 is a high-side PMOS load switch that is designed  
for supply operation between 1.65 V and 6.5 V. The PMOS load  
switch has a low on resistance of 50 mΩ at VIN = 3.3 V and  
supports 1 A of continuous load current. The ADP198 features  
low quiescent current at 2.5 μA typical using a 2.8 V supply.  
Rev. D | Page 11 of 16  
 
ADP198  
Data Sheet  
APPLICATIONS INFORMATION  
As shown in Figure 24, an increase in quiescent current can occur  
when VEN ≠ VIN. This is caused by the CMOS logic nature of the  
level shift circuitry as it translates a VEN signal ≥1.2 V to a logic  
high. This increase is a function of the VIN − VEN delta.  
60  
GROUND CURRENT  
The major source for ground current in the ADP198 is an internal  
4 MΩ pull-down resistor on the enable pin. Figure 23 shows  
the typical ground current when VEN = VIN and varies from  
1.65 V to 6.5 V.  
20  
50  
40  
30  
20  
10  
18  
I
= 10mA  
LOAD  
16  
14  
12  
10  
8
I
I
I
I
I
= 100mA  
= 200mA  
= 400mA  
= 800mA  
= 1000mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
6
4
0
2
0
1
2
3
4
5
6
ENABLE VOLTAGE (V)  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
6.0  
6.5  
Figure 24. Typical Ground Current when VEN ≠ VIN  
V
IN  
Figure 23. Ground Current vs. Load Current  
Rev. D | Page 12 of 16  
 
 
 
 
Data Sheet  
ADP198  
The EN pin active/inactive thresholds derive from the VIN voltage;  
therefore, these thresholds vary with the changing input voltage.  
Figure 26 shows the typical EN active/inactive thresholds when  
the input voltage varies from 1.65 V to 6.5 V.  
1.2  
ENABLE FEATURE  
The ADP198 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 25,  
when a rising VEN voltage crosses the active threshold, VOUT  
turns on. When a falling VEN voltage crosses the inactive  
threshold, VOUT turns off.  
1.1  
2.0  
EN RISE  
1.0  
EN FALL  
1.8  
V
V
RISING  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
IN  
IN  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
FALLING  
1
2
3
4
5
6
7
INPUT VOLTAGE (V)  
Figure 26. Typical EN Thresholds vs. Input Voltage (VIN)  
0.45  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
ENABLE VOLTAGE (V)  
Figure 25. Typical EN Operation  
As shown in Figure 25, the EN pin has hysteresis built in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
Rev. D | Page 13 of 16  
 
 
 
ADP198  
Data Sheet  
TIMING  
Turn-on delay is defined as the delta between the time that VEN  
reaches >1.2 V and when VOUT rises to ~10% of its final value. The  
ADP198 includes circuitry to have typical 10 µs turn-on delay at  
3.6 V VIN to limit the VIN inrush current.  
INPUT CURRENT  
1
The rise time is defined as the delta between the time from  
10% to 90% of VOUT reaching its final value. It is dependent on  
the RC time constant where C = load capacitance (CLOAD) and  
R = RDSON||RLOAD. Because RDSON is usually smaller than RLOAD  
an adequate approximation for RC is RDSON × CLOAD. An input  
or load capacitor is not needed for the ADP198; however, capacitors  
can be used to suppress noise on the board. If significant load  
capacitance is connected, inrush current may be a concern.  
OUTPUT VOLTAGE  
2
3
,
ENABLE  
B
B
CH1 200mA Ω  
CH2 2.00V  
M100µs  
10.20%  
A
CH3 1.48V  
W
W
B
T
CH3 2.00V  
W
Figure 29. Typical Rise Time and Inrush Current,  
LOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 10  
Figure 27 through Figure 30 show the turn-on delay and output  
rise time for each of the four settings on SEL0 and SEL1.  
C
INPUT CURRENT  
INPUT CURRENT  
1
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
2
3
2
ENABLE  
B
ENABLE  
3
B
CH1 200mA Ω  
CH2 2.00V  
M200µs  
10.20%  
A CH3 1.48V  
W
W
B
B
W
CH1 200mA Ω  
CH2 2.00V  
M20.0µs  
10.20%  
A CH3 1.48V  
W
B
T
CH3 2.00V  
W
B
T
CH3 2.00V  
W
Figure 30. Typical Rise Time and Inrush Current,  
LOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 11  
Figure 27. Typical Rise Time and Inrush Current,  
LOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 00  
C
C
The turn-off time is defined as the delta between the time from  
90% to 10% of VOUT reaching its final value. It is also dependent on  
the RC time constant.  
Table 6. Start-Up Time Pin Settings  
INPUT CURRENT  
1
SEL1  
SEL0  
Start-Up Time (μs)  
0
0
1
1
0
1
0
1
30  
200  
450  
1100  
OUTPUT VOLTAGE  
2
3
ENABLE  
B
B
CH1 200mA Ω  
CH2 2.00V  
M40.0µs  
10.20%  
A CH3 1.48V  
W
W
B
T
CH3 2.00V  
W
Figure 28. Typical Rise Time and Inrush Current,  
LOAD = 1 µF, VIN = 3.6 V, ILOAD = 200 mA, Code 01  
C
Rev. D | Page 14 of 16  
 
 
 
Data Sheet  
ADP198  
rectifier. For example, at 85°C, the reverse current of a Schottky  
rectifier can be as high as 30 μA with only 2.5 V of reverse bias.  
DIODE OR’ing APPLICATIONS  
6V  
Figure 32 shows that about 75 mV of hysteresis built into the  
circuitry that senses the voltage differential between the input  
and output voltage. When the difference between the input  
voltage and output voltage exceeds 75 mV, the ADP198 is  
switched on.  
LOAD  
AC  
ADP198  
V
=
OUT  
V2 – (I × R  
LOAD ON  
)
VIN  
VOUT  
1A  
+
V2  
EN  
1
SLOPE =  
R
ON  
Figure 31. ADP198 in a Typical Diode OR’ing Application  
Figure 31 shows an application wherein an ac power supply and  
battery are ORed together to provide a seamless transition from  
the primary (ac) supply to the secondary (V2) supply when the  
primary supply is disconnected. By connecting the enable input  
of the ADP198 to V2, the transition from ac power to battery  
power is automatic.  
SCHOTTKY  
FORWARD  
VOLTAGE  
FORWARD VOLTAGE (V)  
300mV  
Figure 32 shows the forward voltage vs. the forward current  
characteristics of a Schottky diode and the ADP198. The low on  
resistance of the ADP198 makes it far superior to a Schottky  
diode in diode OR’ing applications.  
75mV (V  
)
HYS  
Figure 32. Forward Voltage vs. Forward Current of a Schottky  
Diode and ADP198  
In addition to low on resistance, the ADP198 reverse leakage  
current is much lower than a typical 1 A, 20 V Schottky  
Rev. D | Page 15 of 16  
 
 
 
ADP198  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
0.990  
0.950  
0.910  
2
1
A
B
1.065  
1.025  
0.985  
BALL A1  
IDENTIFIER  
0.50  
REF  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.370  
0.355  
0.340  
0.640  
0.595  
0.550  
END VIEW  
COPLANARITY  
0.05  
SEATING  
PLANE  
0.270  
0.240  
0.210  
0.340  
0.320  
0.300  
Figure 33. 4-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-4-4)  
Dimensions shown in millimeters  
1.70  
1.60  
1.50  
2.00  
BSC SQ  
0.50 BSC  
8
5
0.175 REF  
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
0.425  
0.350  
0.275  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 34. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2.00 × 2.00 mm Body, Ultra Thin, Dual Lead  
(CP-8-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Start-Up  
Time (μs)  
Package  
Option  
Model1  
Package Description  
Branding  
8C  
2W  
ADP198ACBZ-R7  
ADP198ACBZ-11-R7 −40°C to +85°C  
−40°C to +85°C  
30  
1000  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
4-Ball Wafer Level Chip Scale Package [WLCSP]  
CB-4-4  
CB-4-4  
ADP198ACPZ-R7  
−40°C to +85°C  
Pin selectable: 8-Lead Lead Frame Chip Scale Package [LFCSP_UD] CP-8-10  
LJL  
30, 200, 450,  
and 1000  
ADP198CP-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09484-0-6/12(D)  
www.analog.com/ADP198  
Rev. D | Page 16 of 16  
 
 
 
 

相关型号:

ADP199

3.6 V, 500 mA Logic Controlled
ADI

ADP199ACBZ-R7

3.6 V, 500 mA Logic Controlled
ADI

ADP199CB-EVALZ

3.6 V, 500 mA Logic Controlled
ADI

ADP2102

600mA 3MHz Synchronous Step-Down DC-DC Converter
ADI

ADP2102-EVAL

600mA 3MHz Synchronous Step-Down DC-DC Converter
ADI

ADP2102YCPZ-0.8-R7

SWITCHING REGULATOR, 3000kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ADI

ADP2102YCPZ-1-R7

SWITCHING REGULATOR, 3000 kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ROCHESTER

ADP2102YCPZ-1.0-R7

SWITCHING REGULATOR, 3000 kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ROCHESTER

ADP2102YCPZ-1.2-R7

SWITCHING REGULATOR, 3000 kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ROCHESTER

ADP2102YCPZ-1.25R7

SWITCHING REGULATOR, 3000 kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ROCHESTER

ADP2102YCPZ-1.37R7

SWITCHING REGULATOR, 3000 kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ROCHESTER

ADP2102YCPZ-1.5-R7

SWITCHING REGULATOR, 3000 kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, LFCSP-16
ROCHESTER