ADP2107ACPZ-R7 [ADI]

1 Amp/1.5 Amp/2 Amp Synchronous, Step-Down DC-to-DC Converters; 1安培/ 1.5安培/ 2安培同步,降压型DC- DC转换器
ADP2107ACPZ-R7
型号: ADP2107ACPZ-R7
厂家: ADI    ADI
描述:

1 Amp/1.5 Amp/2 Amp Synchronous, Step-Down DC-to-DC Converters
1安培/ 1.5安培/ 2安培同步,降压型DC- DC转换器

转换器
文件: 总32页 (文件大小:1006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 Amp/1.5 Amp/2 Amp Synchronous,  
Step-Down DC-to-DC Converters  
ADP2105/ADP2106/ADP2107  
GENERAL DESCRIPTION  
FEATURES  
Extremely high 97% efficiency  
Ultralow quiescent current: 20 μA  
1.2 MHz switching frequency  
0.1 μA shutdown supply current  
Maximum load current:  
ADP2105: 1 A  
ADP2106: 1.5 A  
ADP2107: 2 A  
Input voltage: 2.7 V to 5.5 V  
Output voltage: 0.8 V to VIN  
Maximum duty cycle: 100%  
Smoothly transitions into low dropout (LDO) mode  
Internal synchronous rectifier  
Small 16-lead 4 mm × 4 mm LFCSP_VQ package  
Optimized for small ceramic output capacitors  
Enable/Shutdown logic input  
Undervoltage lockout  
The ADP2105/ADP2106/ADP2107 are low quiescent current,  
synchronous, step-down dc-to-dc converters in a compact 4 mm ×  
4 mm LFCSP_VQ package. At medium-to-high load currents,  
these devices use a current-mode, constant-frequency pulse  
width modulation (PWM) control scheme for excellent stability  
and transient response. To ensure the longest battery life in  
portable applications, the ADP2105/ADP2106/ADP2107 use a  
pulse frequency modulation (PFM) control scheme under light  
load conditions that reduces switching frequency to save power.  
The ADP2105/ADP2106/ADP2107 run from input voltages of  
2.7 V to 5.5 V, allowing single Li+/Li− polymer cell, multiple  
alkaline/NiMH cells, PCMCIA, and other standard power sources.  
The output voltage of ADP2105/ADP2106/ADP2107-ADJ is  
adjustable from 0.8 V to the input voltage, while the ADP2105/  
ADP2106/ADP2107-xx are available in preset output voltage  
options of 3.3 V, 1.8 V, 1.5 V, and 1.2 V. Each of these variations is  
available in three maximum current levels, 1 A (ADP2105), 1.5 A  
(ADP2106), and 2 A (ADP2107). The power switch and synchro-  
nous rectifier are integrated for minimal external part count  
and high efficiency. During logic-controlled shutdown, the  
input is disconnected from the output, and it draws less than  
0.1 μA from the input source. Other key features include  
undervoltage lockout to prevent deep-battery discharge and  
programmable soft start to limit inrush current at startup.  
Soft start  
APPLICATIONS  
Mobile handsets  
PDAs and palmtop computers  
Telecommunication/Networking equipment  
Set top boxes  
Audio/Video consumer electronics  
TYPICAL PERFORMANCE CHARACTERISTICS  
TYPICAL OPERATING CIRCUIT  
0.1μF  
V
INPUT VOLTAGE = 2.7V TO 5.5V  
10Ω  
IN  
100  
10μF  
V
= 2.5V  
OUT  
V
= 3.6V  
IN  
V
= 3.3V  
FB  
IN  
16  
15  
14  
IN PWIN1  
LX2 12  
13  
95  
90  
85  
80  
75  
FB GND  
ON  
OUTPUT VOLTAGE = 2.5V  
1
2
3
4
EN  
OFF  
2μH  
PGND  
11  
10  
9
GND  
GND  
GND  
10μF 4.7μF  
85kΩ  
ADP2107-ADJ  
V
= 5V  
IN  
LX1  
FB  
V
IN  
40kΩ  
PWIN2  
LOAD  
COMP SS AGND NC  
5
0A TO 2A  
10μF  
6
7
8
1nF  
70kΩ  
120pF  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
LOAD CURRENT (mA)  
NC = NO CONNECT  
Figure 2. Circuit Configuration of ADP2107 with VOUT = 2.5 V  
Figure 1. Efficiency vs. Load Current for the ADP2107 with VOUT = 2.5 V  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADP2105/ADP2106/ADP2107  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Setting the Output Voltage........................................................ 15  
Inductor Selection...................................................................... 16  
Output Capacitor Selection....................................................... 17  
Input Capacitor Selection.......................................................... 17  
Input Filter................................................................................... 18  
Soft Start ...................................................................................... 18  
Loop Compensation .................................................................. 18  
Bode Plots.................................................................................... 19  
Load Transient Response .......................................................... 20  
Efficiency Considerations ......................................................... 21  
Thermal Considerations............................................................ 21  
Design Example.......................................................................... 22  
External Component Recommendations.................................... 24  
Circuit Board Layout Recommendations ................................... 26  
Evaluation Board ............................................................................ 27  
Evaluation Board Schematic (ADP2107-1.8V)...................... 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Performance Characteristics ............................................. 1  
Typical Operating Circuit................................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Boundary Condition.................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 12  
Control Scheme .......................................................................... 12  
PWM Mode Operation.............................................................. 12  
PFM Mode Operation................................................................ 12  
Pulse-Skipping Threshold ......................................................... 12  
100% Duty Cycle Operation (LDO Mode)............................. 12  
Slope Compensation .................................................................. 13  
Features........................................................................................ 13  
Applications Information .............................................................. 15  
External Component Selection................................................. 15  
Recommended PCB Board Layout  
(Evaluation Board Layout)........................................................ 27  
Application Circuits ....................................................................... 29  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
ADP2105/ADP2106/ADP2107  
SPECIFICATIONS  
VIN = 3.6 V @ TA = 25°C, unless otherwise noted.1 Bold values indicate −40°C ≤ TJ ≤ +125°C.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Voltage Range  
Undervoltage Lockout Threshold  
V
V
V
mV  
2.7  
2.2  
2.0  
5.5  
2.6  
2.5  
VIN rising  
VIN falling  
2.4  
2.2  
200  
Undervoltage Lockout Hysteresis2  
OUTPUT CHARACTERISTICS  
Output Regulation Voltage  
ADP210x-3.3, load = 10 mA  
ADP210x-3.3, VIN = 3.5 V to 5.5 V, no load to full load  
ADP210x-1.8, load = 10 mA  
ADP210x-1.8, VIN = 2.7 V to 5.5 V, no load to full load  
ADP210x-1.5, load = 10 mA  
ADP210x-1.5, VIN = 2.7 V to 5.5 V, no load to full load  
ADP210x-1.2, load = 10 mA  
ADP210x-1.2, VIN = 2.7 V to 5.5 V, no load to full load  
ADP2105  
ADP2106  
ADP2107  
Measured in servo loop  
ADP210x-ADJ  
3.267 3.3  
3.3  
1.782 1.8  
1.8  
1.485 1.5  
1.5  
1.188 1.2  
3.333  
3.399  
1.818  
1.854  
1.515  
1.545  
1.212  
1.236  
V
V
V
V
V
V
V
V
%/A  
%/A  
%/A  
%/V  
V
3.201  
1.746  
1.455  
1.2  
0.4  
0.5  
0.6  
0.1  
1.164  
Load Regulation  
Line Regulation3  
0.3  
VIN  
Output Voltage Range  
FEEDBACK CHARACTERISTICS  
OUT_SENSE Bias Current  
0.8  
ADP210x-1.2  
ADP210x-1.5  
ADP210x-1.8  
ADP210x-3.3  
ADP210x-ADJ  
ADP210x-ADJ  
3
6
μA  
μA  
μA  
μA  
V
4
8
5
10  
10  
0.8  
20  
FB Regulation Voltage  
FB Bias Current  
0.784  
−0.1  
0.816  
+0.1  
μA  
INPUT CURRENT CHARACTERISTICS  
IN Operating Current  
ADP210x-ADJ, VFB = 0.9 V  
20  
20  
0.1  
30  
30  
15  
μA  
μA  
μA  
ADP210x-xx, output voltage 10% above regulation voltage  
VEN = 0 V  
IN Shutdown Current  
LX (SWITCH NODE) CHARACTERISTICS  
LX On Resistance4  
P-channel switch  
100  
90  
165  
140  
15  
mΩ  
mΩ  
μA  
A
A
A
N-channel synchronous rectifier  
VIN = 5.5 V, VLX = 0 V, 5.5 V  
LX Leakage Current4  
LX Peak Current Limit4  
0.1  
2.9  
2.25  
1.5  
P-channel switch, ADP2107  
P-channel switch, ADP2106  
P-channel switch, ADP2105  
In PWM mode of operation, VIN = 5.5 V  
2.6  
2.0  
1.3  
3.3  
2.6  
1.8  
100  
LX Minimum On-Time4  
ENABLE CHARACTERISTICS  
EN Input High Voltage  
EN Input Low Voltage  
ns  
VIN = 2.7 V to 5.5 V  
VIN = 2.7 V to 5.5 V  
VIN = 5.5 V, VEN = 0 V, 5.5 V  
V
V
2
0.4  
+1  
EN Input Leakage Current  
−1  
1
0.1  
1.2  
μA  
MHz  
OSCILLATOR FREQUENCY  
SOFT START PERIOD  
VIN = 2.7 V to 5.5 V  
CSS = 1 nF  
1.4  
750  
1000  
1200  
μs  
Rev. 0 | Page 3 of 32  
 
 
 
 
ADP2105/ADP2106/ADP2107  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
THERMAL CHARACTERISTICS  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
140  
40  
°C  
°C  
COMPENSATOR TRANSCONDUCTANCE (Gm)  
CURRENT SENSE AMPLIFIER GAIN (GCS)2  
50  
μA/V  
A/V  
A/V  
A/V  
ADP2105  
ADP2106  
ADP2107  
1.875  
2.8125  
3.625  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). Typical values are at TA = 25°C.  
2 Guaranteed by design.  
3 The ADP2015/ADP2106/ADP2107 line regulation was measured in a servo loop on the ATE that adjusts the feedback voltage to achieve a specific comp voltage.  
4 All LX (switch node) characteristics are guaranteed only when the LX1 and LX2 pins are tied together.  
5 These specifications are guaranteed from −40°C to +85°C.  
Rev. 0 | Page 4 of 32  
 
ADP2105/ADP2106/ADP2107  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
IN, EN, SS, COMP, OUT_SENSE/FB to  
AGND  
−0.3 V to +6 V  
LX1, LX2 to PGND  
PWIN1, PWIN2 to PGND  
PGND to AGND  
GND to AGND  
PWIN1, PWIN2 to IN  
−0.3 V to (VIN + 0.3 V)  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
Table 3. Thermal Resistance  
Package Type  
16-Lead LFCSP_VQ/QFN  
Maximum Power Dissipation  
1
θJA  
40  
1
Unit  
°C/W  
W
Operating Junction Temperature Range −40°C to +125°C  
1 θJA is specified for the worst-case conditions; that is, θJA is specified for device  
soldered in circuit board for surface mount packages.  
Storage Temperature Range  
Soldering Conditions  
−65°C to +150°C  
JEDEC J-STD-020  
BOUNDARY CONDITION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Natural convection, 4-layer board, exposed pad soldered to  
the PCB.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 32  
 
 
 
 
ADP2105/ADP2106/ADP2107  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 LX2  
11 PGND  
10 LX1  
EN  
GND  
GND  
GND  
1
2
3
4
ADP2105/  
ADP2106/  
ADP2107  
TOP VIEW  
(Not to Scale)  
9
PWIN2  
NC = NO CONNECT  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Mnemonic  
Pin No. ADP210x-xx ADP210x-ADJ Description  
1
EN  
EN  
Enable Input. Drive EN high to turn on the ADP2105/ADP2106/ADP2107. Drive EN low to turn  
it off and reduce the input current to 0.1 μA.  
2, 3, 4,  
15  
GND  
GND  
Test Pins. These pins are used by Analog Devices, Inc. for internal testing and are not ground  
return pins. Tie these pins to the AGND plane as close to the ADP2105/ADP2106/ADP2107 as  
possible.  
5
COMP  
COMP  
Feedback Loop Compensation Node. COMP is the output of the internal transconductance  
error amplifier. Place a series RC network from COMP to AGND to compensate the converter.  
See the Loop Compensation section.  
6
7
SS  
SS  
Soft Start Input. Place a capacitor from SS to AGND to set the soft start period. A 1 nF capacitor  
sets a 1 ms soft start period.  
Analog Ground. Connect the ground of the compensation components, soft start capacitor,  
and the voltage divider on the FB pin to the AGND pin as close as possible to the ADP2105/  
ADP2106/ADP2107. Also connect AGND to the exposed pad of ADP2105/ADP2106/ADP2107.  
AGND  
AGND  
8
NC  
NC  
No Connect. Not internally connected. Can be connected to other pins or left unconnected.  
9, 13  
PWIN2,  
PWIN1  
PWIN2, PWIN1 Power Source Inputs. The source of the PFET high-side switch. Bypass each PWIN pin to the nearest  
PGND plane with a 4.7 μF or greater capacitor as close as possible to the ADP2105/ADP2106/  
ADP2107. See the Input Capacitor Selection section.  
10, 12  
11  
LX1, LX2  
PGND  
IN  
LX1, LX2  
PGND  
IN  
Switch Outputs. The drain of the P-channel power switch and N-channel synchronous rectifier.  
Tie the two LX pins together and connect the output LC filter between LX and the output  
voltage.  
Power Ground. Connect the ground return of all input and output capacitors to PGND pin,  
using a power ground plane as close as possible to the ADP2105/ADP2106/ADP2107. Also  
connect PGND to the exposed pad of the ADP2105/ADP2106/ADP2107.  
ADP2105/ADP2106/ADP2107 Power Input. The power source for the ADP2105/ADP2106/  
ADP2107 internal circuitry. Connect IN and PWIN1 with a 10 Ω resistor as close as possible to  
the ADP2105/ADP2106/ADP2107. Bypass IN to AGND with a 0.1 μF or greater capacitor. See  
the Input Filter section.  
14  
16  
OUT_SENSE  
FB  
Output Voltage Sense or Feedback Input. For fixed output versions, connect OUT_SENSE to the  
output voltage. For adjustable versions, FB is the input to the error amplifier. Drive FB through  
a resistive voltage divider to set the output voltage. The FB regulation voltage is 0.8 V.  
Rev. 0 | Page 6 of 32  
 
ADP2105/ADP2106/ADP2107  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
V
= 2.7V  
IN  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
V
= 5.5V  
IN  
V
= 4.2V  
IN  
V
= 4.2V  
IN  
V
= 5.5V  
IN  
INDUCTOR: SD14, 2.5µH  
INDUCTOR: SD3814, 3.3µH  
DCR: 60m  
A
DCR: 93mꢀ  
T
= 25°C  
T
= 25°C  
A
1
1
1
10  
100  
1000  
1
1
1
1000  
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. Efficiency—ADP2105 (1.2 V Output)  
Figure 7. Efficiency—ADP2105 (1.8 V Output)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 4.2V  
V
= 5.5V  
IN  
IN  
V
= 4.2V  
IN  
V
= 5.5V  
IN  
INDUCTOR: D62LCB, 2µH  
DCR: 28mꢀ  
= 25°C  
INDUCTOR: CDRH5D18, 4.1μH  
DCR: 43mꢀ  
T
T
= 25°C  
A
A
10  
100  
LOAD CURRENT (mA)  
1000  
10000  
1000  
10  
100  
LOAD CURRENT (mA)  
Figure 5. Efficiency—ADP2105 (3.3 V Output)  
Figure 8. Efficiency—ADP2106 (1.2 V Output)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
V
= 5.5V  
IN  
V
= 4.2V  
IN  
V
= 4.2V  
IN  
V
= 5.5V  
IN  
V
= 3.6V  
10  
IN  
INDUCTOR: D62LCB, 2µH  
INDUCTOR: D62LCB, 3.3µH  
DCR: 28mꢀ  
DCR: 47mꢀ  
T = 25°C  
T
= 25°C  
A
A
10000  
10000  
10  
100  
LOAD CURRENT (mA)  
1000  
100  
LOAD CURRENT (mA)  
1000  
Figure 6. Efficiency—ADP2106 (1.8 V Output)  
Figure 9. Efficiency—ADP2106 (3.3 V Output)  
Rev. 0 | Page 7 of 32  
 
 
ADP2105/ADP2106/ADP2107  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 3.6V  
IN  
95  
V
= 2.7V  
IN  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 4.2V  
IN  
V
= 5.5V  
IN  
V
= 4.2V  
IN  
V
= 5.5V  
IN  
INDUCTOR: SD12, 1.2µH  
DCR: 37mꢀ  
= 25°C  
INDUCTOR: D62LCB, 1.5µH  
DCR: 21m  
T
T
= 25°C  
A
A
1
10  
100  
LOAD CURRENT (mA)  
1000  
10000  
1
10000  
10000  
10000  
10  
100  
LOAD CURRENT (mA)  
1000  
Figure 10. Efficiency—ADP2107 (1.2 V)  
Figure 13. Efficiency—ADP2107 (1.8 V)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
2.7V, –40°C  
3.6V, –40°C  
5.5V, –40°C  
2.7V, +25°C  
3.6V, +25°C  
5.5V, +25°C  
2.7V, +125°C  
3.6V, +125°C  
5.5V, +125°C  
V
= 5.5V  
IN  
V
= 4.2V  
IN  
V
= 3.6V  
IN  
INDUCTOR: CDRH5D28, 2.5µH  
DCR: 13mꢀ  
A
T
= 25°C  
1
10000  
0.01  
0.1  
1
10  
100  
1000  
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 11. Efficiency—ADP2107 (3.3 V)  
Figure 14. Output Voltage Accuracy—ADP2107 (1.2 V)  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.6V, –40°C  
5.5V, –40°C  
3.6V, +25°C  
5.5V, +25°C  
3.6V, +125°C  
5.5V, +125°C  
2.7V, –40°C  
3.6V, –40°C  
5.5V, –40°C  
2.7V, +25°C  
3.6V, +25°C  
5.5V, +25°C  
2.7V, +125°C  
3.6V, +125°C  
5.5V, +125°C  
0.1  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 12. Output Voltage Accuracy—ADP2107 (1.8 V)  
Figure 15. Output Voltage Accuracy—ADP2107 (3.3 V)  
Rev. 0 | Page 8 of 32  
ADP2105/ADP2106/ADP2107  
10000  
1000  
100  
10  
120  
100  
80  
60  
40  
20  
0
PMOS POWER SWITCH  
+25°C  
–40°C  
NMOS SYNCHRONOUS RECTIFIER  
+125°C  
T
= 25°C  
A
1
0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Quiescent Current vs. Input Voltage  
Figure 19. Switch On Resistance vs. Input Voltage  
0.802  
1260  
1250  
1240  
1230  
1220  
1210  
1200  
1190  
0.801  
0.800  
0.799  
0.798  
0.797  
0.796  
0.795  
+125°C  
+25°C  
–40°C  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
–40  
–20  
0
20  
40  
60  
80  
100  
120125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. Switching Frequency vs. Input Voltage  
Figure 17. Feedback Voltage vs. Temperature  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
ADP2106 (1.5A)  
ADP2105 (1A)  
T
A
= 25°C  
5.4 5.7  
T
= 25°C  
A
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 21. Peak Current Limit of ADP2106  
Figure 18. Peak Current Limit of ADP2105  
Rev. 0 | Page 9 of 32  
 
ADP2105/ADP2106/ADP2107  
3.00  
2.95  
2.90  
135  
120  
105  
90  
2.85  
ADP2107 (2A)  
V
= 1.2V  
OUT  
2.80  
75  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
60  
45  
V
= 1.8V  
OUT  
V
= 2.5V  
OUT  
30  
15  
T
= 25°C  
T
= 25°C  
A
A
0
2.7  
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 22. Peak Current Limit of ADP2107  
Figure 25. Pulse Skipping Threshold vs. Input Voltage for ADP2105  
150  
195  
180  
135  
120  
105  
90  
V
= 1.2V  
165  
150  
135  
120  
105  
90  
OUT  
V
V
= 1.8V  
= 2.5V  
OUT  
OUT  
V
= 1.2V  
OUT  
75  
60  
75  
V
= 2.5V  
OUT  
V
= 1.8V  
OUT  
60  
45  
45  
30  
30  
15  
15  
T
= 25°C  
T
= 25°C  
A
A
0
2.7  
0
2.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
3.0  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
5.7  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 23. Pulse Skipping Threshold vs. Input Voltage for ADP2106  
Figure 26. Pulse Skipping Threshold vs. Input Voltage for ADP2107  
140  
LX NODE (SWITCH NODE)  
120  
3
PMOS POWER SWITCH  
100  
INDUCTOR CURRENT  
Δ: 260mV  
80  
@: 3.26V  
NMOS SYNCHRONOUS RECTIFIER  
60  
40  
20  
0
1
OUTPUT VOLTAGE  
4
CH1 1V  
CH3 5V  
M
T
10µs  
45.8%  
A
CH1  
1.78V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CH4 1Aꢀ  
JUNCTION TEMPERATURE (°C)  
Figure 24. Short Circuit Response at Output  
Figure 27. Switch On Resistance vs. Temperature  
Rev. 0 | Page 10 of 32  
 
 
 
ADP2105/ADP2106/ADP2107  
LX NODE (SWITCH NODE)  
LX NODE  
(SWITCH NODE)  
3
1
3
1
OUTPUT VOLTAGE (AC-COUPLED)  
INDUCTOR CURRENT  
OUTPUT VOLTAGE (AC-COUPLED)  
INDUCTOR CURRENT  
4
4
CH1 50mV  
CH3 2V  
M
T
2µs  
6%  
A
CH3  
3.88V  
CH1 20mV  
CH3 2V  
M
T
1µs  
17.4%  
A
CH3  
3.88V  
CH4 200mAꢀ  
CH4 1Aꢀ  
Figure 28. PFM Mode of Operation at Very Light Load (10 mA)  
Figure 31. PWM Mode of Operation at Medium/Heavy Load (1.5 A)  
LX NODE (SWITCH NODE)  
3
CHANNEL 3  
Δ: 2.86A  
3
FREQUENCY  
@: 2.86A  
= 336.6kHz  
LX NODE (SWITCH NODE)  
1
4
INDUCTOR CURRENT  
OUTPUT VOLTAGE (AC-COUPLED)  
OUTPUT VOLTAGE  
1
4
INDUCTOR CURRENT  
CH1 50mV  
CH3 2V  
M
T
400ns  
17.4%  
A
CH3  
3.88V  
CH1 1V  
CH3 5V  
M
T
4µs  
45%  
A
CH3  
1.8V  
CH4 200mAꢀ  
CH4 1Aꢀ  
Figure 29. DCM Mode of Operation at Light Load (100 mA)  
Figure 32. Current Limit Behavior of ADP2107 (Frequency Foldback)  
LX NODE (SWITCH NODE)  
ENABLE VOLTAGE  
3
OUTPUT VOLTAGE  
3
1
1
INDUCTOR CURRENT  
OUTPUT VOLTAGE (AC-COUPLED)  
INDUCTOR CURRENT  
4
4
CH1 20mV  
CH3 2V  
M
T
2µs  
13.4%  
A
CH3  
1.84V  
CH1 1V  
CH3 5V  
M
T
400µs  
20.2%  
A
CH1  
1.84V  
CH4 1Aꢀ  
CH4 500mAꢀ  
Figure 30. Minimum Off Time Control at Dropout  
Figure 33. Startup and Shutdown Waveform (CSS = 1 nF SS Time = 1 ms)  
Rev. 0 | Page 11 of 32  
ADP2105/ADP2106/ADP2107  
THEORY OF OPERATION  
The ADP2105/ADP2106/ADP2107 are step-down, dc-to-dc  
converters that use a fixed frequency, peak current-mode  
architecture with an integrated high-side switch and low-side  
synchronous rectifier. The high 1.2 MHz switching frequency  
and tiny 16-lead, 4 mm × 4 mm LFCSP_VQ package allow for  
a small step-down dc-to-dc converter solution. The integrated  
high-side switch (P-channel MOSFET) and synchronous rectifier  
(N-channel MOSFET) yield high efficiency at medium-to-  
heavy loads. Light load efficiency is improved by smoothly  
transitioning to variable frequency PFM mode.  
PFM MODE OPERATION  
The ADP2105/ADP2106/ADP2107 smoothly transition to the  
variable frequency PFM mode of operation when the load current  
decreases below the pulse-skipping threshold current, switching  
only as necessary to maintain the output voltage within regulation.  
When the output voltage dips below regulation, the ADP2105/  
ADP2106/ADP2107 enter PWM mode for a few oscillator cycles  
to increase the output voltage back to regulation. During the wait  
time between bursts, both power switches are off, and the output  
capacitor supplies all the load current. Because the output voltage  
dips and recovers occasionally, the output voltage ripple in this  
mode is larger than the ripple in the PWM mode of operation.  
The ADP2105/ADP2106/ADP2107-ADJ operate with an input  
voltage from 2.7 V to 5.5 V and regulate an output voltage down  
to 0.8 V. The ADP2105/ADP2106/ADP2107 are also available with  
preset output voltage options of 3.3 V, 1.8 V, 1.5 V, and 1.2 V.  
PULSE-SKIPPING THRESHOLD  
The output current at which the ADP2105/ADP2106/ADP2107  
transition from variable frequency PFM control to fixed frequency  
PWM control is called the pulse-skipping threshold. The pulse-  
skipping threshold has been optimized for excellent efficiency  
over all load currents. The variation of pulse-skipping threshold  
with input voltage and output voltage is shown in Figure 23,  
Figure 25, and Figure 26.  
CONTROL SCHEME  
The ADP2105/ADP2106/ADP2107 operate with a fixed  
frequency, peak current-mode PWM control architecture at  
medium-to-high loads for high efficiency, but shift to a variable  
frequency PFM control scheme at light loads for lower quies-  
cent current. When operating in fixed frequency PWM mode,  
the duty cycle of the integrated switches is adjusted to regulate  
the output voltage, but when operating in PFM mode at light  
loads, the switching frequency is adjusted to regulate the output  
voltage.  
100% DUTY CYCLE OPERATION (LDO MODE)  
As the input voltage drops, approaching the output voltage,  
the ADP2105/ADP2106/ADP2107 smoothly transition to 100%  
duty cycle, maintaining the P-channel MOSFET switch on continu-  
ously. This allows the ADP2105/ADP2106/ADP2107 to regulate  
the output voltage until the drop in input voltage forces the  
P-channel MOSFET switch to enter dropout, as shown in the  
following equation:  
The ADP2105/ADP2106/ADP2107 operate in the PWM mode  
only when the load current is greater than the pulse-skipping  
threshold current. At load currents below this value, the converter  
smoothly transitions to the PFM mode of operation.  
V
IN(MIN) = IOUT × (RDS(ON) − P + DCRIND) + VOUT(NOM)  
PWM MODE OPERATION  
In PWM mode, the ADP2105/ADP2106/ADP2107 operate at  
a fixed frequency of 1.2 MHz set by an internal oscillator. At the  
start of each oscillator cycle, the P-channel MOSFET switch is  
turned on, putting a positive voltage across the inductor. Current  
in the inductor increases until the current sense signal crosses  
the peak inductor current level that turns off the P-channel  
MOSFET switch and turns on the N-channel MOSFET synchro-  
nous rectifier. This puts a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle, unless the inductor  
current reaches zero, which causes the zero-crossing comparator  
to turn off the N-channel MOSFET, as well. The peak inductor  
current is set by the voltage on the COMP pin. The COMP pin  
is the output of a transconductance error amplifier that compares  
the feedback voltage with an internal 0.8 V reference.  
The ADP2105/ADP2106/ADP2107 achieve 100% duty cycle  
operation by stretching the P-channel MOSFET switch on-time  
if the inductor current does not reach the peak inductor current  
level by the end of the clock cycle. Once this happens, the oscil-  
lator remains off until the inductor current reaches the peak  
inductor current level, at which time the switch is turned off and  
the synchronous rectifier is turned on for a fixed off-time. At  
the end of the fixed off-time, another cycle is initiated. As the  
ADP2105/ADP2106/ADP2107 approach dropout, the switching  
frequency decreases gradually to smoothly transition to 100%  
duty cycle operation.  
Rev. 0 | Page 12 of 32  
 
 
ADP2105/ADP2106/ADP2107  
Short Circuit Protection  
SLOPE COMPENSATION  
The ADP2105/ADP2106/ADP2107 include frequency foldback  
to prevent output current run-away on a hard short. When the  
voltage at the feedback pin falls below 0.3 V, indicating the possi-  
bility of a hard short at the output, the switching frequency is  
reduced to 1/4 of the internal oscillator frequency. The reduction  
in the switching frequency gives more time for the inductor to  
discharge, preventing a runaway of output current.  
Slope compensation stabilizes the internal current control loop  
of the ADP2105/ADP2106/ADP2107 when operating beyond  
50% duty cycle to prevent sub-harmonic oscillations. It is imple-  
mented by summing a fixed scaled voltage ramp to the current  
sense signal during the on-time of the P-channel MOSFET switch.  
The slope compensation ramp value determines the minimum  
inductor that can be used to prevent sub-harmonic oscillations  
at a given output voltage. The slope compensation ramp values  
for ADP2105/ADP2106/ADP2107 follow. For more information,  
see the Inductor Selection section.  
Undervoltage Lockout (UVLO)  
To protect against deep battery discharge, undervoltage lockout  
circuitry is integrated on the ADP2105/ADP2106/ADP2107.  
If the input voltage drops below the 2.2 V UVLO threshold, the  
ADP2105/ADP2106/ADP2107 shut down, and both the power  
switch and synchronous rectifier turn off. Once the voltage rises  
again above the UVLO threshold, the soft start period is initiated,  
and the part is enabled.  
For the ADP2105:  
Slope Compensation Ramp Value = 0.72 A/ꢀs  
For the ADP2106:  
Slope Compensation Ramp Value = 1.07 A/ꢀs  
For the ADP2107:  
Thermal Protection  
In the event that the ADP2105/ADP2106/ADP2107 junction  
temperatures rise above 140°C, the thermal shutdown circuit turns  
off the converter. Extreme junction temperatures can be the  
result of high current operation, poor circuit board design, and/or  
high ambient temperature. A 40°C hysteresis is included so that  
when thermal shutdown occurs, the ADP2105/ADP2106/  
ADP2107 do not return to operation until the on-chip tempera-  
ture drops below 100°C. When coming out of thermal  
shutdown, soft start is initiated.  
Slope Compensation Ramp Value = 1.38 A/ꢀs  
FEATURES  
Enable/Shutdown  
Drive EN high to turn on the ADP2105/ADP2106/ADP2107.  
Drive EN low to turn off the ADP2105/ADP2106/ADP2107,  
reducing input current below 0.1 μA. To force the ADP2105/  
ADP2106/ADP2107 to automatically start when input power  
is applied, connect EN to IN. When shut down, the ADP2105/  
ADP2106/ADP2107 discharge the soft start capacitor, causing  
a new soft start cycle every time they are re-enabled.  
Soft Start  
The ADP2105/ADP2106/ADP2107 include soft start circuitry  
to limit the output voltage rise time to reduce inrush current at  
startup. To set the soft start period, connect the soft start  
capacitor (CSS) from SS to AGND. When the ADP2105/ADP2106/  
ADP2107 are disabled, or if the input voltage is below the under-  
voltage lockout threshold, CSS is internally discharged. When the  
ADP2105/ADP2106/ADP2107 are enabled, CSS is charged through  
an internal 0.8 ꢀA current source, causing the voltage at SS to rise  
linearly. The output voltage rises linearly with the voltage at SS.  
Synchronous Rectification  
In addition to the P-channel MOSFET switch, the ADP2105/  
ADP2106/ADP2107 include an integrated N-channel MOSFET  
synchronous rectifier. The synchronous rectifier improves  
efficiency, especially at low output voltage, and reduces cost and  
board space by eliminating the need for an external rectifier.  
Current Limit  
The ADP2105/ADP2106/ADP2107 have protection circuitry to  
limit the direction and amount of current flowing through the  
power switch and synchronous rectifier. The positive current  
limit on the power switch limits the amount of current that can  
flow from the input to the output, while the negative current  
limit on the synchronous rectifier prevents the inductor current  
from reversing direction and flowing out of the load.  
Rev. 0 | Page 13 of 32  
 
 
ADP2105/ADP2106/ADP2107  
5
14  
COMP  
IN  
9
PWIN2  
PWIN1  
SOFT  
START  
REFERENCE  
0.8V  
6
16  
16  
7
SS  
1
CURRENT SENSE  
AMPLIFIER  
13  
FB  
1
OUT_SENSE  
GM ERROR  
AMP  
CURRENT  
LIMIT  
PWM/  
PFM  
CONTROL  
AGND  
FOR PRESET  
VOLTAGES  
OPTIONS ONLY  
DRIVER  
AND  
ANTI-  
2
3
GND  
GND  
GND  
NC  
10  
12  
LX1  
LX2  
SHOOT  
THROUGH  
SLOPE  
COMPENSATION  
4
8
15  
GND  
OSCILLATOR  
ZERO CROSS  
COMPARATOR  
11  
PGND  
THERMAL  
SHUTDOWN  
1
EN  
1
FB FOR ADP210x-ADJ (ADJUSTABLE VERSION) AND OUT_SENSE FOR ADP210x-xx (FIXED VERSION).  
Figure 34. Block Diagram of the ADP2105/ADP2106/ADP2107  
Rev. 0 | Page 14 of 32  
ADP2105/ADP2106/ADP2107  
APPLICATIONS INFORMATION  
into account when calculating resistor values. The FB bias  
current can be ignored for a higher divider string current, but  
this degrades efficiency at very light loads.  
EXTERNAL COMPONENT SELECTION  
The external component selection for the ADP2105/ADP2106/  
ADP2107 application circuits shown in Figure 35 and Figure 36  
depend on input voltage, output voltage, and load current  
requirements. Additionally, tradeoffs between performance  
parameters like efficiency and transient response can be made  
by varying the choice of external components.  
To limit output voltage accuracy degradation due to FB bias  
current to less than 0.05% (0.5% maximum), ensure that the  
divider string current is greater than 20 ꢀA. To calculate the  
desired resistor values, first determine the value of the bottom  
divider string resistor, RBOT, by  
SETTING THE OUTPUT VOLTAGE  
VFB  
ISTRING  
RBOT  
=
The output voltage of ADP2105/ADP2106/ADP2107-ADJ is  
externally set by a resistive voltage divider from the output  
voltage to FB. The ratio of the resistive voltage divider sets the  
output voltage, while the absolute value of those resistors sets  
the divider string current. For lower divider string currents, the  
small 10 nA (0.1 ꢀA maximum) FB bias current should be taken  
where:  
FB = 0.8 V, the internal reference.  
V
ISTRING is the resistor divider string current.  
0.1μF  
V
INPUT VOLTAGE = 2.7V TO 5.5V  
10ꢀ  
IN  
C
IN1  
V
OUT  
16  
15  
14  
GND IN PWIN1  
LX2  
13  
OUT_SENSE  
ON  
1
2
3
4
12  
EN  
OFF  
OUTPUT VOLTAGE = 1.2V, 1.5V, 1.8V, 3.3V  
L
V
OUT  
GND  
PGND 11  
LX1 10  
ADP2105/  
ADP2106/  
ADP2107  
C
OUT  
LOAD  
GND  
V
IN  
GND  
PWIN2  
9
C
IN2  
COMP SS AGND NC  
5
6
7
8
C
SS  
R
COMP  
C
COMP  
NC = NO CONNECT  
Figure 35. Typical Applications Circuit for Fixed Output Voltage Options (ADP2105/ADP2106/ADP2107-xx)  
0.1μF  
V
INPUT VOLTAGE = 2.7V TO 5.5V  
C
10ꢀ  
IN  
IN1  
FB  
16  
15  
14  
13  
FB GND  
IN PWIN1  
ON  
1
2
3
4
EN  
LX2 12  
OFF  
OUTPUT VOLTAGE  
= 0.8V TO V  
L
IN  
GND  
GND  
GND  
PGND 11  
ADP2105/  
ADP2106/  
ADP2107  
C
OUT  
R
R
TOP  
LOAD  
LX1  
10  
9
V
FB  
IN  
PWIN2  
C
IN2  
BOT  
COMP SS AGND NC  
5
6
7
8
C
SS  
R
COMP  
C
COMP  
NC = NO CONNECT  
Figure 36. Typical Applications Circuit for Adjustable Output Voltage Option (ADP2105/ADP2106/ADP2107-ADJ)  
Rev. 0 | Page 15 of 32  
 
 
 
 
ADP2105/ADP2106/ADP2107  
Ensure that the maximum rms current of the inductor is greater  
than the maximum load current, and the saturation current of  
the inductor is greater than the peak current limit of the converter  
used in the application.  
Once RBOT is determined, calculate the value of the top resistor,  
RTOP, by  
VOUT VFB  
RTOP = RBOT  
VFB  
Table 5. Minimum Inductor Value for Common Output  
The ADP2105/ADP2106/ADP2107-xx (where xx represents  
the fixed output voltage) include the resistive voltage divider  
internally, reducing the external circuitry required. Connect the  
OUT_SENSE to the output voltage as close as possible to the  
load for improved load regulation.  
Voltage Options for the ADP2105 (1 A)  
VIN  
VOUT  
2.7 V  
3.6 V  
4.2 V  
5.5 V  
1.67 μH  
1.68 μH  
2.02 μH  
2.80 μH  
3.70 μH  
2.00 μH  
2.19 μH  
2.25 μH  
2.80 μH  
3.70 μH  
2.14 μH  
2.41 μH  
2.57 μH  
2.80 μH  
3.70 μH  
2.35 μH  
2.73 μH  
3.03 μH  
3.41 μH  
3.70 μH  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
INDUCTOR SELECTION  
The high switching frequency of ADP2105/ADP2106/ADP2107  
allows for minimal output voltage ripple even with small inductors.  
The sizing of the inductor is a trade-off between efficiency and  
transient response. A small inductor leads to larger inductor  
current ripple that provides excellent transient response but  
degrades efficiency. Due to the high switching frequency of  
ADP2105/ADP2106/ADP2107, shielded ferrite core inductors  
are recommended for their low core losses and low EMI.  
Table 6. Minimum Inductor Value for Common Output  
Voltage Options for the ADP2106 (1.5 A)  
VIN  
VOUT  
2.7 V  
3.6 V  
4.2 V  
5.5 V  
1.11 μH  
1.25 μH  
1.49 μH  
2.08 μH  
2.74 μH  
2.33 μH  
1.46 μH  
1.50 μH  
2.08 μH  
2.74 μH  
2.43 μH  
1.61 μH  
1.71 μH  
2.08 μH  
2.74 μH  
1.56 μH  
1.82 μH  
2.02 μH  
2.27 μH  
2.74 μH  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
As a guideline, the inductor peak-to-peak current ripple, ΔIL,  
is typically set to 1/3 of the maximum load current for optimal  
transient response and efficiency.  
ILOAD(MAX)  
VOUT × (VIN VOUT  
VIN × fSW × L  
)
ΔIL  
=
3
Table 7. Minimum Inductor Value for Common Output  
Voltage Options for the ADP2107 (2 A)  
2.5×VOUT ×(VIN VOUT  
)
LIDEAL  
=
ꢀH  
VIN  
VIN × ILOAD  
(MAX)  
VOUT  
2.7 V  
3.6 V  
4.2 V  
5.5 V  
where fSW is the switching frequency (1.2 MHz).  
0.83 μH  
0.99 μH  
1.19 μH  
1.65 μH  
2.18 μH  
1.00 μH  
1.09 μH  
1.19 μH  
1.65 μH  
2.18 μH  
1.07 μH  
1.21 μH  
1.29 μH  
1.65 μH  
2.18 μH  
1.17 μH  
1.36 μH  
1.51 μH  
1.70 μH  
2.18 μH  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
The ADP2105/ADP2106/ADP2107 use slope compensation in  
the current control loop to prevent subharmonic oscillations  
when operating beyond 50% duty cycle. The fixed slope compen-  
sation limits the minimum inductor value as a function of  
output voltage.  
Table 8. Inductor Recommendations for the ADP2105/  
ADP2106/ADP2107  
For the ADP2105:  
L > (1.12 ꢀH/V) × VOUT  
For the ADP2106:  
Small-Sized Inductors Large-Sized Inductors  
Vendor  
( < 5 mm × 5 mm)  
( > 5 mm × 5 mm)  
Sumida  
CDRH2D14, 3D16,  
3D28  
CDRH4D18, 4D22,  
4D28, 5D18, 6D12  
L > (0.83 ꢀH/V) × VOUT  
For the ADP2107:  
Toko  
1069AS-DB3018,  
1098AS-DE2812,  
1070AS-DB3020  
D52LC, D518LC,  
D62LCB  
L > (0.66 ꢀH/V) × VOUT  
Also, 4.7 ꢀH or larger inductors are not recommended because  
they may cause instability in discontinuous conduction mode  
under light load conditions.  
Coilcraft  
LPS3015, LPS4012,  
DO3314  
DO1605T  
Cooper  
Bussmann  
SD3110, SD3112,  
SD3114, SD3118,  
SD3812, SD3814  
SD10, SD12, SD14, SD52  
Finally, it is important that the inductor be capable of handling  
the maximum peak inductor current, IPK, determined by the  
following equation:  
ΔI  
2
L
IPK = ILOAD(MAX)  
+
Rev. 0 | Page 16 of 32  
 
 
ADP2105/ADP2106/ADP2107  
It is also important, while choosing output capacitors, to  
account for the loss of capacitance due to output voltage dc bias.  
Figure 38 shows the loss of capacitance due to output voltage dc  
bias for a few X5R MLCC capacitors from Murata.  
OUTPUT CAPACITOR SELECTION  
The output capacitor selection affects both the output voltage  
ripple and the loop dynamics of the converter. For a given loop  
crossover frequency (the frequency at which the loop gain  
drops to 0 dB), the maximum voltage transient excursion  
(overshoot) is inversely proportional to the value of the output  
capacitor. Therefore, larger output capacitors result in improved  
load transient response. To minimize the effects of the dc-to-dc  
converter switching, the crossover frequency of the compensation  
loop should be less than 1/10 of the switching frequency. Higher  
crossover frequency leads to faster settling time for a load transient  
response, but it can also cause ringing due to poor phase  
margin. Lower crossover frequency helps to provide stable  
operation but needs large output capacitors to achieve competitive  
overshoot specifications. Therefore, the optimal crossover  
frequency for the control loop of ADP2105/ADP2106/ADP2107  
is 80 kHz, 1/15 of the switching frequency. For a crossover  
frequency of 80 kHz, Figure 37 shows the maximum output  
voltage excursion during a 1A load transient, as the product of  
the output voltage and the output capacitor is varied. Choose  
the output capacitor based on the desired load transient  
response and target output voltage.  
20  
0
–20  
1
–40  
2
3
–60  
–80  
1
4.7µF 0805 X5R MURATA GRM21BR61A475K  
2
10µF 0805 X5R MURATA GRM21BR61A106K  
3
22µF 0805 X5R MURATA GRM21BR60J226M  
–100  
0
2
4
6
VOLTAGE (V  
DC  
)
Figure 38. % Drop-In Capacitance vs. DC Bias for Ceramic Capacitors  
(Information Provided by Murata Corporation)  
For example, to get 20 ꢀF output capacitance at an output voltage  
of 2.5 V, based on Figure 38, as well as giving some margin for  
temperature variance, it is suggested that a 22 ꢀF and a 10 ꢀF  
capacitor be used in parallel to ensure that the output capacitance  
is sufficient under all conditions for stable behavior.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Table 9. Recommended Input and Output Capacitor Selection  
for the ADP2105/ADP2106/ADP2107  
Vendor  
8
Capacitor  
Murata  
Taiyo Yuden  
7
6
5
4
4.7 μF 10 V  
X5R 0805  
GRM21BR61A475K  
LMK212BJ475KG  
3
2
1
0
10 μF 10 V  
X5R 0805  
GRM21BR61A106K  
GRM21BR60J226M  
LMK212BJ106KG  
JMK212BJ226MG  
22 μF 6.3 V  
X5R 0805  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
OUTPUT CAPACITOR × OUTPUT VOLTAGE (μC)  
INPUT CAPACITOR SELECTION  
Figure 37. % Overshoot for a 1 A Load Transient Response vs.  
Output Capacitor × Output Voltage  
The input capacitor reduces input voltage ripple caused by the  
switch currents on the PWIN pins. Place the input capacitors as  
close as possible to the PWIN pins. Select an input capacitor  
capable of withstanding the rms input current for the maximum  
load current in your application.  
For example, if the desired 1A load transient response (overshoot)  
is 5% for an output voltage of 2.5 V, then from Figure 37  
Output Capacitor × Output Voltage = 50 ꢀC  
50 C  
2.5  
For the ADP2105, it is recommended that each PWIN pin be  
bypassed with a 4.7 ꢀF or larger input capacitor. For the ADP2106,  
bypass the PWIN pins with a 10 ꢀF and a 4.7 ꢀF capacitor, and  
for the ADP2107, bypass each PWIN pin with a 10 ꢀF capacitor.  
Output Capacitor =  
20 ꢀF  
The ADP2105/ADP2106/ADP2107 have been designed for  
operation with small ceramic output capacitors that have low  
ESR and ESL, thus comfortably able to meet tight output voltage  
ripple specifications. X5R or X7R dialectrics are recommended  
with a voltage rating of 6.3 V or 10 V. Y5V and Z5U dialectrics  
are not recommended, due to their poor temperature and dc  
bias characteristics. Table 9 shows a list of recommended MLCC  
capacitors from Murata and Taiyo Yuden.  
As with the output capacitor, a low ESR ceramic capacitor is  
recommended to minimize input voltage ripple. X5R or X7R  
dialectrics are recommended, with a voltage rating of 6.3 V or  
10 V. Y5V and Z5U dialectrics are not recommended, due to  
their poor temperature and dc bias characteristics. Refer to  
Table 9 for input capacitor recommendations.  
Rev. 0 | Page 17 of 32  
 
 
 
 
 
 
ADP2105/ADP2106/ADP2107  
The transconductance error amplifier drives the compensation  
INPUT FILTER  
network that consists of a resistor (RCOMP) and capacitor (CCOMP  
connected in series to form a pole and a zero, as shown in the  
following equation:  
)
The IN pin is the power source for the ADP2105/ADP2106/  
ADP2107 internal circuitry, including the voltage reference and  
current sense amplifier that are sensitive to power supply noise.  
To prevent high frequency switching noise on the PWIN pins from  
corrupting the internal circuitry of the ADP2105/ADP2106/  
ADP2107, a low-pass RC filter should be placed between the IN  
pin and the PWIN1 pin. The suggested input filter consists of  
a small 0.1 ꢀF ceramic capacitor placed between IN and AGND  
and a 10 Ω resistor placed between IN and PWIN1. This forms  
a 150 kHz low-pass filter between PWIN1 and IN that prevents  
any high frequency noise on PWIN1 from coupling into the  
IN pin.  
1 + sRCOMPCCOMP  
1
Z
COMP (s) = RCOMP  
+
=
sCCOMP  
sCCOMP  
At the crossover frequency, the gain of the open loop transfer  
function is unity. This yields the following equation for the  
compensation network impedance at the crossover frequency:  
(2π )FCROSS  
GmGCS  
COUTVOUT  
VREF  
Z
COMP (FCROSS ) =  
where:  
SOFT START  
The ADP2105/ADP2106/ADP2107 include soft start circuitry  
to limit the output voltage rise time to reduce inrush current at  
startup. To set the soft start period, connect a soft start capacitor  
(CSS) from SS to AGND. The soft start period varies linearly  
with the size of the soft start capacitor, as shown in the  
following equation:  
F
CROSS = 80 kHz, the crossover frequency of the loop.  
COUT OUT is determined from the Output Capacitor Selection  
section.  
V
To ensure that there is sufficient phase margin at the crossover  
frequency, place the Compensator Zero at 1/4 of the crossover  
frequency, as shown in the following equation:  
T
SS = CSS × 109 ms  
F
CROSS  
(2π)  
RCOMPCCOMP = 1  
To get a soft start period of 1 ms, a 1 nF capacitor must be  
connected between SS and AGND.  
4
Solving the above two simultaneous equations yields the value  
for the compensation resistor and compensation capacitor, as  
shown in the following equation:  
LOOP COMPENSATION  
The ADP2105/ADP2106/ADP2107 utilize a transconductance  
error amplifier to compensate the external voltage loop. The  
open loop transfer function at angular frequency, s, is given by  
⎞⎛  
(2π)FCROSS COUTVOUT  
⎟⎜  
⎟⎜  
RCOMP = 0.8  
GmGCS  
VREF  
⎠⎝  
⎞⎛  
Z
sCOUT  
COMP (s) VREF  
2
⎟⎜  
⎟⎜  
H(s) = GmGCS  
where:  
CCOMP  
=
VOUT  
⎠⎝  
πFCROSS RCOMP  
V
V
REF is the internal reference voltage (0.8 V).  
OUT is the nominal output voltage.  
Z
COMP(s) is the impedance of the compensation network at the  
angular frequency, s.  
OUT is the output capacitor.  
C
Gm is the transconductance of the error amplifier (50 ꢀA/V  
nominal).  
G
CS is the effective transconductance of the current loop.  
G
G
G
CS = 1.875 A/V for the ADP2105.  
CS = 2.8125 A/V for the ADP2106.  
CS = 3.625 A/V for the ADP2107.  
Rev. 0 | Page 18 of 32  
 
 
 
ADP2105/ADP2106/ADP2107  
BODE PLOTS  
60  
60  
50  
ADP2106  
ADP2105  
50  
40  
30  
20  
LOOP GAIN  
0
40  
0
LOOP GAIN  
45  
90  
135  
180  
30  
45  
90  
135  
180  
PHASE  
MARGIN = 48°  
PHASE  
MARGIN = 49°  
20  
LOOP PHASE  
10  
0
10  
LOOP PHASE  
0
CROSSOVER  
FREQUENCY = 87kHz  
CROSSOVER  
FREQUENCY = 79kHz  
OUTPUT VOLTAGE = 1.8V  
INPUT VOLTAGE = 5.5V  
LOAD CURRENT = 1A  
OUTPUT VOLTAGE = 1.2V  
INPUT VOLTAGE = 5.5V  
LOAD CURRENT = 1A  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
INDUCTOR = 2.2µH (LPS4012)  
INDUCTOR = 3.3µH (SD3814)  
OUTPUT CAPACITOR = 22µF + 22µF  
COMPENSATION RESISTOR = 180kꢀ  
COMPENSATION CAPACITOR = 56pF  
OUTPUT CAPACITOR = 22µF + 22µF + 4.7µF  
COMPENSATION RESISTOR = 267kꢀ  
COMPENSATION CAPACITOR = 39pF  
1
10  
100  
300  
1
10  
100  
300  
(kHz)  
(kHz)  
NOTES  
NOTES  
1. EXTERNAL COMPONENTS WERE CHOSEN FOR A  
5% OVERSHOOT FOR A 1A LOAD TRANSIENT.  
1. EXTERNAL COMPONENTS WERE CHOSEN FOR A  
5% OVERSHOOT FOR A 1A LOAD TRANSIENT.  
Figure 39. ADP2106 Bode Plot at VIN = 5.5 V, VOUT = 1.8 V and Load = 1 A  
Figure 42. ADP2105 Bode Plot at VIN = 5.5 V, VOUT = 1.2 V and Load = 1 A  
60  
60  
ADP2106  
ADP2107  
50  
50  
40  
30  
0
40  
30  
0
LOOP GAIN  
LOOP GAIN  
45  
90  
135  
180  
45  
90  
135  
180  
PHASE  
MARGIN = 65°  
PHASE  
MARGIN = 52°  
20  
20  
LOOP PHASE  
10  
10  
LOOP PHASE  
0
0
CROSSOVER  
FREQUENCY = 83kHz  
CROSSOVER  
FREQUENCY = 76kHz  
OUTPUT VOLTAGE = 1.8V  
INPUT VOLTAGE = 3.6V  
LOAD CURRENT = 1A  
OUTPUT VOLTAGE = 2.5V  
INPUT VOLTAGE = 5V  
LOAD CURRENT = 1A  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
INDUCTOR = 2.2µH (LPS4012)  
INDUCTOR = 2µH (D62LCB)  
OUTPUT CAPACITOR = 22µF + 22µF  
COMPENSATION RESISTOR = 180kꢀ  
COMPENSATION CAPACITOR = 56pF  
OUTPUT CAPACITOR = 10µF + 4.7µF  
COMPENSATION RESISTOR = 70kꢀ  
COMPENSATION CAPACITOR = 120pF  
1
10  
100  
300  
1
10  
100  
300  
(kHz)  
(kHz)  
NOTES  
NOTES  
1. EXTERNAL COMPONENTS WERE CHOSEN FOR A  
5% OVERSHOOT FOR A 1A LOAD TRANSIENT.  
1. EXTERNAL COMPONENTS WERE CHOSEN FOR A  
10% OVERSHOOT FOR A 1A LOAD TRANSIENT.  
Figure 40. ADP2106 Bode Plot at VIN = 3.6 V, VOUT = 1.8 V, and Load = 1 A  
Figure 43. ADP2107 Bode Plot at VIN = 5 V, VOUT = 2.5 V and Load = 1 A  
60  
60  
ADP2105  
ADP2107  
50  
50  
LOOP GAIN  
40  
30  
0
40  
30  
0
LOOP GAIN  
45  
90  
135  
180  
45  
90  
135  
180  
PHASE  
MARGIN = 70°  
PHASE  
MARGIN = 51°  
20  
20  
LOOP PHASE  
10  
10  
LOOP PHASE  
0
0
CROSSOVER  
FREQUENCY = 71kHz  
CROSSOVER  
FREQUENCY = 67kHz  
OUTPUT VOLTAGE = 3.3V  
INPUT VOLTAGE = 5V  
LOAD CURRENT = 1A  
OUTPUT VOLTAGE = 1.2V  
INPUT VOLTAGE = 3.6V  
LOAD CURRENT = 1A  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
INDUCTOR = 2.5µH (CDRH5D28)  
INDUCTOR = 3.3µH (SD3814)  
OUTPUT CAPACITOR = 10µF + 4.7µF  
COMPENSATION RESISTOR = 70kꢀ  
COMPENSATION CAPACITOR = 120pF  
OUTPUT CAPACITOR = 22µF + 22µF + 4.7µF  
COMPENSATION RESISTOR = 267kꢀ  
COMPENSATION CAPACITOR = 39pF  
1
10  
100  
300  
1
10  
100  
300  
(kHz)  
(kHz)  
NOTES  
NOTES  
1. EXTERNAL COMPONENTS WERE CHOSEN FOR A  
5% OVERSHOOT FOR A 1A LOAD TRANSIENT.  
1. EXTERNAL COMPONENTS WERE CHOSEN FOR A  
10% OVERSHOOT FOR A 1A LOAD TRANSIENT.  
Figure 41. ADP2105 Bode Plot at VIN = 3.6 V, VOUT = 1.2 V, and Load = 1 A  
Figure 44. ADP2107 Bode Plot at VIN = 5 V, VOUT = 3.3 V, and Load = 1 A  
Rev. 0 | Page 19 of 32  
 
ADP2105/ADP2106/ADP2107  
LOAD TRANSIENT RESPONSE  
OUTPUT CURRENT  
3
OUTPUT CURRENT  
3
2
CH2 LOW  
–51mV  
CH2 LOW  
–93mV  
OUTPUT VOLTAGE (AC-COUPLED)  
OUTPUT VOLTAGE (AC-COUPLED)  
2
1
1
LX NODE (SWITCH NODE)  
LX NODE (SWITCH NODE)  
CH2 50mV~ 10µs CH3 1A  
CH1 2V  
CH2 50mV~  
M
10µs CH3 1A  
A
CH3  
0.5A  
CH1 2V  
M
A
CH3  
0.5A  
OUTPUT CAPACITOR: 22µF + 22µF + 4.7µF  
INDUCTOR: SD14, 2.5µH  
COMPENSATION RESISTOR: 270k  
COMPENSATION CAPACITOR: 39pF  
OUTPUT CAPACITOR: 22µF + 4.7µF  
INDUCTOR: SD14, 2.5µH  
COMPENSATION RESISTOR: 135kꢀ  
COMPENSATION CAPACITOR: 82pF  
Figure 45. 1 A Load Transient Response for ADP2105-1.2  
with External Components Chosen for 5% Overshoot  
Figure 48. 1 A Load Transient Response for ADP2105-1.2  
with External Components Chosen for 10% Overshoot  
OUTPUT CURRENT  
OUTPUT CURRENT  
3
2
3
CH2 LOW  
–164mV  
CH2 LOW  
–112mV  
2
OUTPUT VOLTAGE (AC-COUPLED)  
OUTPUT VOLTAGE (AC-COUPLED)  
1
1
LX NODE (SWITCH NODE)  
CH2 100mV~ 10µs CH3 1A  
LX NODE (SWITCH NODE)  
CH2 100mV~ 10µs CH3 1A  
CH1 2V  
M
A
CH3  
0.5A  
CH1 2V  
M
A
CH3  
0.5A  
OUTPUT CAPACITOR: 10µF + 10µF  
INDUCTOR: SD3814, 3.3µH  
COMPENSATION RESISTOR: 135k  
COMPENSATION CAPACITOR: 82pF  
OUTPUT CAPACITOR: 22µF + 22µF  
INDUCTOR: SD3814, 3.3µH  
COMPENSATION RESISTOR: 270kꢀ  
COMPENSATION CAPACITOR: 39pF  
Figure 49. 1 A Load Transient Response for ADP2105-1.8  
with External Components Chosen for 10% Overshoot  
Figure 46. 1 A Load Transient Response for ADP2105-1.8  
with External Components Chosen for 5% Overshoot  
OUTPUT CURRENT  
OUTPUT CURRENT  
3
2
3
2
CH2 LOW  
–178mV  
OUTPUT VOLTAGE (AC-COUPLED)  
CH2 LOW  
OUTPUT VOLTAGE (AC-COUPLED)  
–308mV  
1
1
LX NODE (SWITCH NODE)  
LX NODE (SWITCH NODE)  
CH1 2V  
CH2 100mV~  
M
10µs CH3 1A  
A
CH3  
0.5A  
CH1 2V  
CH2 200mV~  
M
10µs CH3 1A  
A
CH3  
0.5A  
OUTPUT CAPACITOR: 22µF + 4.7µF  
INDUCTOR: CDRH5D18, 4.1µH  
COMPENSATION RESISTOR: 270k  
COMPENSATION CAPACITOR: 39pF  
OUTPUT CAPACITOR: 10µF + 4.7µF  
INDUCTOR: CDRH5D18, 4.1µH  
COMPENSATION RESISTOR: 135kꢀ  
COMPENSATION CAPACITOR: 82pF  
Figure 47. 1 A Load Transient Response for ADP2105-3.3  
with External Components Chosen for 5% Overshoot  
Figure 50. 1 A Load Transient Response for ADP2105-3.3  
with External Components Chosen for 10% Overshoot  
Rev. 0 | Page 20 of 32  
 
ADP2105/ADP2106/ADP2107  
EFFICIENCY CONSIDERATIONS  
The amount of power loss can by calculated by  
SW = (CGATE − P + CGATE − N) × VIN2 × fSW  
where:  
(CGATE − P + CGATE − N) ~ 600 pF.  
Efficiency is defined as the ratio of output power to input power.  
The high efficiency of the ADP2105/ADP2106/ADP2107 has  
two distinct advantages. First, only a small amount of power is  
lost in the dc-to-dc converter package that reduces thermal  
constraints. In addition, high efficiency delivers the maximum  
output power for the given input power, extending battery life  
in portable applications.  
P
f
SW = 1.2 MHz, the switching frequency.  
Transition Losses  
There are four major sources of power loss in dc-to-dc  
converters like the ADP2105/ADP2106/ADP2107.  
Transition losses occur because the P-channel MOSFET power  
switch cannot turn on or turn off instantaneously. At the middle of  
a LX node transition, the power switch is providing all the inductor  
current, while the source to drain voltage of the power switch is  
half the input voltage, resulting in power loss. Transition losses  
increase with load current and input voltage and occur twice for  
each switching cycle.  
Power switch conduction losses  
Inductor losses  
Switching losses  
Transition losses  
Power Switch Conduction Losses  
Power switch conduction losses are caused by the flow of output  
current through the P-channel power switch and the N-channel  
The amount of power loss can be calculated by  
VIN  
P
=
× IOUT × (tON + tOFF) × fSW  
TRAN  
2
synchronous rectifier, which have internal resistances (RDS(ON)  
associated with them. The amount of power loss can be approxi-  
mated by  
)
where tON and tOFF are the rise time and fall time of the LX node,  
which are approximately 3 ns.  
THERMAL CONSIDERATIONS  
2
P
SW − COND = [RDS(ON) − P × D + RDS(ON) − N × (1 − D)] × IOUT  
In most applications, the ADP2105/ADP2106/ADP2107 do not  
dissipate a lot of heat due to their high efficiency. However, in  
applications with high ambient temperature, low supply voltage,  
and high duty cycle, the heat dissipated in the package is large  
enough that it can cause the junction temperature of the die to  
exceed the maximum junction temperature of 125°C. Once the  
junction temperature exceeds 140°C, the converter goes into  
thermal shutdown. It recovers only after the junction temperature  
has decreased below 100°C to prevent any permanent damage.  
Therefore, thermal analysis for the chosen application solution  
is very important to guarantee reliable performance over all  
conditions.  
where D = VOUT/VIN.  
The internal resistance of the power switches increases with  
temperature but decreases with higher input voltage. Figure 19  
in the Typical Performance Characteristics section shows the  
change in RDS(ON) vs. input voltage, while Figure 27 in the  
Typical Performance Characteristics section shows the change  
in RDS(ON) vs. temperature for both power devices.  
Inductor Losses  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an internal resistance (DCR)  
associated with it. Larger sized inductors have smaller DCR,  
which can improve inductor conduction losses.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in the following  
equation:  
Inductor core losses are related to the magnetic permeability of  
the core material. Because the ADP2105/ADP2106/ADP2107  
are high switching frequency dc-to-dc converters, shielded ferrite  
core material is recommended for its low core losses and low EMI.  
TJ = TA + TR  
where:  
The total amount of inductor power loss can be calculated by  
PL = DCR × IOUT2 + Core Losses  
TJ is the junction temperature.  
TA is the ambient temperature.  
TR is the rise in temperature of the package due to power  
dissipation in it.  
Switching Losses  
Switching losses are associated with the current drawn by the  
driver to turn on and turn off the power devices at the  
switching frequency. Each time a power device gate is turned on  
and turned off, the driver transfers a charge ΔQ from the input  
supply to the gate and then from the gate to ground.  
Rev. 0 | Page 21 of 32  
 
 
ADP2105/ADP2106/ADP2107  
2. See whether the output voltage desired is available as a  
fixed output voltage option. Because 2 V is not one of the  
fixed output voltage options available, choose the adjustable  
version of ADP2106.  
The rise in temperature of the package is directly proportional  
to the power dissipation in the package. The proportionality  
constant for this relationship is defined as the thermal  
resistance from the junction of the die to the ambient  
temperature, as shown in the following equation:  
3. The first step in external component selection for an  
adjustable version converter is to calculate the resistance of  
the resistive voltage divider that sets the output voltage.  
TR = θJA × PD  
where:  
0.8 V  
VFB  
RBOT  
=
=
= 40 kΩ  
TR is the rise in temperature of the package.  
PD is the power dissipation in the package.  
θJA is the thermal resistance from the junction of the die to the  
ambient temperature of the package.  
ISTRING 20 ꢀA  
2 V 0.8 V  
VOUT VFB  
RTOP = RBOT  
= 40 kΩ ×  
= 60 kΩ  
VFB  
0.8 V  
For example, consider an application where the ADP2107-1.8  
is used with an input voltage of 3.6 V and a load current of 2 A.  
Also, assume that the maximum ambient temperature is 85°C.  
At a load current of 2 A, the most significant contributor of  
power dissipation in the dc-to-dc converter package is the  
conduction loss of the power switches. Using the graph of  
switch resistance vs. temperature (see Figure 27), as well as the  
equation of power loss given in the Power Switch Conduction  
Losses section, the power dissipation in the package can be  
calculated by  
4. Calculate the minimum inductor value as follows:  
For the ADP2106:  
L > (0.83 ꢀH/V) × VOUT  
Ö L > 0.83 ꢀH/V × 2 V  
Ö L > 1.66 ꢀH  
Next, calculate the ideal inductor value that sets the  
inductor peak-to-peak current ripple, ΔIL, to1/3 of the  
maximum load current at the maximum input voltage.  
2
P
SW − COND = [RDS(ON) − P × D + RDS(ON) − N × (1 − D)] × IOUT  
=
[109 mΩ × 0.5 + 90 mΩ × 0.5] × (2 A)2 ~ 400 mW  
The θJA for the LFCSP_VQ package is 40°C/W, as shown in  
Table 3. Thus, the rise in temperature of the package due to  
power dissipation is  
2.5×VOUT ×(VIN VOUT  
)
LIDEAL  
=
ꢀH =  
VIN × ILOAD  
(MAX )  
2.5×2 ×(4.2 2)  
4.2×1.2  
TR = θJA × PD = 40°C/W × 0.40 W = 16°C  
The junction temperature of the converter is  
TJ = TA + TR = 85°C + 16°C = 101°C  
ꢀH = 2.18 ꢀH  
The closest standard inductor value is 2.2 ꢀH. The  
maximum rms current of the inductor should be greater  
than 1.2 A, and the saturation current of the inductor  
should be greater than 2 A. One inductor that meets these  
criteria is the LPS4012-2.2 ꢀH from Coilcraft.  
which is below the maximum junction temperature of 125°C.  
Thus, this application operates reliably from a thermal point  
of view.  
5. Choose the output capacitor based on the transient  
response requirements. The worst-case load transient is  
1.2 A, for which the overshoot must be less than 100 mV,  
which is 5% of the output voltage. Therefore, for a 1 A load  
transient, the overshoot must be less than 4% of the output  
voltage. For these conditions, Figure 37 gives  
DESIGN EXAMPLE  
Consider an application with the following specifications:  
Input Voltage = 3.6 V to 4.2 V.  
Output Voltage = 2 V.  
Typical Output Current = 600 mA.  
Maximum Output Current = 1.2 A.  
Soft Start Time = 2 ms.  
Output Capacitor × Output Voltage = 60 ꢀC  
60 ꢀC  
Output Capacitor =  
30 ꢀF  
Overshoot ≤ 100 mV under all load transient conditions.  
2.0 V  
1. Choose the dc-to-dc converter that satisfies the maximum  
output current requirement. Because the maximum output  
current for this application is 1.2 A, the ADP2106 with a  
maximum output current of 1.5 A is ideal for this  
application.  
Next, taking into account the loss of capacitance due to dc  
bias, as shown in Figure 38, two 22 ꢀF X5R MLCC capacitors  
from Murata (GRM21BR60J226M) are sufficient for this  
application.  
Rev. 0 | Page 22 of 32  
 
ADP2105/ADP2106/ADP2107  
6. Because the ADP2106 is being used in this application, the  
input capacitors are 10 ꢀF and 4.7 ꢀF X5R Murata capacitors  
(GRM21BR61A106K and GRM21BR61A475K).  
9. Finally, the compensation resistor and capacitor can be  
calculated as  
⎞⎛  
(2π)FCROSS COUTVOUT  
7. The input filter consists of a small 0.1 ꢀF ceramic capacitor  
placed between IN and AGND and a 10 Ω resistor placed  
between IN and PWIN1.  
⎟⎜  
⎟⎜  
RCOMP = 0.8  
GmGCS  
VREF  
⎠⎝  
⎞⎛  
⎟⎜  
⎟⎜  
⎠⎝  
(2π) × 80 kHz  
30 ꢀF × 2 V  
= 0.8  
= 215 kΩ  
8. Choose a soft start capacitor of 2 nF to achieve a soft start  
time of 2 ms.  
50 ꢀA / V × 2.8125 A / V  
0.8 V  
2
2
CCOMP  
=
=
= 39 pF  
πFCROSSRCOMP π × 80 kHz × 215 kΩ  
Rev. 0 | Page 23 of 32  
ADP2105/ADP2106/ADP2107  
EXTERNAL COMPONENT RECOMMENDATIONS  
Table 10. Recommended External Components for Popular Output Voltage Options at 80 kHz Crossover Frequency with  
10% Overshoot for a 1 A Load Transient (Refer to Figure 35 and Figure 36)  
1
2
3
4
5
Part  
VOUT (V)  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
1.2  
1.5  
1.8  
3.3  
1.2  
1.5  
1.8  
3.3  
1.2  
1.5  
1.8  
3.3  
CIN1 (μF)  
CIN2 (μF)  
COUT (μF)  
L (μH)  
2.0  
2.5  
3.0  
3.3  
3.6  
4.1  
1.5  
1.8  
2.0  
2.2  
2.5  
3.0  
1.2  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
3.0  
3.3  
4.1  
1.8  
2.0  
2.2  
3.0  
1.5  
1.5  
1.8  
2.5  
RCOMP (kΩ)  
135  
135  
135  
135  
135  
135  
90  
CCOMP (pF)  
82  
RTOP (kΩ) RBOT (kΩ)  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2105-1.2  
ADP2105-1.5  
ADP2105-1.8  
ADP2105-3.3  
ADP2106-1.2  
ADP2106-1.5  
ADP2106-1.8  
ADP2106-3.3  
ADP2107-1.2  
ADP2107-1.5  
ADP2107-1.8  
ADP2107-3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
10  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
4.7  
4.7  
4.7  
4.7  
10  
10  
10  
10  
10  
10  
10  
10  
22 + 10  
22 + 4.7  
10 + 10  
10 + 10  
10 + 4.7  
10 + 4.7  
22 + 10  
22 + 4.7  
10 + 10  
10 + 10  
10 + 4.7  
10 + 4.7  
22 + 10  
22 + 4.7  
10 + 10  
10 + 10  
10 + 4.7  
10 + 4.7  
22 + 4.7  
10 + 10  
10 + 10  
10 + 4.7  
22 + 4.7  
10 + 10  
10 + 10  
10 + 4.7  
22 + 4.7  
10 + 10  
10 + 10  
10 + 4.7  
5
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
-
82  
82  
82  
82  
20  
35  
50  
85  
125  
5
20  
35  
50  
85  
125  
5
20  
35  
50  
85  
125  
-
82  
100  
100  
100  
100  
100  
100  
120  
120  
120  
120  
120  
120  
82  
90  
90  
90  
90  
90  
70  
70  
70  
70  
70  
70  
10  
10  
10  
10  
10  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
10  
135  
135  
135  
135  
90  
90  
90  
90  
82  
82  
82  
-
-
-
-
-
-
100  
100  
100  
100  
120  
120  
120  
120  
-
-
-
-
-
-
-
-
70  
70  
70  
70  
-
-
-
-
-
-
-
-
10  
10  
10  
1 4.7 μF 0805 X5R 10 V Murata–GRM21BR61A475KA73L.  
10 μF 0805 X5R 10 V Murata–GRM21BR61A106KE19L.  
2 4.7 μF 0805 X5R 10 V Murata–GRM21BR61A475KA73L.  
10 μF 0805 X5R 10 V Murata–GRM21BR61A106KE19L.  
3 4.7 μF 0805 X5R 10 V Murata–GRM21BR61A475KA73L.  
10 μF 0805 X5R 10 V Murata–GRM21BR61A106KE19L.  
22 μF 0805 X5R 6.3 V Murata–GRM21BR60J226ME39L.  
4 0.5% accuracy resistor.  
5 0.5% accuracy resistor.  
Rev. 0 | Page 24 of 32  
 
ADP2105/ADP2106/ADP2107  
Table 11. Recommended External Components for Popular Output Voltage Options at 80 kHz Crossover Frequency with  
5% Overshoot for a 1 A Load Transient (Refer to Figure 35 and Figure 36)  
2
CIN2  
1
3
4
5
Part  
VOUT (V)  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
0.9  
1.2  
1.5  
1.8  
2.5  
3.3  
1.2  
1.5  
1.8  
3.3  
1.2  
1.5  
1.8  
3.3  
1.2  
1.5  
1.8  
3.3  
CIN1 (μF)  
(μF)  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
4.7  
4.7  
4.7  
4.7  
10  
10  
10  
10  
10  
10  
10  
10  
COUT (μF)  
L (μH)  
2.0  
2.5  
3.0  
3.3  
3.6  
4.1  
1.5  
1.8  
2.0  
2.2  
2.5  
3.0  
1.2  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
3.0  
3.3  
4.1  
1.8  
2.0  
2.2  
3.0  
1.5  
1.5  
1.8  
2.5  
RCOMP (kΩ) CCOMP (pF)  
RTOP (kΩ)  
RBOT (kΩ)  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2105-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2106-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2107-ADJ  
ADP2105-1.2  
ADP2105-1.5  
ADP2105-1.8  
ADP2105-3.3  
ADP2106-1.2  
ADP2106-1.5  
ADP2106-1.8  
ADP2106-3.3  
ADP2107-1.2  
ADP2107-1.5  
ADP2107-1.8  
ADP2107-3.3  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
10  
22 + 22 + 22  
22 + 22 + 4.7  
22 + 22  
22 + 22  
22 + 10  
270  
270  
270  
270  
270  
270  
180  
180  
180  
180  
180  
180  
140  
140  
140  
140  
140  
140  
270  
270  
270  
270  
180  
180  
180  
180  
140  
140  
140  
140  
39  
39  
39  
39  
39  
39  
56  
56  
56  
56  
56  
56  
68  
68  
68  
68  
68  
68  
39  
39  
39  
39  
56  
56  
56  
56  
68  
68  
68  
68  
5
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
-
20  
35  
50  
85  
125  
5
20  
35  
50  
85  
125  
5
20  
35  
50  
85  
125  
-
22 + 4.7  
22 + 22 + 22  
22 + 22 + 4.7  
22 + 22  
22 + 22  
22 + 10  
22 + 4.7  
22 + 22 + 22  
22 + 22 + 4.7  
22 + 22  
22 + 22  
22 + 10  
10  
10  
10  
10  
10  
22 + 4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
10  
22 + 22 + 4.7  
22 + 22  
22 + 22  
-
-
-
-
-
-
22 + 4.7  
22 + 22 + 4.7  
22 + 22  
22 + 22  
-
-
-
-
-
-
-
-
22 + 4.7  
22 + 22 + 4.7  
22 + 22  
22 + 22  
-
-
-
-
-
-
-
-
10  
10  
10  
22 + 4.7  
1 4.7μF 0805 X5R 10V Murata – GRM21BR61A475KA73L  
10μF 0805 X5R 10V Murata – GRM21BR61A106KE19L  
2 4.7μF 0805 X5R 10V Murata – GRM21BR61A475KA73L  
10μF 0805 X5R 10V Murata – GRM21BR61A106KE19L  
3 4.7μF 0805 X5R 10V Murata – GRM21BR61A475KA73L  
10μF 0805 X5R 10V Murata – GRM21BR61A106KE19L  
22μF 0805 X5R 6.3V Murata – GRM21BR60J226ME39L  
4 0.5% Accuracy Resistor  
5 0.5% Accuracy Resistor  
Rev. 0 | Page 25 of 32  
ADP2105/ADP2106/ADP2107  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good circuit board layout is essential in obtaining the best  
performance from the ADP2105/ADP2106/ADP2107. Poor  
circuit layout degrades the output ripple, as well as the  
electromagnetic interference (EMI) and electromagnetic  
compatibility (EMC) performance.  
Also, make the high current path from PGND pin of the  
ADP2105/ADP2106/ADP2107 through L and COUT back  
to the PGND plane as short as possible. To do this, ensure  
that the PGND pin of the ADP2105/ADP2106/ADP2107  
is tied to the PGND plane as close as possible to the input  
and output capacitors.  
Figure 52 and Figure 53 show the ideal circuit board layout for  
the ADP2105/ADP2106/ADP2107. Use this layout to achieve  
the highest performance. Refer to the following guidelines if  
adjustments to the suggested layout are needed.  
Place the feedback resistor divider network as close as  
possible to the FB pin to prevent noise pickup. Try to  
minimize the length of trace connecting the top of the  
feedback resistor divider to the output while keeping away  
from the high current traces and the switch node (LX) that  
can lead to noise pickup. To reduce noise pickup, place an  
analog ground plane on either side of the FB trace. For the  
low fixed voltage options (1.2 V and 1.5 V), poor routing  
of the OUT_SENSE trace can lead to noise pickup, adversely  
affecting load regulation. This can be fixed by placing a 1 nF  
bypass capacitor close to the OUT_SENSE pin.  
Use separate analog and power ground planes. Connect  
the ground reference of sensitive analog circuitry (such as  
compensation and output voltage divider components) to  
analog ground; connect the ground reference of power  
components (such as input and output capacitors) to power  
ground. In addition, connect both the ground planes to the  
exposed pad of the ADP2105/ADP2106/ADP2107.  
For each PWIN pin, place an input capacitor as close to the  
PWIN pin as possible and connect the other end to the closest  
power ground plane.  
The placement and routing of the compensation components  
are critical for proper behavior of the ADP2105/ADP2106/  
ADP2107. The compensation components should be placed  
as close to the COMP pin as possible. It is advisable to use  
0402-sized compensation components for closer placement,  
leading to smaller parasitics. Surround the compensation  
components with analog ground plane to prevent noise  
pickup. Also, ensure that the metal layer under the  
Place the 0.1 ꢀF, 10 Ω low-pass input filter between the IN  
pin and the PWIN1 pin, as close to the IN pin as possible.  
Ensure that the high current loops are as short and as wide  
as possible. Make the high current path from CIN through  
L, COUT, and the PGND plane back to CIN as short as possible.  
To accomplish this, ensure that the input and output  
capacitors share a common PGND plane.  
compensation components is the analog ground plane.  
Rev. 0 | Page 26 of 32  
 
ADP2105/ADP2106/ADP2107  
EVALUATION BOARD  
EVALUATION BOARD SCHEMATIC (ADP2107-1.8)  
C7  
0.1µF  
VCC  
R3  
10  
INPUT VOLTAGE = 2.7V TO 5.5V  
VIN  
VCC  
C1  
1
10µF  
OUT  
16  
GND  
J1  
U1  
15  
14  
GND IN PWIN1  
LX2  
13  
OUT_SENSE  
EN  
1
2
3
4
12  
11  
10  
9
EN  
R2  
100kꢀ  
GND  
PGND  
LX1  
2
L1  
ADP2107-1.8  
2µH  
OUTPUT VOLTAGE = 1.8V, 2A  
1
2
GND  
GND  
V
OUT  
VCC  
R4  
0ꢀ  
C4  
22µF  
C3  
1
1
22µF  
PWIN2  
OUT  
C2  
10µF  
GND  
COMP SS AGND PADDLE NC  
17  
1
5
6
7
8
R5  
NS  
R1  
140kꢀ  
1
2
MURATA X5R 0805  
C6  
68pF  
C5  
1nF  
10μF: GRM21BR61A106KE19L  
22μF: GRM21BR60J226ME39L  
2μH INDUCTOR D62LCB TOKO  
NC = NO CONNECT  
Figure 51. Evaluation Board Schematic of the ADP2107-1.8 (Bold Traces Are High Current Paths)  
RECOMMENDED PCB BOARD LAYOUT (EVALUATION BOARD LAYOUT)  
JUMPER TO ENABLE  
ENABLE  
GROUND  
V
IN  
100kPULL-DOWN  
GROUND  
INPUT  
INPUT CAPACITOR  
CONNECT THE GROUND RETURN OF  
ALL POWER COMPONENTS SUCH AS  
INPUT AND OUTPUT CAPACITORS TO  
THE POWER GROUND PLANE.  
POWER GROUND  
PLANE  
PLACE THE FEEDBACK RESISTORS AS  
CLOSE TO THE FB PIN AS POSSIBLE.  
OUTPUT CAPACITOR  
C
C
R
R
IN  
OUT  
TOP BOT  
LX  
OUTPUT  
INDUCTOR (L)  
PGND  
LX  
V
ADP2105/ADP2106/ADP2107  
OUT  
R
COMP  
C
C
C
OUT  
COMP  
IN  
OUTPUT CAPACITOR  
C
SS  
PLACE THE COMPENSATION  
COMPONENTS AS CLOSE TO  
THE COMP PIN AS POSSIBLE.  
ANALOG GROUND PLANE  
POWER GROUND  
CONNECT THE GROUND RETURN OF ALL  
SENSITIVE ANALOG CIRCUITRY SUCH AS  
COMPENSATION AND OUTPUT VOLTAGE  
DIVIDER TO THE ANALOG GROUND PLANE.  
INPUT CAPACITOR  
Figure 52. Recommended Layout of Top Layer of ADP2105/ADP2106/ADP2107  
Rev. 0 | Page 27 of 32  
 
 
 
ADP2105/ADP2106/ADP2107  
ENABLE  
V
GND  
IN  
GND  
ANALOG GROUND PLANE  
POWER GROUND PLANE  
INPUT VOLTAGE PLANE  
CONNECTING THE TWO  
PWIN PINS AS CLOSE  
AS POSSIBLE.  
V
IN  
V
OUT  
CONNECT THE EXPOSED PAD OF  
THE ADP2105/ADP2106/ADP2107  
TO A LARGE GROUND PLANE TO  
AID POWER DISSIPATION.  
CONNECT THE PGND PIN  
TO THE POWER GROUND  
PLANE AS CLOSE TO THE  
ADP2105/ADP2106/ADP2107  
AS POSSIBLE.  
FEEDBACK TRACE: THIS TRACE CONNECTS THE TOP OF THE  
RESISTIVE VOLTAGE DIVIDER ON THE FB PIN TO THE OUTPUT.  
PLACE THIS TRACE AS FAR AWAY FROM THE LX NODE AND HIGH  
CURRENT TRACES AS POSSIBLE TO PREVENT NOISE PICKUP.  
Figure 53. Recommended Layout of Bottom Layer of ADP2105/ADP2106/ADP2107  
Rev. 0 | Page 28 of 32  
 
ADP2105/ADP2106/ADP2107  
APPLICATION CIRCUITS  
0.1μF  
V
INPUT VOLTAGE = 5V  
10ꢀ  
IN  
1
10μF  
V
OUT  
16  
15  
14  
GND IN PWIN1  
LX2  
13  
OUT_SENSE  
ON  
1
2
3
4
12  
EN  
OFF  
2
2.5μH  
V
OUTPUT VOLTAGE = 3.3V  
OUT  
GND  
PGND  
LX1  
11  
10  
9
1
1
10μF  
4.7μF  
ADP2107-3.3  
LOAD  
0A TO 2A  
GND  
V
IN  
GND  
PWIN2  
1
1
2
10μF  
MURATA X5R 0805  
COMP SS AGND NC  
10μF: GRM21BR61A106KE19L  
4.7μF: GRM21BR61A475KA73L  
SUMIDA CDRH5D28: 2.5μH  
5
6
7
8
1nF  
70kꢀ  
120pF  
NOTES  
1. NC = NO CONNECT.  
2. EXTERNAL COMPONENTS WERE  
CHOSEN FOR A 10% OVERSHOOT  
FOR A 1A LOAD TRANSIENT.  
Figure 54. Application Circuit—VIN = 5 V, VOUT = 3.3 V, LOAD = 0 A to 2 A  
0.1μF  
V
INPUT VOLTAGE = 3.6V  
10ꢀ  
IN  
1
10μF  
V
OUT  
16  
15  
14  
GND IN PWIN1  
LX2 12  
13  
OUT_SENSE  
ON  
1
2
3
4
EN  
OFF  
2
1.5μH  
V
OUTPUT VOLTAGE = 1.5V  
1
OUT  
PGND  
LX1  
11  
10  
9
GND  
1
22μF  
22μF  
ADP2107-1.5  
LOAD  
0A TO 2A  
GND  
V
IN  
GND  
PWIN2  
1
1
2
10μF  
MURATA X5R 0805  
10μF: GRM21BR61A106KE19L  
22μF: GRM21BR60J226ME39L  
COMP SS AGND NC  
5
6
7
8
TOKO D62LCB OR COILCRAFT LPS4012  
1nF  
140kꢀ  
NOTES  
1. NC = NO CONNECT.  
2. EXTERNAL COMPONENTS WERE  
CHOSEN FOR A 5% OVERSHOOT  
FOR A 1A LOAD TRANSIENT.  
68pF  
Figure 55. Application Circuit—VIN = 3.6 V, VOUT = 1.5 V, LOAD = 0 A to 2 A  
0.1μF  
V
INPUT VOLTAGE = 2.7V TO 4.2V  
10ꢀ  
IN  
1
4.7μF  
V
OUT  
16  
15  
14  
GND IN PWIN1  
LX2  
13  
OUT_SENSE  
ON  
1
2
3
4
12  
EN  
OFF  
2
2.7μH  
V
OUTPUT VOLTAGE = 1.8V  
1
OUT  
GND  
PGND  
LX1  
11  
10  
9
1
22μF  
22μF  
ADP2105-1.8  
LOAD  
0A TO 1A  
GND  
V
IN  
GND  
PWIN2  
1
1
2
4.7μF  
MURATA X5R 0805  
COMP SS AGND NC  
4.7μF: GRM21BR61A475KA73L  
22μF: GRM21BR60J226ME39L  
TOKO 1098AS-DE2812: 2.7μH  
5
6
7
8
1nF  
270kꢀ  
NOTES  
1. NC = NO CONNECT.  
39pF  
2. EXTERNAL COMPONENTS WERE  
CHOSEN FOR A 5% OVERSHOOT  
FOR A 1A LOAD TRANSIENT.  
Figure 56. Application Circuit—VIN = Li-Ion Battery, VOUT = 1.8 V, LOAD = 0 A to 1 A  
Rev. 0 | Page 29 of 32  
 
ADP2105/ADP2106/ADP2107  
0.1μF  
V
INPUT VOLTAGE = 2.7V TO 4.2V  
10ꢀ  
IN  
1
4.7μF  
V
OUT  
16  
15  
14  
GND IN PWIN1  
LX2  
13  
OUT_SENSE  
ON  
1
2
3
4
12  
EN  
OFF  
2
2.4μH  
V
OUTPUT VOLTAGE = 1.2V  
OUT  
GND  
PGND  
11  
1
1
22μF  
4.7μF  
ADP2105-1.2  
LOAD  
0A TO 1A  
GND  
GND  
LX1 10  
V
IN  
PWIN2  
9
1
1
2
4.7μF  
MURATA X5R 0805  
COMP SS AGND NC  
5
4.7μF: GRM21BR61A475KA73L  
22μF: GRM21BR60J226ME39L  
TOKO 1069AS-DB3018HCT OR  
TOKO 1070AS-DB3020HCT  
6
7
8
1nF  
135kꢀ  
82pF  
NOTES  
1. NC = NO CONNECT.  
2. EXTERNAL COMPONENTS WERE  
CHOSEN FOR A 10% OVERSHOOT  
FOR A 1A LOAD TRANSIENT.  
Figure 57. Application Circuit—VIN = Li-Ion Battery, VOUT = 1.2 V, LOAD = 0 A to 1 A  
0.1μF  
V
INPUT VOLTAGE = 5V  
10ꢀ  
IN  
1
10μF  
FB  
16  
15  
14  
IN PWIN1  
LX2 12  
13  
FB GND  
ON  
1
2
3
4
EN  
OFF  
2
2.5μH  
OUTPUT VOLTAGE = 2.5V  
PGND  
11  
10  
9
GND  
GND  
GND  
1 1  
10μF 22μF  
85kꢀ  
ADP2106-ADJ  
LOAD  
0A TO 1.5A  
LX1  
FB  
V
IN  
40kꢀ  
PWIN2  
1
4.7μF  
COMP SS AGND NC  
5
6
7
8
1
2
MURATA X5R 0805  
1nF  
4.7μF: GRM21BR61A475KA73L  
10μF: GRM21BR61A106KE19L  
22μF: GRM21BR60J226ME39L  
COILTRONICS SD14: 2.5μH  
180kꢀ  
56pF  
NOTES  
1. NC = NO CONNECT.  
2. EXTERNAL COMPONENTS WERE  
CHOSEN FOR A 5% OVERSHOOT  
FOR A 1A LOAD TRANSIENT.  
Figure 58. Application Circuit—VIN = 5 V, VOUT = 2.5 V, LOAD = 0 A to 1.5 A  
Rev. 0 | Page 30 of 32  
ADP2105/ADP2106/ADP2107  
OUTLINE DIMENSIONS  
4.00  
0.60 MAX  
(BOTTOM VIEW)  
BSC SQ  
0.60 MAX  
0.65 BSC  
PIN 1  
INDICATOR  
13  
16  
1
4
12  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PAD  
0.75  
0.60  
0.50  
9
8
5
0.25 MIN  
1.95 BSC  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.35  
0.30  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 59. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Junction  
Output  
Current  
Temperature  
Range  
Model  
Output Voltage  
Package Description  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
16-Lead LFCSP_VQ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
CP-16-4  
ADP2105ACPZ-1.2-R71  
ADP2105ACPZ-1.5-R71  
ADP2105ACPZ-1.8-R71  
ADP2105ACPZ-3.3-R71  
ADP2105ACPZ-R71  
ADP2106ACPZ-1.2-R71  
ADP2106ACPZ-1.5-R71  
ADP2106ACPZ-1.8-R71  
ADP2106ACPZ-3.3-R71  
ADP2106ACPZ-R71  
ADP2107ACPZ-1.2-R71  
ADP2107ACPZ-1.5-R71  
ADP2107ACPZ-1.8-R71  
ADP2107ACPZ-3.3-R71  
ADP2107ACPZ-R71  
ADP2105-1.8-EVAL  
ADP2105-EVAL  
1 A  
1 A  
1 A  
1 A  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
1.2 V  
1.5 V  
1.8 V  
3.3 V  
1 A  
ADJ  
1.5 A  
1.5 A  
1.5 A  
1.5 A  
1.5 A  
2 A  
2 A  
2 A  
2 A  
2 A  
1.2 V  
1.5 V  
1.8 V  
3.3 V  
ADJ  
1.2 V  
1.5 V  
1.8 V  
3.3 V  
ADJ  
1.8 V  
Adjustable, but set to 2.5 V  
1.8 V  
Adjustable, but set to 2.5 V  
1.8 V  
ADP2106-1.8-EVAL  
ADP2106-EVAL  
ADP2107-1.8-EVAL  
ADP2107-EVAL  
Adjustable, but set to 2.5 V  
1 Z = Pb-free part.  
Rev. 0 | Page 31 of 32  
 
 
 
 
ADP2105/ADP2106/ADP2107  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06079-0-7/06(0)  
Rev. 0 | Page 32 of 32  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY