ADP2503ACPZ-5.0-R7 [ADI]

600 mA, 2.5 MHz Buck-Boost DC-to-DC Converter;
ADP2503ACPZ-5.0-R7
型号: ADP2503ACPZ-5.0-R7
厂家: ADI    ADI
描述:

600 mA, 2.5 MHz Buck-Boost DC-to-DC Converter

开关 光电二极管
文件: 总16页 (文件大小:1583K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
600 mA/1000 mA, 2.5 MHz Buck-Boost  
DC-to-DC Converters  
Data Sheet  
ADP2503/ADP2504  
FEATURES  
GENERAL DESCRIPTION  
1 mm height profile  
Compact PCB footprint  
The ADP2503/ADP2504 are high efficiency, low quiescent current  
step-up/step-down dc-to-dc converters that can operate at input  
voltages greater than, less than, or equal to the regulated output  
voltage. The power switches and synchronous rectifiers are  
internal to minimize external device count. At high load currents,  
the ADP2503/ADP2504 use a current-mode, fixed frequency  
pulse-width modulation (PWM) control scheme for optimal  
stability and transient response. To ensure the longest battery life  
Seamless transition between modes  
38 μA typical quiescent current  
2.5 MHz operation enables 1.5 ꢀH inductor  
Input voltage: 2.3 V to 5.5 V  
Fixed output voltage: 2.8 V to 5.0 V  
Adjustable model output voltage range: 2.8 V to 5.5 V  
600 mA (ADP2503) and 1000 mA (ADP2504) output options  
Boost converter configuration with load disconnect  
SYNC pin with three different modes  
Power save mode (PSM) for improved light load efficiency  
Forced fixed frequency operation mode  
Synchronization with external clock  
Internal compensation  
Soft start  
Enable/shutdown logic input  
Overtemperature protection  
Short-circuit protection  
in portable applications, the ADP2503/ADP2504 have an optional  
power save mode that reduces the switching frequency under  
light load conditions. For wireless and other low noise applica-  
tions where variable frequency power save mode may cause  
interference, the logic control input sync forces fixed frequency  
PWM operation under all load conditions.  
The ADP2503/ADP2504 can run from input voltages between  
2.3 V and 5.5 V, allowing single lithium or lithium polymer cell,  
multiple alkaline or NiMH cells, PCMCIA, USB, and other stan-  
dard power sources. The ADP2503/ADP2504 have fixed output  
options, or using the adjustable model, the output voltage can  
be programmed through an external resistor divider. Compensa-  
tion is internal to minimize the number of external components.  
Undervoltage lockout protection  
Small 10-lead 3 mm × 3 mm LFCSP (QFN) package  
Supported by ADIsimPower™ design tool  
During logic-controlled shutdown, the input is disconnected  
from the output and draws less than 1 μA from the input source.  
Operating as boost converters, the ADP2503/ADP2504 feature a  
true load disconnect function that isolates the load from the  
power source. Other key features include undervoltage lockout  
to prevent deep battery discharge, and soft start to prevent input  
current overshoot at startup.  
APPLICATIONS  
Wireless handsets  
Digital cameras/portable audio players  
Miniature hard disk power supplies  
USB powered devices  
TYPICAL APPLICATION CIRCUIT  
1.5µH  
SW1  
SW2  
ADP2503/ADP2504  
V
V
OUT  
2.8V TO 5V  
IN  
2.3V TO 5.5V  
PVIN  
VOUT  
VIN  
FB  
10µF  
22µF  
1
SYNC  
EN  
AGND PGND  
ON  
OFF  
1
ALLOWS THE ADP2503/ADP2504 TO OPERATE IN  
THREE DIFFERENT MODES.  
Figure 1.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2008–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP2503/ADP2504  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Soft Start ...................................................................................... 11  
SYNC Function........................................................................... 11  
Enable........................................................................................... 11  
Undervoltage Lockout ............................................................... 12  
Thermal Shutdown .................................................................... 12  
Short-Circuit Protection............................................................ 12  
Reverse Current Limit ............................................................... 12  
Applications Information.............................................................. 13  
ADIsimPower Design Tool ....................................................... 13  
Inductor Selection...................................................................... 13  
Output Voltage Programming.................................................. 14  
PCB Layout Guidelines.................................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Data................................................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 11  
Power Save Mode........................................................................ 11  
REVISION HISTORY  
10/15—Rev. C to Rev. D  
8/09—Rev. 0 to Rev. A  
Changes to Figure 3 and Figure 4................................................... 6  
Changes to Figure 15, Figure 16, and Figure 17 ........................... 8  
Changes to Figure 22 and Figure 23............................................... 9  
Changes to Features Section, Figure 1, and General Description  
Section.................................................................................................1  
Changes to Feedback Voltage Parameter and EN, SYNC  
Leakage Current Parameter, Table 1 ...............................................3  
Changes to Table 2 and Thermal Resistance Section ...................4  
Added Thermal Data Section ..........................................................4  
Changes to Figure 2 and Table 4......................................................5  
Changes to Figure 12.........................................................................7  
Changes to Figure 17.........................................................................8  
Changes to SYNC Function Section............................................ 11  
Changes to Undervoltage Lockout Section................................. 12  
Changes to Table 6.......................................................................... 13  
Added Output Voltage Programming Section ........................... 14  
Added Figure 30; Renumbered Sequentially .............................. 14  
Changes to Ordering Guide.......................................................... 16  
8/13—Rev. B to Rev. C  
Change to Features Section ............................................................. 1  
Added ADIsimPower Design Tool Section................................. 13  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 16  
6/10—Rev. A to Rev. B  
Changes to Ordering Guide .......................................................... 16  
10/08—Revision 0: Initial Version  
Rev. D | Page 2 of 16  
 
Data Sheet  
ADP2503/ADP2504  
SPECIFICATIONS  
VIN = 3.6 V, VOUT = 3.3 V, @ TA = TJ = −40°C to +125°C for minimum/maximum specifications and TA = 25°C for typical specifications,  
unless otherwise noted.1  
Table 1.  
Parameters  
Conditions  
Min Typ  
Max Unit  
INPUT CHARACTERISTICS  
Input Voltage Range  
Undervoltage Lockout Threshold  
2.3  
5.5  
V
V
V
VIN rising  
VIN falling  
2.15 2.20 2.25  
2.10 2.14 2.20  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
Feedback Impedance  
Feedback Voltage  
Output Voltage Initial Accuracy  
Load and Line Regulation  
2.8  
5.5  
V
450  
500  
kΩ  
mV  
%
%
%
ADP2503/ADP2504 adjustable output (PWM operation, no load)  
ADP2503/ADP2504 fixed output (PWM operation, no load)  
VIN = 2.3 V to 3.6 V, ILOAD = 0 mA to 500 mA, forced PWM mode  
VIN = 2.3 V to 5.5 V, ILOAD = 0 mA to 500 mA, forced PWM mode  
490  
−2  
510  
+2  
0.5  
0.6  
CURRENT CHARACTERISTICS  
Quiescent Current (VIN)  
Shutdown Current  
IOUT = 0 mA, VIN = EN = 3.6 V, device not switching  
TA = TJ = −40°C to +125°C  
38  
0.2  
50  
1
μA  
μA  
SWITCH CHARACTERISTICS  
N-Channel Switches  
P-Channel Switches  
VIN = 3.6 V  
VIN = VOUT = 3.6 V  
TJ = −40°C to +125°C  
150  
150  
mΩ  
mΩ  
μA  
P-Channel Leakage  
1
Switch Current Limit  
ADP2504  
ADP2503  
Reverse Current Limit  
1.3  
1.0  
2.0  
1.4  
1.1  
A
A
A
OSCILLATOR AND STARTUP  
Oscillator Frequency  
2.1  
130  
2.5  
2.9  
MHz  
ns  
ns  
MHz  
ns  
On Time PMOS1 (Buck Mode)  
On Time NMOS2 (Boost Mode)  
SYNC Clock Frequency  
SYNC Clock Minimum Off Time  
LOGIC LEVEL CHARACTERISTICS  
EN, SYNC Input High Threshold  
EN, SYNC Input Low Threshold  
EN, SYNC Leakage Current  
THERMAL CHARACTERISTICS  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Minimum duty cycle = 30%  
Maximum duty cycle = 50% (×2)  
200  
2.8  
2.2  
160  
1.2  
−1  
V
V
μA  
0.4  
VEN = VIN, VSYNC = VIN  
+0.1 +1  
150  
25  
°C  
°C  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
Rev. D | Page 3 of 16  
 
ADP2503/ADP2504  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
θJA of the package is based on modeling and calculation using a  
4-layer board. The junction-to-ambient thermal resistance is  
highly dependent on the application and board layout. In applica-  
tions where high maximum power dissipation exists, close  
attention to thermal board design is required. The value of θJA  
may vary, depending on PCB material, layout, and environmental  
conditions. The specified values of θJA are based on a 4-layer,  
4 inch × 3 inch circuit board. Refer to JEDEC JESD 51-9 for  
detailed information on the board construction.  
Table 2.  
Parameter  
Rating  
PVIN, VIN, SW1, SW2, VOUT, SYNC, EN, FB  
PGND to AGND  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +6 V  
−0.3 V to 0.3 V  
−40°C to +125°C  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
2000 V  
ESD Human Body Model  
ESD Charged Device Model  
ESD Machine Model  
1500 V  
THERMAL RESISTANCE  
100 V  
θJA are specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Package Type  
Unit  
JA  
10-Lead LFCSP (QFN)  
84  
°C/W  
ESD CAUTION  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination.  
The ADP2503/ADP2504 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient tempera-  
ture (TA) does not guarantee that the junction temperature (TJ)  
is within the specified temperature limits. In applications with  
high power dissipation and poor thermal resistance, the maximum  
ambient temperature may have to be derated. In applications  
with moderate power dissipation and low PCB thermal resis-  
tance, the maximum ambient temperature can exceed the  
maximum limit as long as the junction temperature is within  
specification limits. TJ of the device is dependent on TA, the  
power dissipation (PD) of the device, and the junction-to-  
ambient thermal resistance (θJA) of the package. Maximum  
TJ is calculated from TA and PD using the following formula:  
TJ = TA + (PD × θJA)  
Rev. D | Page 4 of 16  
 
 
 
 
 
Data Sheet  
ADP2503/ADP2504  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VOUT 1  
SW2 2  
PGND 3  
SW1 4  
PVIN 5  
10 FB  
ADP2503/  
ADP2504  
9
8
7
6
AGND  
VIN  
TOP VIEW  
SYNC  
EN  
(Not to scale)  
NOTES  
1. CONNECT THE EXPOSED PAD TO PGND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
VOUT  
SW2  
Output of the ADP2503/ADP2504. Connect the output capacitor between VOUT and PGND.  
Power Switch 2 Connection. This is the internal connection to the input PMOS and NMOS switches. Connect  
SW2 to the inductor with a short, wide track.  
3
4
PGND  
SW1  
Power GND. Connect the input and output capacitors and the PGND pin to a PGND plane.  
Power Switch 1 Connection. This is the internal connection to the output PMOS and NMOS switches. Connect  
SW1 to the inductor with a short, wide track.  
5
PVIN  
Power Input. This the input to the buck-boost power switches. Place a 10 ꢀF capacitor between PVIN and  
PGND as close as possible to the ADP2503/ADP2504.  
6
7
EN  
SYNC  
Enable. Drive EN high to turn on the ADP2503/ADP2504. Bring EN low to put the device into shutdown mode.  
The SYNC pin permits the ADP2503/ADP2504 to operate in three different modes.  
Normal operation: with SYNC driven low, the ADP2503/ADP2504 operate at 2.5 MHz PWM mode for heavy  
and medium loads, and moves to power save mode (PSM) mode for light loads.  
Forced PWM operation: with SYNC driven high, the ADP2503/ADP2504 operate at fixed 2.5 MHz PWM mode  
for all load conditions.  
SYNC mode: to synchronize the ADP2503/ADP2504 switching to an external signal, drive this pin with a clock  
between 2.2 MHz and 2.8 MHz. The SYNC signal must have on and off times greater than 160 ns.  
8
9
10  
VIN  
AGND  
FB  
Analog Power Supply. This is the supply for the ADP2503/ADP2504 internal circuitry.  
Analog Ground.  
Output Feedback. This is an input to the internal error amplifier and must be connected to VOUT on fixed  
output versions; for the adjustable model, this is the voltage feedback.  
EP  
Exposed pad  
Connect the exposed pad to PGND.  
Rev. D | Page 5 of 16  
 
ADP2503/ADP2504  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
700  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
500  
V
V
V
V
V
V
= 2.8V  
= 3.3V  
= 3.5V  
= 4.2V  
= 4.5V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
400  
300  
200  
100  
0
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
0.001  
0.01  
0.1  
1
I
(A)  
INPUT VOLTAGE (V)  
OUT  
Figure 3. ADP2503 Output Current vs. Input Voltage  
Figure 6. Efficiency vs. Output Current, PSM and PWM Mode (VOUT = 5.0 V)  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
V
V
= 2.8V  
= 3.3V  
= 3.5V  
= 4.2V  
= 4.5V  
= 5.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
20  
10  
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
0.01  
0.001  
0.1  
1
I
(A)  
INPUT VOLTAGE (V)  
OUT  
Figure 4. ADP2504 Output Current vs. Input Voltage  
Figure 7. Efficiency vs. Output Current, PWM Mode (VOUT = 3.3 V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
20  
10  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I
(A)  
I
(A)  
OUT  
OUT  
Figure 5. Efficiency vs. Output Current, PWM Mode (VOUT = 5.0 V)  
Figure 8. Efficiency vs. Output Current, PSM and PWM Mode (VOUT = 3.3 V)  
Rev. D | Page 6 of 16  
 
Data Sheet  
ADP2503/ADP2504  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
0
0.001  
0.01  
0.1  
1
0
0.1  
0.2  
0.3  
0.4  
0.5  
I (A)  
OUT  
0.6  
0.7  
0.8  
0.9  
1.0  
I
(A)  
OUT  
Figure 9. Efficiency vs. Output Current, PWM Mode (VOUT = 2.8 V)  
Figure 12. Load Regulation (VIN = 3.6 V, VOUT = 3.3 V)  
100  
90  
80  
70  
60  
50  
40  
30  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
–40°C  
+25°C  
+85°C  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
20  
10  
0
0.001  
0.01  
0.1  
1
2.3  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
I
(A)  
OUT  
V
IN  
Figure 10. Efficiency vs. Output Current, PSM and PWM Mode (VOUT = 2.8 V)  
Figure 13. Frequency vs. Input Voltage Over Temperature (VOUT = 3.3 V)  
100  
90  
80  
70  
60  
50  
40  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
I
I
= 500mA  
= 100mA  
= 10mA  
OUT  
OUT  
OUT  
20  
10  
0
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
2.3  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
V
(V)  
V
IN  
IN  
Figure 11. Efficiency vs. Input Voltage (VOUT = 3.3 V)  
Figure 14. Quiescent Current vs. Input Voltage (VOUT = 3.3 V)  
Rev. D | Page 7 of 16  
ADP2503/ADP2504  
Data Sheet  
V
V
= 3.0V TO 3.6V  
IN  
V
V
= 3.6V  
= 3.3V  
IN  
OUT  
= 5.0V  
OUT  
V
IN  
V
OUT  
1
2
SW2  
I
OUT  
4
SW1  
2
3
SW1  
SW2  
4
3
V
OUT  
1
B
B
B
CH1 50.0mV  
CH2 1.00V  
CH4 5.00V  
M40.0µs A CH2 3.40mV  
B
W
W
W
CH1 100mV  
CH3 5.00V  
CH2 250mA M100µs  
A CH2 60.0mA  
W
B
T
18.20%  
CH3 5.00V  
B
B
W
T
W
25.80%  
CH4 5.00V  
W
Figure 15. Line Transient, PWM Mode (VIN = 3.0 V to 3.6 V, VOUT = 5.0 V)  
Figure 18. Load Transient (VIN = 3.6 V, VOUT = 3.3 V, IOUT = 100 mA to 350 mA)  
V
V
= 3.0V TO 3.6V  
= 3.3V  
V
V
= 3.6V  
= 3.3V  
IN  
IN  
OUT  
OUT  
V
IN  
V
OUT  
1
2
I
OUT  
SW2  
SW1  
4
2
3
SW1  
SW2  
4
3
V
OUT  
1
B
B
B
B
CH1 50.0mV  
M40.0µs  
A CH2 3.40V  
CH2 1.00V  
CH4 5.00V  
CH1 100mV  
CH2 250mA M100µs  
A CH2 60.0mA  
W
W
W
W
B
B
B
T
18.20%  
CH3 5.00V  
T
23.00%  
CH3 5.00V  
CH4 5.00V  
W
W
W
Figure 16. Line Transient, PWM Mode (VIN = 3.0 V to 3.6 V, VOUT = 3.3 V)  
Figure 19. Load Transient (VIN = 3.6 V, VOUT = 3.3 V, IOUT = 10 mA to 300 mA)  
V
V
= 3.0V TO 3.6V  
IN  
SW1  
= 2.8V  
OUT  
V
IN  
SW2  
SW1  
4
4
I
OUT  
2
3
2
1
V
V
= 3.6V  
= 3.3V  
V
IN  
OUT  
OUT  
V
OUT  
1
B
B
B
B
CH1 100mV  
CH2 500mA M100µs  
A CH2  
–115mA  
CH1 50.0mV  
CH2 1.00V  
CH4 5.00V  
M40.0µs  
A CH2 3.40mV  
W
W
W
W
B
B
T
45.40%  
T
18.20%  
CH3 5.00V  
CH4 2.00V  
W
W
Figure 17. Line Transient, PWM Mode (VIN = 3.0 V to 3.6 V, VOUT = 2.8 V)  
Figure 20. Mode Change by Load Transients, Load Rise (VIN = 3.6 V, VOUT = 3.3 V)  
Rev. D | Page 8 of 16  
Data Sheet  
ADP2503/ADP2504  
V
V
= 3.0V  
IN  
SW1  
= 3.3V  
OUT  
SW2  
SW1  
3
4
4
I
OUT  
I
SW  
2
V
V
= 3.6V  
= 3.3V  
2
1
IN  
OUT  
V
OUT  
V
OUT  
1
B
B
CH1 100mV  
CH2 500mA M100µs  
A CH2  
410mA  
CH1 20.0mV  
CH3 5.00V  
CH2 250mA M 400ns  
A CH4  
2.40V  
W
W
B
T
45.40%  
B
B
T
50.00%  
CH4 2.00V  
CH4 5.00V  
W
W
W
Figure 21. Mode Change by Load Transients, Load Fall (VOUT = 3.3 V)  
Figure 24. Typical PWM Switching Waveform, Buck-Boost Operation  
(VOUT = 3.3 V)  
V
V
= 2.3V  
IN  
V
V
= 3.0V  
= 3.3V  
IN  
OUT  
= 4.0V  
OUT  
SW2  
SW1  
SW2  
SW1  
3
4
3
4
I
SW  
I
SW  
2
1
2
1
V
V
OUT  
OUT  
B
B
CH1 50.0mV  
CH3 5.00V  
CH2 250mA M 400ns  
A CH3  
2.40V  
CH1 100mV  
CH3 5.00V  
CH2 1.00A Ω  
M 4.00µs  
15.20%  
A CH2  
820mA  
W
W
B
B
T
50.00%  
B
B
T
CH4 5.00V  
CH4 5.00V  
W
W
W
W
Figure 22. Typical PWM Switching Waveform, Boost Operation (VOUT = 4.0 V)  
Figure 25. Typical PSM Switching Waveform, Buck-Boost Operation  
(VOUT = 3.3 V)  
V
V
= 4.4V  
IN  
= 4.0V  
OUT  
SW2  
SW1  
SW1  
4
3
4
V
= 3.3V  
OUT  
V
OUT  
1
2
I
SW  
I
SW  
2
1
EN  
V
OUT  
3
B
B
W
B
CH1 2.00V  
CH3 5.00V  
CH2 500mAΩ  
M 100µs  
A CH3 2.40V  
CH1 20.0mV  
CH3 5.00V  
CH2 250mA M 400ns  
A CH4  
2.40V  
W
W
B
B
T
9.400%  
B
B
T
50.80%  
CH4 5.00V  
CH4 5.00V  
W
W
W
W
Figure 26. Startup into PWM Mode (VOUT = 3.3 V, IOUT = 300 mA)  
Figure 23. Typical PWM Switching Waveform, Buck Operation (VOUT = 4.0 V)  
Rev. D | Page 9 of 16  
ADP2503/ADP2504  
Data Sheet  
SW1  
4
SW1  
4
V
= 3.3V  
OUT  
V
V
V
= 3.3V  
OUT  
OUT  
OUT  
1
1
2
I
I
SW  
SW  
2
EN  
EN  
3
3
B
B
B
B
CH2 500mAΩ  
W
CH1 2.00V  
CH3 5.00V  
CH2 500mAΩ  
M 100µs  
A CH3 2.40V  
CH1 2.00V  
CH3 5.00V  
M 100µs  
A CH3 2.40V  
W
W
W
B
B
B
B
T
9.400%  
T
9.400%  
CH4 5.00V  
CH4 5.00V  
W
W
W
W
Figure 27. Startup into PWM Mode (VOUT = 3.3 V, IOUT = 10 mA)  
Figure 28. Startup into PSM Mode (VOUT = 3.3 V, IOUT = 10 mA)  
Rev. D | Page 10 of 16  
Data Sheet  
ADP2503/ADP2504  
THEORY OF OPERATION  
1.5µH  
SW1  
SW2  
4
2
ADP2503/ADP2504  
VIN  
8
ADP2503/ADP2504  
BIASING  
VBAT = 2.3V  
PMOS1  
PMOS2  
PVIN  
VOUT  
TO 5.5V  
5
1
10µF  
NMOS1  
NMOS2  
22µF  
2.25V  
SOFT START  
UVLO  
FB  
10  
BAND GAP  
THERMAL  
REFERENCE  
PROTECTION  
–0.5V  
PWM CONTROL  
EN  
EN  
CS  
6
7
SYNC  
PGND  
OSCILLATOR  
AGND  
9
3
Figure 29. ADP2503/ADP2504 Block Diagram  
The ADP2503/ADP2504 are synchronous average current-mode  
switching buck-boost regulators designed to maintain a fixed  
output voltage VOUT from an input supply VIN that can be  
greater than, equal to, or less than VOUT. When VIN is signifi-  
cantly greater than VOUT, the device is in buck mode: PMOS2 is  
always active, NMOS2 is always off, and the PMOS1 and NMOS1  
switches constitute a buck converter. When VIN is significantly  
lower than VOUT, the device is in boost mode: PMOS1 is always  
active, NMOS1 is always off, and the NMOS2 and PMOS2  
switches constitute a boost converter. When VIN is in the range  
[VOUT 10ꢀ%, the ADP2503/ADP2504 automatically enter the  
buck-boost mode. In buck-boost mode, the two operations,  
buck (PMOS1 and NMOS1 switching in antiphase) and boost  
(NMOS2 and PMOS2 switching in antiphase), take place at each  
period of the clock. This is aimed at maintaining the regulation  
and keeping a minimal current ripple in the inductor to guaran-  
tee good transient performances.  
between PSM and fixed PWM, preventing oscillations between  
these two modes.  
SOFT START  
When the ADP2503/ADP2504 are started, VOUT is ramped from  
0 V to its final programmed value in 200 ꢁs (typical). This limits  
the inrush current to less than 600 mA for a nominal output  
capacitor of 20 ꢁF. Because the VOUT start-up slope is constant,  
the inrush current becomes larger if the output capacitor is  
made larger.  
SYNC FUNCTION  
When the SYNC pin is high, PSM is deactivated. The ADP2503/  
ADP2504 always operate in PWM using the internal oscillator.  
When the SYNC pin is switching in the 2.1 MHz to 2.9 MHz  
range, the regulator switching frequency slides to the frequency  
applied on SYNC and then locks on it. When the SYNC pin  
stops switching, the regulator switching frequency slides back to  
the internal oscillator frequency.  
POWER SAVE MODE  
When the SYNC pin is low, the ADP2503/ADP2504 can operate  
in power save mode (PSM). In this mode, when the load current  
becomes less than 75 mA nominally at VIN = 3.6 V, the control-  
ler pulls up VOUT and then halts the switching regime until VOUT  
goes back to a restart value. Then VOUT is pulled up again for a  
new cycle. This minimizes the switching losses at light load. When  
the load rises above 150 mA, the ADP2503/ADP2504 revert to  
fixed PWM mode. This results in about 75 mA of hysteresis  
ENABLE  
The device starts operation with soft start when the EN pin  
is brought high. Pulling the EN pin low forces the device into  
shutdown, with a typical shutdown current of 0.2 μA.  
In this mode, the PMOS power switches are turned off, the  
NMOS power switches are turned on, and the control circuitry  
is not enabled. For proper operation, the EN pin must be  
terminated and must not be left floating.  
Rev. D | Page 11 of 16  
 
 
 
 
 
ADP2503/ADP2504  
Data Sheet  
UNDERVOLTAGE LOCKOUT  
SHORT-CIRCUIT PROTECTION  
The undervoltage lockout circuit prevents the device from oper-  
ating incorrectly at low input voltages. It prevents the converter  
from turning on the power switches under undefined conditions  
and, therefore, prevents deep discharge of the battery supply.  
When the nominal inductor peak current value of 1.5 A is  
reached, the ADP2503/ADP2504 first switch off the NMOS2  
transistor if it is active. If the current thereafter continues to  
increase by an extra amount of 200 mA, the PMOS1 transistor  
is also switched off. This operation is reversible when the short  
circuit stops. It allows the inductor current ripple to be mini-  
mized close to 1.5 A and, thus, the controller to restore VOUT  
even if a high load current is maintained after the short circuit.  
VIN must be greater than 2.25 V to enable the converter. During  
operation, if VIN drops below 2.10 V, the ADP2503/ADP2504 are  
disabled until the supply exceeds the UVLO rising threshold.  
THERMAL SHUTDOWN  
REVERSE CURRENT LIMIT  
When the junction temperature, TJ, exceeds 150°C typical,  
the device goes into thermal shutdown. In this mode, the power  
switches are turned off. The device resumes operation when the  
junction temperature again falls below 125°C typical.  
In case of a short circuit on VOUT to a value greater than  
expected, the inductor current becomes negative (reverse  
current). The negative peak value is limited to 1.1 A by  
deactivating the PMOS2 switch.  
Rev. D | Page 12 of 16  
 
 
 
 
Data Sheet  
ADP2503/ADP2504  
APPLICATIONS INFORMATION  
Ceramic multilayer inductors can be used with lower current  
designs for a reduced overall solution size and dc resistance  
(DCR). These are available in low profile packages. Care must  
be taken because these derate quickly as the inductor value is  
increased, especially at higher operating temperatures.  
ADIsimPower DESIGN TOOL  
The ADP2503/ADP2504 is supported by ADIsimPower design  
tool set. ADIsimPower is a collection of tools that produce  
complete power designs optimized for a specific design goal.  
The tools enable the user to generate a full schematic, bill of  
materials, and calculate performance in minutes. ADIsimPower  
can optimize designs for cost, area, efficiency, and device count  
while taking into consideration the operating conditions and  
limitations of the IC and all real external components. For  
more information about ADIsimPower design tools, refer to  
www.analog.com/ADIsimPower. The tool set is available from  
this website, and users can also request an unpopulated board  
through the tool.  
Ferrite core inductors have good core loss characteristics as well as  
reasonable dc resistance. A shielded ferrite inductor reduces the  
EMI generated by the inductor.  
Table 5. Sample of Recommended Inductors  
Dimensions  
L × W × H  
(mm)  
Value  
Vendor (ꢀH)  
DCR  
(mΩ) (A)  
ISAT  
Device No.  
DE2810C  
DE2810C  
Toko  
Toko  
Toko  
Murata  
Murata  
TDK  
1.2  
1.5  
1
55  
60  
1.7  
1.5  
1.8  
1.6  
1.5  
1.5  
1.2  
1.7  
1.3  
1.5  
2.8 × 2.8 × 1.0  
2.8 × 2.8 × 1.0  
2.5 × 2 × 1.2  
2.5 × 2 × 1  
INDUCTOR SELECTION  
MDT2520-CN 100  
The high 2.5 MHz switching frequency of the ADP2503/  
ADP2504 allows for minimal output voltage ripple, while  
minimizing inductor size and cost. Careful inductor selection  
also optimizes efficiency and reduces electromagnetic interfe-  
rence (EMI). The selection of the inductor value determines  
the inductor current ripple and loop dynamics.  
1
LQM2HP-G0  
LQM2HP-G0  
CPL2512T  
CPL2512T  
LPS3010  
55  
70  
1.5  
1.0  
1.5  
2.5 × 2 × 1  
90  
2.5 × 1.5 × 1.2  
2.5 × 1.5 × 1.2  
3.0 × 3.0 × 0.9  
3.0 × 3.0 × 0.9  
3.0 × 3.0 × 1.5  
TDK  
120  
85  
Coilcraft 1.0  
Coilcraft 1.5  
LPS3010  
NR3015T1  
120  
40  
VOUT (VIN VOUT  
VIN fOSC L  
)
Taiyo  
1.5  
IL , peak (Buck)   
Yuden  
Output Capacitor Selection  
(VOUT VIN )  
VIN  
fOSC L  
IL , peak (Boost)   
The output capacitor selection determines the output voltage  
ripple, transient response, and the loop dynamics of the  
ADP2503/ADP2504. The output voltage ripple for a given  
output capacitor is as follows:  
VOUT  
where:  
OSC is the switching frequency (typically 2.5 MHz).  
L is the inductor value in henries.  
f
VOUT (VIN VOUT  
)
A larger inductor value reduces the current ripple (and, therefore,  
the peak inductor current), but is physically larger in size with  
increased dc resistance. Inductor values between 1 μH and  
1.5 μH are suggested. The maximum inductor value to ensure  
stability is 2.0 μH. For increased efficiency with the ADP2504,  
it is suggested that a 1.5 μH inductor be used.  
VOUT, peak (Buck)   
VOUT, peak(Boost)   
VIN 8 L fOSC  
2 COUT  
I
LOAD(VOUT VIN )  
COUT VOUT fOSC  
If the ADP2503/ADP2504 are operating in buck mode, the  
worst-case voltage ripple occurs for the highest input voltage,  
VIN. If the ADP2503/ADP2504 are operating in boost mode, the  
worst-case voltage ripple occurs for the lowest input voltage, VIN.  
The inductor peak current is at the maximum in boost mode.  
To determine the actual maximum inductor current in boost  
mode, estimate the input dc current.  
The maximum voltage overshoot, or undershoot, is inversely  
proportional to the value of the output capacitor. To ensure  
stability and excellent transient response, it is recommended  
to use a minimum of 22 μF X5R 6.3 V or 2 × 10 μF X5R 6.3 V  
capacitors at the output. The effective capacitance (includes  
temperature and dc bias effects) needed for stability is 14 μF.  
VOUT  
VIN  
1
η
IIN(MAX) ILOAD(MAX)   
where η is efficiency (assume η ≈ 0.85 to 0.90).  
The saturation current rating of the inductor must be at least  
I
IN(MAX) + ΔILOAD/2.  
Rev. D | Page 13 of 16  
 
 
 
ADP2503/ADP2504  
Data Sheet  
Table 6. Recommended Output Capacitors  
Dimensions  
L × W × H (mm)  
Vendor  
Murata  
TDK  
Murata  
TDK  
Value  
Device No.  
2 × 10 μF, 6.3 V  
2 × 10 μF, 6.3 V  
22 μF, 6.3 V  
22 μF, 6.3 V  
22 μF, 10 V  
GRM188R60J106ME47  
C1608JB0J106K  
GRM21BR60J226ME39  
C2012X5R0J226M  
C3216X5R1A226K  
GRM21BR71A106KE51L  
1.6 × 0.8 × 0.8 (2)  
1.6 × 0.8 × 0.8 (2)  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25 (2)  
TDK  
Murata  
2 × 10 μF, 10 V  
An example of the calculation for a required output voltage of  
3.0 V follows.  
Input Capacitor Selection  
The ADP2503/ADP2504 require an input capacitor to filter  
noise on the VIN pin, and provide the transient currents while  
maintaining constant input and output voltage. A 10 μF X5R/  
X7R ceramic capacitor rated for 6.3 V is the minimum recom-  
mended input capacitor. Increased input capacitance reduces  
the amplitude of the switching frequency ripple on the battery.  
Because of the dc bias characteristics of ceramic capacitors, a  
0603, 6.3 V, X5R/X7R, 10 μF ceramic capacitor is preferable.  
360 k  
60 k  
3.0 V   
0.5V  
1.5µH  
SW1  
SW2  
ADP2503/ADP2504  
V
V
OUT  
2.8V TO 5V  
IN  
Table 7. Recommended Input Capacitors  
2.3V TO 5.5V  
PVIN  
VOUT  
Dimensions  
L × W × H  
(mm)  
R1  
R2  
VIN  
FB  
10µF  
20µF  
Vendor Value  
Device No.  
10 μF, 6.3 V GRM188R60J106ME47 1.6 × 0.8 × 0.8  
10 μF, 6.3 V C1608JB0J106K 1.6 × 0.8 × 0.8  
Murata  
TDK  
SYNC  
EN  
AGND PGND  
OUTPUT VOLTAGE PROGRAMMING  
ON  
The ADP2503/ADP2504 have an adjustable model where the  
output is programmed through an external resistor divider.  
The resistor divider is connected between VOUT and FB and  
between FB and GND; keep the combined total for the resistor  
divider close to 400 kΩ. The typical voltage reference (VREF) is  
500 mV and depending on the output voltage required, the  
following equation can be used to calculate the value of the  
resistors:  
OFF  
Figure 30. Typical Application Circuit for the Adjustable ADP2503/ADP2504  
R1R2  
R2  
VOUT  
VREF  
Rev. D | Page 14 of 16  
 
Data Sheet  
ADP2503/ADP2504  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP2503/ADP2504 performance, causing  
electromagnetic interference (EMI) and electromagnetic  
compatibility (EMC) performance, ground bounce, and voltage  
losses. Poor layout can also affect regulation and stability. A good  
layout is implemented using the following rules:  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise interference  
on sensitive circuit nodes.  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies and large tracks act like antennas.  
Figure 31. ADP2503/ADP2504 Evaluation Board for Fixed Output Voltages  
Rev. D | Page 15 of 16  
 
ADP2503/ADP2504  
Data Sheet  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
6
10  
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 32. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Max  
Temperature  
Package  
Model1, 2  
Voltage Current Range  
Package Description  
Option  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
Branding  
L9Y  
L9Z  
LAP  
LA0  
LA1  
LA2  
LE7  
ADP2503ACPZ-2.8-R7  
ADP2503ACPZ-3.3-R7  
ADP2503ACPZ-3.5-R7  
ADP2503ACPZ-4.2-R7  
ADP2503ACPZ-4.5-R7  
ADP2503ACPZ-5.0-R7  
ADP2503ACPZ-R7  
2.8 V  
3.3 V  
3.5 V  
4.2 V  
4.5 V  
5.0 V  
Adj  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
1 A  
1 A  
1 A  
1 A  
1 A  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
Evaluation Board for Fixed Output Voltages, 3.3 V and 5.0 V  
ADP2504ACPZ-2.8-R7  
ADP2504ACPZ-3.3-R7  
ADP2504ACPZ-3.5-R7  
ADP2504ACPZ-4.2-R7  
ADP2504ACPZ-4.5-R7  
ADP2504ACPZ-5.0-R7  
ADP2504ACPZ-R7  
ADP2503CPZ-REDYKIT  
ADP2504CPZ-REDYKIT  
ADP2503-EVALZ  
2.8 V  
3.3 V  
3.5 V  
4.2 V  
4.5 V  
5.0 V  
Adj  
L9T  
L85  
LAN  
L9U  
L9V  
L9W  
LE8  
1 A  
1 A  
Evaluation Board for Fixed Output Voltages, 2.8 V and 5.0 V  
Evaluation Board  
ADP2504-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 Redykit contains two evaluation boards with the stated output voltages plus three devices of each available fixed output voltage.  
©2008–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07475-0-10/15(D)  
Rev. D | Page 16 of 16  
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY