ADP2311ACPZ-3-R7 [ADI]

Dual 1 A, 18 V, Synchronous Step-Down Regulator with Fail-Safe Voltage Monitoring;
ADP2311ACPZ-3-R7
型号: ADP2311ACPZ-3-R7
厂家: ADI    ADI
描述:

Dual 1 A, 18 V, Synchronous Step-Down Regulator with Fail-Safe Voltage Monitoring

监控
文件: 总20页 (文件大小:688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 1 A, 18 V, Synchronous Step-Down  
Regulator with Fail-Safe Voltage Monitoring  
Data Sheet  
ADP2311  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Input voltage: 4.5 V to 18 V  
1.0% output accuracy  
PFO POR WDI  
EN  
PVIN1  
RSTO  
PVIN2  
V
IN  
V
IN  
Integrated MOSFET: 110 mΩ/60 mΩ typical  
Continuous output current: 1 A/1 A  
Power fail comparator generates warning  
Power-on reset with programmable delay timer  
Adjustable voltage monitor for power-down (Channel 2)  
Watchdog refresh input  
Dual phase with 180° out-of-phase operation  
Fixed switching frequency: 300 kHz  
Internal compensation and soft start  
Stable with low ESR output ceramic capacitors  
Precision enable input  
R
R
R
PFI_TOP  
VM2_TOP  
C
IN1  
C
PFI  
VM2  
IN2  
R
PFI_BOT  
VM2_BOT  
BST1  
ADP2311 BST2  
C1  
C2  
BST  
L1  
BST  
V
V
L2  
OUT2  
C
OUT1  
SW1  
PGND1  
SW2  
PGND2  
R
OUT2  
R
C
TOP1  
BOT1  
TOP2  
OUT1  
FB1  
FB2  
R
R
TIMER  
BOT2  
GND VREG  
C
C
TIMER  
VREG  
Figure 1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
= 3.3V  
= 5V  
OUT  
OUT  
Power feedback during power-off  
UVLO, OCP, OVP, and thermal shutdown protection  
APPLICATIONS  
Industrial and instrumentation  
Healthcare and medical  
DC-to-DC point of load applications  
0
0.2  
0.4  
0.6  
0.8  
1.0  
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current at VIN = 12 V, fSW = 300 kHz  
GENERAL DESCRIPTION  
An on-chip watchdog timer can reset the microprocessor if it  
fails to strobe within a preset timeout period. Accurate voltage  
monitoring circuitry and a power fail comparator provide a  
controlled power-up and power-down sequence to enhance  
system reliability.  
The ADP2311 is a fully integrated, dual output, synchronous  
step-down dc-to-dc regulator. The regulator operates from input  
voltages of 4.5 V to 18 V, and the output can regulate down to  
0.6 V. Each channel can provide up to 1 A of continuous output  
current.  
The ADP2311 also includes undervoltage lockout (UVLO),  
overvoltage protection (OVP), overcurrent protection (OCP),  
and thermal shutdown (TSD).  
The ADP2311 integrates the high-side and low-side MOSFETs  
to provide a very high efficiency, compact solution. Both channels  
of the regulator run at 180° out of phase to reduce the input ripple  
current and the input capacitor size, thereby helping to lower  
system electromagnetic interference (EMI). The ADP2311 also  
integrates internal compensation and soft start circuitry to simplify  
the design.  
The ADP2311 operates over the −40°C to +125°C junction  
temperature range and is available in a 24-lead LFCSP package.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP2311  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Peak Current-Limit and Short-Circuit Protection ................ 13  
Power-On Reset (POR) ............................................................. 13  
TIMER Pin Configuration........................................................ 14  
Power Fail Comparator.............................................................. 15  
Voltage Monitor Comparator (VM2) ...................................... 15  
Watchdog Timer......................................................................... 15  
Power-Up and Power-Down Sequence ................................... 15  
Overvoltage Protection (OVP)................................................. 15  
Undervoltage Lockout (UVLO) ............................................... 15  
Thermal Shutdown .................................................................... 16  
Applications Information .............................................................. 17  
Input Capacitor Selection.......................................................... 17  
Output Voltage Setting .............................................................. 17  
Inductor Selection...................................................................... 17  
Output Capacitor Selection....................................................... 18  
Application Circuit......................................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 13  
Control Scheme .......................................................................... 13  
Precision Enable/Shutdown ...................................................... 13  
Internal Regulator (VREG)....................................................... 13  
Bootstrap Circuitry .................................................................... 13  
Soft Start ...................................................................................... 13  
REVISION HISTORY  
8/2017—Rev. A to Rev. B  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 20  
3/2014—Revision A: Initial Version  
Rev. B | Page 2 of 20  
 
Data Sheet  
ADP2311  
FUNCTIONAL BLOCK DIAGRAM  
UVLO  
PVIN1  
ADP2311  
ACS1  
HICCUP  
MODE  
OCP  
BOOST  
REGULATOR  
I1  
MAX  
SLOPE RAMP1  
SOFT  
BST1  
SW1  
+
START  
DRIVER  
CMP1  
AMP1  
0.6V  
+
FB1  
CONTROL  
0.7V  
OVP  
LOGIC  
AND  
VREG  
DRIVER  
MOSFET  
DRIVER  
WITH  
ANTI-CROSS  
PROTECTION  
+
+
POR1  
CLK1  
PGND1  
0.579V  
LOW-SIDE  
CURRENT  
SENSE  
+
I
TIMER  
TIMER  
POR  
RSTO  
POR1  
POR2  
PVIN1  
POR  
CONTROL  
LOGIC  
DELAY  
TIMER  
5V  
VREG  
GND  
PFI  
REGULATOR  
CLK1  
FB1  
+
SLOPE RAMP1  
CLK2  
OSC  
48mV  
FB2  
+
SLOPE RAMP2  
0.6V  
0.6V  
+
POWER-UP  
AND  
PFO  
POWER-DOWN  
SEQUENCE  
CONTROL  
+
1.2V  
4µA  
EN  
POR1  
1µA  
+
VM2  
WDI  
RSTO  
RESET  
GENERATOR  
POR2  
UVLO  
PVIN2  
ACS2
HICCUP  
MODE  
OCP  
BOOST  
REGULATOR  
I2  
MAX  
SLOPE RAMP2  
SOFT  
BST2  
SW2  
+
START  
DRIVER  
CMP2  
AMP2  
0.6V  
+
FB2  
CONTROL  
0.7V  
OVP  
LOGIC  
AND  
VREG  
DRIVER  
MOSFET  
DRIVER  
WITH  
ANTI-CROSS  
PROTECTION  
+
+
POR2  
CLK2  
PGND2  
0.579V  
LOW-SIDE  
CURRENT  
SENSE  
+
Figure 3.  
Rev. B | Page 3 of 20  
 
ADP2311  
Data Sheet  
SPECIFICATIONS  
PVIN1 = PVIN2 = 12 V, TJ = −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER INPUT  
PVIN1, PVIN2 pins  
Power Input Voltage Range  
Quiescent Current (PVIN1 + PVIN2)  
Shutdown Current (PVIN1 + PVIN2)  
PVINx Undervoltage Lockout Threshold  
PVINx Rising  
VPVIN  
IQ  
ISHDN  
4.5  
18  
1.5  
20  
V
mA  
µA  
No switching, FB1 = FB2 = 0.65 V  
EN = GND  
1.2  
10  
4.2  
3.7  
4.5  
V
V
PVINx Falling  
3.5  
FEEDBACK  
FB1, FB2 pins  
FBx Regulation Voltage  
VFB  
IFB  
TJ = 0°C to +85°C  
TJ = −40°C to +125°C  
0.594  
0.591  
0.6  
0.6  
0.01  
0.606  
0.609  
0.1  
V
V
µA  
FBx Bias Current  
INTERNAL REGULATOR  
VREG Voltage  
Dropout Voltage  
Regulator Current Limit  
MOSFET ON RESISTANCE  
High-Side On Resistance  
Low-Side On Resistance  
CURRENT LIMIT  
VREG pin  
4.7  
30  
5
300  
50  
5.3  
70  
V
mV  
mA  
IVREG = 5 mA  
RDSON  
Pin to pin measurements  
VBST to VSW = 5 V  
VREG = 5 V  
110  
60  
158  
90  
mΩ  
mΩ  
High-Side Peak Current Limit  
Low-Side Source Current Limit  
Low-Side Sink Current Limit  
Hiccup Time  
1.6  
1.9  
0.5  
2
2.6  
1
2.4  
3.1  
A
A
A
4096  
Cycles  
SWITCH NODE  
SW1, SW2 pins  
ISW = 0.5 A  
SWx Minimum On Time  
SWx Minimum Off Time  
PWM SWITCHING FREQUENCY  
SOFT START TIME  
tMIN_ON  
tMIN_OFF  
fSW  
100  
165  
300  
512  
ns  
ns  
250  
1.02  
93.5  
350  
kHz  
Cycles  
tSS  
ENABLE  
EN pin  
EN Rising Threshold  
EN Falling Threshold  
EN Source Current  
1.2  
1.1  
5
1.28  
V
V
µA  
µA  
EN voltage below falling threshold  
EN voltage above rising threshold  
POR pin  
1
POWER-ON RESET  
Power-On Reset Threshold  
Power-On Reset Hysteresis  
Power-On Reset Default Deglitch Time  
POR Leakage Current  
POR Output Low Voltage  
POWER FAIL INPUT AND OUTPUT  
Power Fail Input Threshold  
Power Fail Input Hysteresis  
Power Fail Deglitch Time  
PFI Leakage Current  
Falling threshold (VFB1 and VFB2  
)
95  
96.5  
%
1.5  
1.7  
0.1  
65  
%
ms  
µA  
mV  
VPOR = 5 V  
IPOR = 1 mA  
1
90  
PFI and PFO pins  
Rising threshold  
VPFI  
VPFI_HYST  
0.591  
0.6  
25  
8
10  
0.1  
65  
0.609  
33  
V
mV  
Cycles  
nA  
µA  
mV  
VPFI = 1.2 V  
VPFO = 5 V  
IPFO = 1 mA  
50  
1
90  
PFO Leakage Current  
PFO Output Low Voltage  
Rev. B | Page 4 of 20  
 
Data Sheet  
ADP2311  
Parameter  
Symbol  
Test Conditions/Comments  
VM2 pin  
Falling threshold  
Min  
Typ  
Max  
Unit  
VOLTAGE MONITOR COMPARATOR  
VM2 Input Threshold  
VM2 Input Hysteresis  
VM2 Leakage Current  
POR TIMER  
0.585  
0.6  
50  
10  
0.615  
65  
50  
V
mV  
nA  
TIMER pin  
TIMER Pin Pull-Up Current  
WATCHDOG  
3
µA  
WDI and RSTO pins  
Senses VFB2  
Reset Threshold Voltage  
Reset Threshold Hysteresis  
Reset Timeout Period  
Watchdog Timeout Period  
Option 1  
Option 2  
Option 3  
Option 4  
WDI Pulse Width  
93.5  
95  
1.5  
1
96.5  
1.17  
%
%
ms  
tRP  
tWD  
0.883  
See the Ordering Guide  
83  
41  
125  
167  
80  
100  
50  
150  
200  
117  
58  
175  
233  
ms  
ms  
ms  
ms  
ns  
WDI Input High Voltage  
WDI Input Low Voltage  
RSTO Output Low Voltage  
1.2  
V
V
mV  
0.4  
90  
IRSTO = 1 mA  
VRSTO = 5 V  
65  
RSTO Leakage Current  
0.1  
1
µA  
THERMAL  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
15  
°C  
°C  
Rev. B | Page 5 of 20  
ADP2311  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. θJA is  
measured using natural convection on a JEDEC 4-layer board  
with the exposed pad soldered to the printed circuit board  
(PCB) and with thermal vias.  
Parameter  
Rating  
PVIN1, PVIN2, EN  
SW1, SW2  
BST1, BST2  
FB1, FB2, WDI, RSTO, VM2, TIMER,  
POR, PFO, PFI  
VREG  
PGNDx to GND  
Operating Temperature Range  
(Junction)  
−0.3 V to +20 V  
−1 V to +20 V  
VSW + 6 V  
−0.3 V to +6 V  
Table 3. Thermal Resistance  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
Package Type  
θJA  
θJC  
Unit  
24-Lead LFCSP_WQ  
36.8  
1.64  
°C/W  
Storage Temperature Range  
Soldering Conditions  
−65°C to +150°C  
JEDEC J-STD-020  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 6 of 20  
 
 
 
Data Sheet  
ADP2311  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
18 PGND1  
GND  
VREG  
TIMER  
PFI  
PGND1  
BST1  
17  
16  
15  
ADP2311  
TOP VIEW  
BST2  
PFO  
14 PGND2  
13 PGND2  
POR  
NOTES  
1. SOLDER THE EXPOSED PAD TO AN  
EXTERNAL GND PLANE.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
GND  
VREG  
Analog Ground. Connect this pin to the ground plane.  
Internal 5 V Regulator Output. The IC control circuits are powered from this voltage. Place a 1 µF ceramic  
capacitor between VREG and GND.  
3
4
TIMER  
PFI  
POR Sequence Selection and Delay Time Setting. This pin is used to set the POR sequence and delay time (see  
the TIMER Pin Configuration section).  
Power Fail Comparator Input. Connect an external resistor divider from PVIN2 to PFI to monitor the input voltage.  
When the PFI voltage falls below the threshold voltage, the PFO pin is pulled low.  
5
6
7
PFO  
POR  
FB2  
Power Fail Output (Open Drain).  
Power-On Reset Output (Open Drain).  
Feedback Voltage Sense Input for Channel 2. Connect this pin to a resistor divider from the Channel 2 output  
voltage, VOUT2  
.
8
9
RSTO  
WDI  
Watchdog Output (Open Drain). The RSTO pin goes low if the internal watchdog timer times out because of  
inactivity on the WDI input.  
Watchdog Input. If WDI remains high or low for longer than the watchdog timeout period, the watchdog output,  
RSTO, goes low. The timer is reset with each transition at the WDI input; a high to low or low to high transition  
clears the counter.  
10  
PVIN2  
Power Input for Channel 2. Connect PVIN2 to the input power source, and connect a bypass capacitor between  
this pin and PGND2.  
11, 12  
13, 14  
15  
SW2  
PGND2  
BST2  
BST1  
PGND1  
SW1  
Switch Node for Channel 2.  
Power Ground for Channel 2.  
Supply Rail for the Gate Drive of Channel 2. Place a 0.1 µF capacitor between SW2 and BST2.  
Supply Rail for the Gate Drive of Channel 1. Place a 0.1 µF capacitor between SW1 and BST1.  
Power Ground for Channel 1.  
16  
17, 18  
19, 20  
21  
Switch Node for Channel 1.  
PVIN1  
Power Input for Channel 1. Connect PVIN1 to the input power source, and connect a bypass capacitor between  
this pin and PGND1.  
22  
23  
EN  
Precision Enable Input. An external resistor divider can be used to set the turn-on threshold. If the enable pin is  
not used, connect EN to PVINx.  
Voltage Monitor Comparator Input. Connect an external resistor divider from PVIN2 to VM2 to monitor the  
input voltage. During the power-down sequence, Channel 2 turns off when the VM2 voltage falls below the  
threshold voltage.  
VM2  
24  
FB1  
EP  
Feedback Voltage Sense Input for Channel 1. Connect this pin to a resistor divider from the Channel 1 output  
voltage, VOUT1  
.
Exposed Pad. Solder the exposed pad to an external GND plane.  
Rev. B | Page 7 of 20  
 
ADP2311  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VIN = 12 V, VOUT = 3.3 V, L = 22 µH, COUT = 47 µF/X7R/6.3 V, fSW = 300 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
V
V
V
V
V
V
V
= 1V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
V
V
V
V
V
V
= 1V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
INDUCTOR: XAL6060-223ME  
0.2 0.4  
OUTPUT CURRENT (A)  
INDUCTOR: XAL6060-103ME  
0.2 0.4  
OUTPUT CURRENT (A)  
0
0.6  
0.8  
1.0  
0
0.6  
0.8  
1.0  
Figure 5. Efficiency vs. Output Current at VIN = 12 V  
Figure 8. Efficiency vs. Output Current at VIN = 5 V  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
15  
14  
13  
12  
11  
10  
9
T
T
T
= –40°C  
= +25°C  
= +125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
J
J
J
J
J
J
8
7
6
5
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
V
(V)  
IN  
V
(V)  
IN  
Figure 6. Shutdown Current vs. VIN  
Figure 9. Quiescent Current vs. VIN  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
RISING  
RISING  
FALLING  
FALLING  
–40  
–20  
0
20  
40  
60  
80  
100 120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. UVLO Threshold vs. Temperature  
Figure 10. Enable Threshold vs. Temperature  
Rev. B | Page 8 of 20  
 
Data Sheet  
ADP2311  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
1.20  
1.16  
1.12  
1.08  
1.04  
1.00  
0.96  
0.92  
0.88  
0.84  
0.80  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. EN Source Current vs. Temperature at VEN = 1 V  
Figure 14. EN Source Current vs. Temperature at VEN = 1.5 V  
606  
588  
584  
580  
576  
572  
568  
564  
560  
604  
602  
600  
598  
596  
594  
RISING  
FALLING  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Feedback Voltage vs. Temperature  
Figure 15. POR Threshold vs. Temperature  
612  
608  
604  
600  
596  
592  
588  
584  
580  
576  
572  
568  
564  
560  
670  
660  
650  
640  
630  
620  
610  
600  
590  
580  
RISING  
RISING  
FALLING  
FALLING  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. PFI Threshold vs. Temperature  
Figure 16. VM2 Threshold vs. Temperature  
Rev. B | Page 9 of 20  
ADP2311  
Data Sheet  
588  
584  
580  
576  
572  
568  
564  
560  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
RISING  
FALLING  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Frequency vs. Temperature  
Figure 20. Watchdog Reset Threshold vs. Temperature  
1.16  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Watchdog Reset Timeout Period vs. Temperature  
Figure 21. Normalized Watchdog Timeout Period vs. Temperature  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. TIMER Pin Source Current vs. Temperature  
Figure 22. Peak Current Limit Threshold vs. Temperature  
Rev. B | Page 10 of 20  
Data Sheet  
ADP2311  
160  
150  
140  
130  
120  
110  
100  
90  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
70  
60  
50  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. High-Side MOSFET RDSON vs. Temperature  
Figure 26. Low-Side MOSFET RDSON vs. Temperature  
V
(AC)  
OUT1  
1
2
3
EN  
SW1  
1
V
OUT1  
OUT2  
2
3
V
(AC)  
OUT2  
V
SW2  
POR  
4
4
B
B
B
W
B
B
CH1 5V  
CH3 2V  
CH2 2V  
CH4 2V  
M1ms  
T
A CH1  
3V  
CH1 20mV  
CH3 20mV  
CH2 20V  
CH4 20V  
M4µs  
T
A CH4  
7.2V  
W
W
W
W
20.40%  
50.40%  
Figure 24. Working Mode Waveform  
Figure 27. Soft Start with Full Load  
V
IN  
V
(AC)  
OUT  
1
SW  
1
2
3
I
OUT  
V
(AC)  
OUT  
4
B
CH1 100mV  
M200µs  
20.2%  
A CH4  
720mA  
W
B
B
B
W
CH1 5V  
CH3 20mV  
CH2 10V  
M1ms  
T
A CH1  
10.7V  
W
W
CH4 500mA B  
T
W
20.40%  
Figure 25. Load Transient Response, 0.25 A to 0.75 A  
Figure 28. Line Transient Response, VIN from 8 V to 14 V, IOUT = 1 A  
Rev. B | Page 11 of 20  
ADP2311  
Data Sheet  
V
V
OUT  
OUT  
1
2
1
2
4
SW  
SW  
I
L
I
L
4
B
B
B
B
CH1 2V  
CH2 10V  
CH4 2A  
M10ms  
20.2%  
A CH1  
2.04V  
CH1 2V  
CH2 10V  
CH4 2A B  
M10ms  
A CH1  
2.04V  
W
W
W
W
W
B  
T
T
70.40%  
W
Figure 30. Output Short Recovery  
Figure 29. Output Short  
Rev. B | Page 12 of 20  
Data Sheet  
ADP2311  
THEORY OF OPERATION  
The ADP2311 is a fully integrated, dual output, step-down dc-to-dc  
regulator. The ADP2311 can operate with an input voltage from  
4.5 V to 18 V and can regulate the output voltage down to 0.6 V.  
The ADP2311 also integrates power-up and power-down sequence  
circuitry and a watchdog timer to enhance system reliability.  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP2311 has a peak current-limit protection circuit to  
prevent current runaway. The high-side MOSFET peak current  
is limited to 2 A typical. When the peak inductor current reaches  
the current-limit threshold, the high-side MOSFET turns off,  
the low-side MOSFET turns on, and the overcurrent counter  
increments.  
CONTROL SCHEME  
The ADP2311 features a fixed frequency, current mode pulse-  
width modulation (PWM) control architecture. At the start of  
each oscillator cycle, the high-side MOSFET turns on, placing a  
positive voltage across the inductor. The inductor current increases  
until the current sense signal crosses the peak inductor current  
threshold, which turns off the high-side MOSFET and turns on  
the low-side MOSFET. This places a negative voltage across the  
inductor, reducing the inductor current. The low-side MOSFET  
stays on for the remainder of the cycle.  
When the low-side MOSFET is turned on, the internal circuit  
continues to monitor the current going through the low-side  
MOSFET. At the end of every clock cycle, if the low-side MOSFET  
source current is greater than the low-side source current limit  
threshold (2.6 A typical), the high-side MOSFET stays off, the  
low-side MOSFET stays on for the next cycle, and the over-  
current counter increments. The high-side MOSFET turns on  
again when the low-side source current is below the low-side  
source current limit at the start of a cycle.  
PRECISION ENABLE/SHUTDOWN  
The ADP2311 has a precision enable pin for both channels.  
The EN pin has an internal pull-down current source of 5 µA  
that provides a default turn-off when the EN pin is open.  
If the high-side MOSFET peak current does not exceed the peak  
current limit in one cycle, the overcurrent counter is reset. If the  
overcurrent counter reaches 10, the device enters hiccup mode.  
During hiccup mode, the high-side and low-side MOSFETs are  
both turned off. The device remains in hiccup mode for 4096  
clock cycles and then attempts a soft start. If the current-limit  
fault is cleared, the device resumes normal operation; if the  
current-limit fault is still active, the device reenters hiccup mode.  
When the voltage on the EN pin exceeds 1.2 V typical, Channel 1  
and Channel 2 are enabled, and the internal pull-down current  
source at the EN pin is reduced to 1 µA, which allows the user to  
program the input voltage UVLO.  
When the voltage on the EN pin falls below 1.1 V typical,  
Channel 1, Channel 2, and all internal circuits are turned off,  
and the device enters shutdown mode.  
The low-side MOSFET can also sink current from the load. If  
the low-side sink current limit is exceeded, both the low-side and  
high-side MOSFETs are turned off until the next cycle starts.  
INTERNAL REGULATOR (VREG)  
The internal regulator provides a stable voltage supply for the  
internal control circuits and bias voltage for the low-side gate  
drivers. It is recommended that a 1 µF ceramic capacitor be  
placed between VREG and GND. The internal regulator also  
includes a current-limit circuit for protection.  
POWER-ON RESET (POR)  
The POR pin is an active high, open-drain output that requires  
a resistor to pull it up to a voltage.  
The POR threshold is referenced to the FBx pin voltage (VFB)  
and is specified as a percentage of VFB. The POR falling threshold  
is 95% typical, 93.5% minimum, and 96.5% maximum, which  
covers the full temperature range. Therefore, the typical POR  
falling threshold is 95% of the typical VFB value, the minimum  
POR falling threshold is 93.5% of the minimum VFB value, and  
the maximum POR falling threshold is 96.5% of the maximum  
The PVIN1 pin provides the power supply for the internal  
regulator shared by both channels.  
BOOTSTRAP CIRCUITRY  
The ADP2311 integrates boot regulators to provide the gate drive  
voltage for the high-side MOSFETs. The regulators generate 5 V  
bootstrap voltages between the BSTx pin and the SWx pin.  
V
FB value.  
If VFB is at the minimum value of 0.591 V, the minimum voltage  
of the POR falling threshold is 0.591 V × 93.5% = 0.553 V.  
It is recommended that an X7R or X5R, 0.1 µF ceramic capacitor  
be placed between the BSTx and the SWx pins.  
If VFB is at the maximum value of 0.609 V, the maximum voltage  
of the POR falling threshold is 0.609 V × 96.5% = 0.588 V.  
SOFT START  
The ADP2311 has integrated soft start circuitry to limit the  
output voltage rise time and to reduce inrush current at startup.  
The soft start time is fixed at 512 clock cycles (1.7 ms).  
Therefore, the worst-case POR falling threshold voltage range is  
0.553 V to 0.588 V.  
The typical POR falling threshold voltage is 0.6 V × 95% = 0.57 V.  
Rev. B | Page 13 of 20  
 
 
 
 
 
 
 
 
ADP2311  
Data Sheet  
The POR function has hysteresis of 1.5% between the falling and  
rising thresholds. The POR rising threshold is 96.5% typical,  
95% minimum, and 98% maximum. Therefore, the typical POR  
rising trigger voltage is 0.6 V × 96.5% = 0.579 V. The POR rising  
threshold voltage is always higher than the POR falling threshold  
voltage.  
POR  
ADP2311  
RSTO  
TIMER  
TIMER  
C
TIMER PIN CONFIGURATION  
Figure 31. Capacitor Connected Between TIMER and GND  
The POR sequence timing and delay time depend on the config-  
uration of the TIMER pin.  
Figure 31 shows the first configuration of the TIMER pin.  
Figure 34 shows the power-on reset timing for this configuration.  
As shown in Figure 31, a capacitor is connected between the  
TIMER pin and GND. The POR pin is pulled high when both  
POR  
ADP2311  
RSTO  
TIMER  
VOUT1 and VOUT2 are above 96.5% of the VOUTx nominal value  
R
SEQ  
after a delay time. The POR pin is pulled low when either VOUT1  
or VOUT2 falls below 95% of the VOUTx nominal voltage.  
C
TIMER  
R
= 10k  
SEQ  
Figure 32. Resistor and Capacitor Connected Between TIMER and GND  
The POR delay time is determined by the maximum value  
between the internal default delay of 1.7 ms and an external  
delay time calculated by the following equation:  
POR  
0.6 V CTIMER  
tDELAY  
ADP2311  
ITIMER  
RSTO  
TIMER  
where:  
CTIMER is the capacitor between the TIMER pin and GND  
(1 nF to 68 nF).  
Figure 33. TIMER Pin Floating  
ITIMER is the pull-up current of the TIMER pin (3 μA).  
96.5% × V  
OUT1  
Figure 32 shows the second configuration of the TIMER pin.  
Figure 35 shows the power-on reset timing for this configuration.  
As shown in Figure 32, a resistor and capacitor are connected  
between the TIMER pin and GND. The POR pin is pulled high  
when both VOUT1 and VOUT2 are above 96.5% of the VOUTx nominal  
value after a delay time. The POR pin is pulled low when VOUT1  
or VOUT2 falls below 95% of the VOUTx nominal voltage or when  
V
OUT1  
95% × V  
OUT2  
96.5% × V  
OUT2  
V
OUT2  
POR  
tDELAY  
RSTO  
WDI  
tRP  
RSTO  
the watchdog timer times out (the  
to low).  
pin is taken from high  
tWD  
Figure 34. Power-On Reset Timing for Figure 31  
The POR delay time is determined by the maximum value  
between the internal default delay of 1.7 ms and an external  
delay time calculated by the following equation:  
96.5% × V  
OUT1  
CTIMER  
ITIMER  
V
V
OUT1  
OUT2  
POR  
tDELAY  
0.6 VITIMER RSEQ   
95% × V  
OUT2  
96.5% × V  
OUT2  
where:  
SEQ is a resistor in the range of 8 kΩ to 12 kΩ. Typically,  
a 10 kΩ resistor is chosen for RSEQ  
TIMER is a capacitor in the range of 1 nF to 68 nF.  
tDELAY  
tDELAY  
R
.
RSTO  
tRP  
C
tWD  
WDI  
Figure 33 shows the third configuration of the TIMER pin.  
Figure 35 shows the power-on reset timing for this configuration.  
In this configuration, the TIMER pin is floating. The POR delay  
time is fixed at 1.7 ms.  
Figure 35. Power-On Reset Timing for Figure 32 and Figure 33  
Rev. B | Page 14 of 20  
 
 
 
 
 
 
Data Sheet  
ADP2311  
The watchdog timeout (tWD) is set by the factory to one of four  
possible values: 50 ms, 100 ms, 150 ms, and 200 ms (see the  
Ordering Guide).  
POWER FAIL COMPARATOR  
The ADP2311 integrates a power fail comparator that can  
generate a warning when the input voltage falls below the  
designated voltage. When the PFI input voltage falls below  
0.575 V, the PFO pin is pulled low. When the PFI input voltage  
rises above 0.6 V, the PFO pin is pulled high. The low leakage  
current of the PFI pin allows the use of a large value external  
resistor to reduce system current consumption.  
POWER-UP AND POWER-DOWN SEQUENCE  
The ADP2311 has a controlled power-up and power-down  
sequence. During power-up, Channel 1 is powered up before  
Channel 2. During power-down, Channel 2 is powered down  
before Channel 1.  
The PFO pin can be used to send a warning signal to the pro-  
cessor in case of an abnormal input voltage condition so that  
the processor can prepare to power down the system before  
power is lost.  
Channel 1 does not power up until all of the following  
conditions are met followed by a 128 cycle delay:  
The PFI voltage exceeds 0.6 V.  
The voltage on the EN pin exceeds 1.2 V.  
Both the FB1 and FB2 voltages are less than 48 mV.  
VOLTAGE MONITOR COMPARATOR (VM2)  
The VM2 pin connects to an accurate comparator. When the  
VM2 voltage falls below 0.6 V, Channel 2 is turned off. When  
the VM2 voltage rises above 0.65 V, Channel 2 is allowed to  
power up if the EN pin is high and PFI is above 0.6 V.  
When VOUT1 reaches 96.5% of its normal voltage, Channel 2 is  
powered up after a delay of 256 cycles.  
During power-down, when the VM2 voltage falls below 0.6 V,  
Channel 2 is turned off and power feedback occurs. Channel 2  
energy is fed back to the input voltage to speed up the discharge  
time of Channel 2. When the FB2 output voltage falls below  
48 mV, Channel 1 is allowed to turn off, and power feedback  
occurs to speed up the discharge time of Channel 1.  
WATCHDOG TIMER  
The watchdog timer circuit is used to monitor the activity of the  
processor. During power-up, the watchdog timer circuit does not  
acknowledge pulses from the WDI pin until the voltage at FB2 is  
above the reset threshold and the reset timeout period (tRP) has  
The power feedback feature allows the Channel 1 and Channel 2  
output voltage fall time (100% to 10%) to be within 10 ms.  
RSTO  
elapsed. During the power-up sequence, the  
pin is pulled  
low and remains low until the watchdog timer circuit is activated.  
The watchdog timer circuit can be initialized only by a low to  
high transition on the WDI pin both after power up and after a  
watchdog timeout (see Figure 36).  
OVERVOLTAGE PROTECTION (OVP)  
The ADP2311 provides an OVP feature to protect the system  
against output shorts to a higher voltage supply or when a  
strong load disconnect transient occurs.  
96.5%  
V
OUT2  
If the feedback voltage increases to 0.7 V, the high-side MOSFET  
turns off and the low-side MOSFET turns on until the negative  
current limit threshold is triggered. After the negative current  
limit threshold is triggered, both MOSFETs are held in the off  
state until the FBx pin voltage falls to 0.63 V, at which point the  
ADP2311 resumes normal operation.  
RSTO  
tWD  
tRP  
tRP  
WDI  
Figure 36. Watchdog Timing Diagram  
UNDERVOLTAGE LOCKOUT (UVLO)  
After the watchdog timer circuit is active, it is cleared with every  
low to high or high to low logic transition on the WDI pin, which  
can detect pulse widths as short as 80 ns. If the WDI pin remains  
high or low for longer than the watchdog timeout period (tWD),  
The UVLO threshold is 4.2 V with hysteresis of 0.5 V to prevent  
power-on glitches on the device. When the PVIN1 or PVIN2  
voltage rises above 4.2 V, Channel 1 or Channel 2 is enabled, and  
the soft start period begins. When PVIN1 or PVIN2 falls below  
3.7 V, Channel 1 or Channel 2 is turned off.  
RSTO  
a reset is asserted, and the  
pin is pulled low. The processor  
is required to toggle the WDI pin within the timeout period;  
therefore, it indicates a code execution error, and the generated  
reset pulse (tRP) restarts the microprocessor in a known state.  
The watchdog timer can also be cleared by a reset assertion due  
to an undervoltage condition on VOUT2. When the FB2 voltage is  
below the reset threshold, a reset is asserted; the watchdog timer  
is cleared and does not begin counting again until reset is  
deasserted.  
Rev. B | Page 15 of 20  
 
 
 
 
 
 
 
ADP2311  
Data Sheet  
A 15°C hysteresis is included so that the ADP2311 does not  
THERMAL SHUTDOWN  
recover from thermal shutdown until the on-chip temperature  
falls below 135°C. Upon recovery, a soft start is initiated before  
normal operation. Figure 37 shows the power sequence during  
thermal protection based on the circuit shown in Figure 38.  
If the ADP2311 junction temperature exceeds 150°C, the PFO  
pin is immediately pulled low, and Channel 2 enters power feed-  
back mode. When VOUT2 falls below 95% of its nominal voltage,  
RSTO  
the POR and  
pins are pulled low. When the FB2 voltage falls  
below 48 mV, Channel 1 turns off and enters discharge mode.  
WHEN THE JUNCTION TEMPERATURE IS  
HIGHER THAN 150°C, PFO IS IMMEDIATELY  
PULLED LOW, AND CHANNEL 2 ENTERS  
POWER FEEDBACK MODE.  
WHEN FB2 FALLS TO 95% OF ITS NOMINAL  
VALUE, POR AND RSTO ARE PULLED LOW.  
WHEN FB2 DISCHARGES TO 48mV,  
CHANNEL 1 TURNS OFF.  
WHEN THE JUNCTION  
TEMPERATURE IS LOWER  
THAN 135°C, THE PART  
POWERS UP AGAIN USING THE  
NORMAL START-UP ROUTINE.  
THERMAL  
SHUTDOWN  
V
IN  
PWM1  
POWER  
FEEDBACK MODE  
PWM2  
FB1  
48mV  
FB2  
95%  
48mV  
PFO  
POR  
RSTO  
(INT)  
WDI  
(FROM  
PROCESSOR)  
Figure 37. Power Sequence During Thermal Protection Based on the Circuit Shown in Figure 38  
Rev. B | Page 16 of 20  
 
 
Data Sheet  
ADP2311  
APPLICATIONS INFORMATION  
As a guideline, the inductor ripple current, ΔIL, is typically set  
to one-third of the maximum load current. The inductor value  
is calculated using the following equation:  
INPUT CAPACITOR SELECTION  
The input capacitor reduces the input voltage ripple caused by  
the switch current on PVINx. Place the input capacitor as close  
as possible to the PVINx pin. A ceramic capacitor in the 10 μF  
to 47 μF range is recommended. The loop composed of the input  
capacitor, the high-side MOSFET, and the low-side MOSFET  
must be kept as small as possible.  
(VIN VOUT ) × D  
L =  
IL × fSW  
where:  
VIN is the input voltage.  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. Ensure that the rms current rating  
of the input capacitor is larger than the value calculated from  
the following equation:  
V
OUT is the output voltage.  
D is the duty cycle (D = VOUT/VIN).  
ΔIL is the inductor current ripple.  
fSW is the switching frequency.  
The peak inductor current is calculated by  
I
CIN_RMS = IOUT  
×
D ×(1D)  
IL  
2
IPEAK = IOUT +  
where D is the duty cycle (D = VOUT/VIN).  
OUTPUT VOLTAGE SETTING  
The saturation current of the inductor must be larger than the  
peak inductor current. For ferrite core inductors with a quick  
saturation characteristic, the saturation current rating of the  
inductor must be higher than the current-limit threshold of the  
switch to prevent the inductor from reaching saturation.  
The output voltage of the ADP2311 can be set by an external  
resistor divider using the following equation:  
RTOP  
RBOT  
V
OUT = 0.6 × 1 +  
The rms current of the inductor is calculated using the follow-  
ing equation:  
To limit the output voltage accuracy degradation due to the FB  
bias current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT < 30 kΩ.  
2
IL  
12  
2
IRMS  
=
IOUT  
+
Table 5 lists the recommended resistor divider values for various  
output voltages.  
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 6 lists some recommended inductors.  
Table 5. Resistor Divider Values for Various Output Voltages  
Table 6. Recommended Inductors  
VOUT (V)  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
Value  
(µH)  
DCR  
ISAT (A) IRMS (A) (mΩ)  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
10  
10  
15  
20  
47.5  
10  
22  
15  
10  
10  
10  
15  
2.21  
3
Vendor Part No.  
Sumida CDRH8D58/  
10  
15  
22  
2.2  
1.9  
1.4  
4.5  
3.6  
3.3  
20.5  
LDNP-100NC  
CDRH8D58/  
LDNP-150NC  
CDRH8D58/  
LDNP-220NC  
29  
36.2  
Coilcraft XAL6060-103ME  
XAL6060-153ME  
10  
15  
22  
7.6  
5.8  
5.6  
7
6
5
27  
39.7  
55.1  
INDUCTOR SELECTION  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor value leads to a faster transient response, but  
degrades efficiency due to a larger inductor ripple current. Using  
a large inductor value leads to smaller ripple current and better  
efficiency, but results in a slower transient response.  
XAL6060-223ME  
Rev. B | Page 17 of 20  
 
 
 
 
 
 
ADP2311  
Data Sheet  
Table 8 lists the recommended external inductors and output  
capacitors for typical applications with the ADP2311.  
OUTPUT CAPACITOR SELECTION  
The output capacitor selection affects both the output voltage  
ripple and the loop dynamics of the regulator. The ADP2311 is  
designed to operate with small ceramic capacitors that have low  
equivalent series resistance (ESR) and low equivalent series  
inductance (ESL) and can, therefore, easily meet the output  
voltage ripple specifications.  
Table 8. Recommended External Components for Typical  
Applications  
R
TOP (kΩ), RBOT (kΩ),  
1% 1%  
15  
VIN (V) VOUT (V) L (µH) COUT (µF)  
12  
12  
12  
12  
12  
12  
12  
5
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
10  
10  
15  
15  
22  
22  
33  
10  
10  
10  
10  
10  
10  
2 × 47  
2 × 47  
2 × 47  
47  
47  
22  
10  
10  
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
10  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
When the regulator operates in continuous conduction mode, the  
overall output voltage ripple is the sum of the voltage spike caused  
by the output capacitor ESR plus the voltage ripple caused by the  
charging and discharging of the output capacitor.  
1
22  
VRIPPLE = ∆IL ×  
+ ESRC  
OUT  
2 × 47  
2 × 47  
47  
8× fSW ×COUT  
5
5
Capacitors with lower ESR are preferable to guarantee low output  
voltage ripple, as shown in the following equation:  
5
47  
5
22  
VRIPPLE  
IL  
ESRC  
OUT  
5
22  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with different behavior over temperature and applied voltage.  
X5R or X7R dielectrics are recommended for best performance  
due to their low ESR and small temperature coefficients.  
Table 7 lists recommended output capacitors for VOUT ≤ 5.0 V.  
Table 7. Recommended Output Capacitors for VOUT ≤ 5.0 V  
Vendor  
Part No.  
Value  
Murata  
GRM31CR60J226KE19  
GRM32ER60J476ME20  
C3216X5R0J226M160AA  
C3216X5R0J336M130AC  
C3216X5R0J476M160AC  
22 μF, 6.3 V, X5R  
47 μF, 6.3 V, X5R  
22 μF, 6.3 V, X5R  
33 μF, 6.3 V, X5R  
47 μF, 6.3 V, X5R  
TDK  
Rev. B | Page 18 of 20  
 
 
 
Data Sheet  
ADP2311  
APPLICATION CIRCUIT  
BST1  
SW1  
C3  
0.1µF  
L1  
15µH  
EN  
V
V
OUT1  
IN  
PVIN1  
1.1V/0.6A  
15.5V  
C1  
10µF/25V  
C5  
C6  
47µF/6.3V/X7R  
47µF/6.3V/X7R  
PGND1  
FB1  
R1  
11.5kΩ  
R2  
13.7kΩ  
BST2  
C4  
0.1µF  
L2  
22µH  
V
PVIN2  
OUT2  
SW2  
2.5V/0.4A  
C2  
10µF/25V  
C7  
PGND2  
47µF/6.3V/X7R  
R3  
47.5kΩ  
ADP2311  
R7  
500kΩ  
R9  
500kΩ  
FB2  
R4  
15kΩ  
V
REG  
R5  
R6  
R11  
PFI  
100kΩ 100kΩ 100kΩ  
VM2  
R8  
21.8kΩ  
R10  
66.5kΩ  
POR  
PFO  
WDI  
POR  
PFO  
WDI  
V
REG  
RSTO  
RSTO  
VREG  
GND  
C8  
1µF  
TIMER  
C9  
15nF  
Figure 38. Typical Application Circuit (Input Power Fail Voltage Programmed at 14.4 V/13.8 V; Channel 2 Turned Off at 5.1 V)  
14.4V  
13.8V  
5.5V  
5.1V  
V
IN  
0.575V  
0.6V  
PFI  
PFO  
0.65V  
0.6V  
VM2  
OUT1  
96.5%  
V
96.5%  
95%  
0.2V  
V
OUT2  
POR  
853µs  
RSTO  
WDI  
(FROM PROCESSOR)  
Figure 39. Power-Up and Power-Down Sequence Based on the Circuit Shown in Figure 38  
Rev. B | Page 19 of 20  
 
 
ADP2311  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
24  
19  
18  
1
0.50  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
13  
12  
6
7
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8  
Figure 40. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm x 4 mm Body and 0.75 mm Package Height  
(CP-24-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Watchdog Timeout Period  
tWD = 100 ms  
tWD = 50 ms  
tWD = 150 ms  
tWD = 200 ms  
Package Description  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
24-Lead LFCSP  
Package Option  
CP-24-15  
CP-24-15  
CP-24-15  
CP-24-15  
ADP2311ACPZ-1-R7  
ADP2311ACPZ-2-R7  
ADP2311ACPZ-3-R7  
ADP2311ACPZ-4-R7  
ADP2311-1-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11036-0-8/17(B)  
Rev. B | Page 20 of 20  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY