ADP2504ACPZ-4.2-R71 [ADI]

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter; 600毫安/ 1000毫安, 2.5 MHz降压 - 升压型DC - DC转换器
ADP2504ACPZ-4.2-R71
型号: ADP2504ACPZ-4.2-R71
厂家: ADI    ADI
描述:

600 mA/1000 mA, 2.5 MHz Buck-Boost DC-to-DC Converter
600毫安/ 1000毫安, 2.5 MHz降压 - 升压型DC - DC转换器

转换器
文件: 总16页 (文件大小:1663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
600 mA/1000 mA, 2.5 MHz Buck-Boost  
DC-to-DC Converter  
Preliminary Technical Data  
ADP2503/ADP2504  
FEATURES  
GENERAL DESCRIPTION  
1 mm height profile  
Compact PCB footprint  
Seamless transition between modes  
38 μA typical quiescent current  
2.5 MHz operation enables 1 ꢀH inductor  
Input voltage: 2.3 V to 5.5 V  
The ADP2503/ADP2504 are high efficiency, low quiescent  
current step-up/step-down dc-to-dc converters that can operate  
at input voltages above, below, or equal to the regulated output  
voltage. The power switches and synchronous rectifiers are  
internal to minimize external part count. At high load currents,  
the ADP2503/ADP2504 use a current-mode, fixed frequency  
PWM control scheme for optimal stability and transient response.  
Fixed output voltage: 2.8 V to 5.0 V  
600 mA (ADP2503) and 1000 mA (ADP2504) output options  
Boost converter configuration with load disconnect  
Sync pin with three different modes:  
Power save mode (PSM) for improved light load efficiency  
Forced fixed frequency operation mode  
Synchronization with external clock  
Internal compensation  
Soft start  
Enable/shutdown logic input  
Overtemperature protection  
Short-circuit protection  
To ensure the longest battery life in portable applications, the  
ADP2503/ADP2504 have an optional power save mode that  
reduces the switching frequency under light load conditions.  
For wireless and other low noise applications where variable  
frequency power save mode may cause interference, the logic  
control input sync forces fixed frequency PWM operation  
under all load conditions.  
The ADP2503/ADP2504 can run from input voltages between  
2.3 V and 5.5 V, allowing single lithium or lithium polymer cell,  
multiple alkaline or NiMH cells, PCMCIA, USB, and other  
standard power sources. The ADP2503/ADP2504 have fixed  
output options ranging from 2.8 V to 5 V. Compensation is  
internal to minimize the number of external components.  
Undervoltage lockout protection  
Small 10-lead 3 mm × 3 mm LFCSP/QFN package  
APPLICATIONS  
During logic-controlled shutdown, the input is disconnected  
from the output and draws less than 1 μA from the input source.  
Operating as a boost converter, the ADP2503/ADP2504 feature  
a true load disconnect function that isolates the load from the  
power source. Other key features include under voltage lockout  
to prevent deep battery discharge and soft start to prevent input  
current overshoot at startup.  
Wireless handsets  
Digital cameras/portable audio players  
Miniature hard disk power supplies  
USB powered devices  
TYPICAL APPLICATION CIRCUIT  
1.0µH  
SW1  
SW2  
ADP2503  
V
V
OUT  
2.8V TO 5V  
IN  
2.3V TO 5.5V  
PVIN  
VOUT  
VIN  
FB  
10µF  
22µF  
SYNC  
EN  
AGND PGND  
ON  
OFF  
Figure 1. Application Circuit  
Rev. PrB  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
ADP2503/ADP2504  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Reverse Current Limit ............................................................... 10  
Power save Mode........................................................................ 10  
Soft Start ...................................................................................... 10  
Enable........................................................................................... 11  
Undervoltage Lockout ............................................................... 11  
Thermal Shutdown .................................................................... 11  
Short Circuit Protection ............................................................ 11  
Applications Information.............................................................. 12  
Inductor Selection...................................................................... 12  
PCB Layout Guidelines.................................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Description .............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
REVISION HISTORY  
8/08—Revision PrB  
Rev. PrB | Page 2 of 16  
Preliminary Technical Data  
SPECIFICATIONS  
ADP2503/ADP2504  
VIN = 3.6 V, VOUT = 3.3 V, @ TA = TJ = −40°C to +125°C for minimum/maximum specifications and TA = +25°C for typical specifications,  
unless otherwise noted.1  
Table 1.  
Parameters  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Voltage Range  
Undervoltage Lockout Threshold VIN rising  
Undervoltage Lockout Threshold VIN falling  
OUTPUT CHARACTERISTICS  
2.3  
2.2  
2.13  
5.5  
2.3  
2.23  
V
V
V
2.25  
2.18  
Output Voltage Range  
2.8  
5.0  
V
Feedback Voltage  
0.495  
0.5  
0.55  
V
Feedback Impedance  
Output Voltage Initial Accuracy  
(PWM Mode, No Load)  
450  
kΩ  
%
ADP2503/ADP2504 (PWM operation, no load)  
−2  
+2  
Load and Line Regulation  
VIN = 2.3 V to 3.6 V, ILOAD = 0mA to 500mA, forced PWM mode  
VIN = 2.3 V to 5.5 V, ILOAD = 0mA to 500mA, forced PWM mode  
0.5  
0.6  
%
%
CURRENT CHARACTERISTICS  
Quiescent Current (VIN)  
Shutdown Current  
IOUT = 0 mA, V mode = EN = VIN = 3.6 V, device not switching  
TA = TJ = −40°C to +85°C  
38  
0.2  
50  
1
μA  
μA  
SWITCH CHARACTERISTICS  
N-Channel Switches (LFCSP)  
P-Channel Switches (LFCSP)  
P-Channel Leakage  
VIN = 3.6 V  
VIN = VOUT = 3.6 V  
TJ = −40°C to +85°C  
150  
150  
mΩ  
mΩ  
μA  
1
Switch Current Limit  
ADP2504  
ADP2503  
Reverse Current Limit  
1.3  
1.0  
2.0  
1.4  
1.1  
A
A
A
OSCILLATOR AND STARTUP  
Oscillator Frequency  
On Time PMOS1 (Buck Mode)  
On Time NMOS2 (Boost Mode)  
Sync Clock Frequency  
VIN = 2.3 V to 5.5 V  
Minimum duty cycle = 30%  
Maximum duty cycle = 50% (×2)  
2.2  
130  
2.5  
2.8  
MHz  
ns  
ns  
MHz  
ns  
μs  
200  
2.8  
2.2  
160  
Sync Clock Minimum Off Time  
Soft Start Period  
200  
LOGIC LEVEL CHARACTERISTICS  
EN, SYNC Input High Threshold  
EN, SYNC Input Low Threshold  
EN, SYNC Leakage Current  
THERMAL CHARACTERISTICS  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
1.2  
−1  
V
V
μA  
0.4  
+1  
+0.1  
150  
25  
°C  
°C  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
Rev. PrB | Page 3 of 16  
ADP2503/ADP2504  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 1.  
θJA is specified for device soldered JEDEC2S2P PCB. For a  
typical printed circuit board of a handset, the total thermal  
resistance is higher. For correct operation up to 85°C ambient  
temperature the total thermal resistance must not exceed  
100 K/W.  
Parameter  
Rating  
PVIN, VIN, SW1, SW2, VOUT, SYNC, −0.3 V to +6 V  
EN, FB  
PGND to AGND  
Operating Ambient Temperature  
Operating Junction Temperature  
Storage Temperature  
Lead Temperature  
−0.3 V to 0.3 V  
−40°C to +85°C  
−40°C to +125°C  
−65°C to +150°C  
Table 2.  
Package Type  
Unit  
θJA  
10-Lead LFCSP (QFN)  
84  
°C/W  
Soldering (10 sec)  
300°C  
215°C  
220°C  
1000 V  
500 V  
100 V  
Vapor Phase (60 sec)  
Infrared (15 sec)  
ESD CAUTION  
ESD Human Body Model  
ESD Charged Device Model  
ESD Machine Model  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all other voltages are  
referenced to GND.  
Rev. PrB | Page 4 of 16  
Preliminary Technical Data  
ADP2503/ADP2504  
PIN CONFIGURATION AND FUNCTION DESCRIPTION  
VOUT 1  
SW2 2  
PGND 3  
SW1 4  
PVIN 5  
10 FB  
ADP2503/  
ADP2504  
9
8
7
6
AGND  
VIN  
TOP VIEW  
SYNC  
EN  
(Not to scale)  
*CONNECT PADDLETO GND.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
VOUT  
SW2  
The output of the ADP2503/ADP2504. Connect the output capacitor between VOUT and PGND.  
Power Switch 2 Connection. This is the internal connection to the input PMOS and NMOS switches.  
Connect SW2 to the inductor with a short, wide track.  
3
4
PGND  
SW1  
Power GND. Connect the input and output capacitors and PGND pin to a PGND plane.  
Power Switch 1 Connection. This is the internal connection to the output PMOS and NMOS switches.  
Connect SW1 to the inductor with a short, wide track.  
5
6
7
PVIN  
EN  
Power Input. This the input to the buck-boost power switches. Place a 10 ꢀF capacitor between PVIN and  
PGND as close as possible to the ADP2503/ADP2504.  
Enable. Drive EN high to turn on the ADP2503/ADP2504. Bring EN low to put the part into shutdown  
mode.  
The SYNC pin permits the ADP2503/ADP2504 to operate in three different modes.  
Normal operation: with SYNC driven low, the ADP2503/ADP2504 operates at 2.5 MHz PWM mode for  
heavy and medium loads, and moves to power save mode (PSM) mode for light loads.  
Forced PWM operation: with SYNC driven high, the ADP2503/ADP2504 operates at fixed 2.5 MHz PWM  
mode for all load conditions.  
SYNC  
SYNC mode: to synchronize the ADP2503/ADP2504 switching to an external signal, drive this pin with a  
clock between 2.2 MHz and 2.8 MHz. The SYNC signal must have on and off times greater than 160 ns.  
8
9
10  
EP  
VIN  
AGND  
FB  
Analog Power Supply. This is the supply for the ADP2503/ADP2504 internal circuitry.  
Analog Ground.  
Output Feedback. This is an input to the internal error amplifier.  
Connect the paddle to PGND.  
Paddle  
Rev. PrB | Page 5 of 16  
ADP2503/ADP2504  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
20  
10  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I
(A)  
I
(A)  
OUT  
OUT  
Figure 3. Efficiency vs. Output Current, PWM Mode (VOUT = 5.0 V)  
Figure 6. Efficiency vs. Output Current, PSM and PWM Mode (VOUT = 3.3 V)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
20  
10  
20  
10  
0
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I
(A)  
I
(A)  
OUT  
OUT  
Figure 4. Efficiency vs. Output Current, PSM and PWM Mode (VOUT = 5.0 V)  
Figure 7. Efficiency vs. Output Current, PWM Mode (VOUT = 2.8 V)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
V
V
V
V
= 5.5V  
= 4.2V  
= 3.6V  
= 2.3V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
20  
10  
20  
10  
0
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I
(A)  
I
(A)  
OUT  
OUT  
Figure 5. Efficiency vs. Output Current, PWM Mode (VOUT = 3.3 V)  
Figure 8. Efficiency vs. Output Current, PSM and PWM Mode (VOUT = 2.8 V)  
Rev. PrB | Page 6 of 16  
Preliminary Technical Data  
ADP2503/ADP2504  
100  
90  
80  
70  
60  
50  
40  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
I
I
I
= 500mA  
= 100mA  
= 10mA  
OUT  
OUT  
OUT  
20  
10  
0
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
2.3  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
V
(V)  
V
IN  
IN  
Figure 12. Quiescent Current vs. Input Voltage (VOUT = 3.3 V)  
Figure 9. Efficiency vs. Input Voltage (VOUT = 3.3 V)  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
V
V
= 3.0V TO 3.6V  
IN  
= 5.0V  
OUT  
V
IN  
SW1  
SW2  
4
2
3
V
OUT  
1
B
B
B
CH1 50.0mV  
CH2 1.00V  
CH4 5.00V  
M40.0µs  
A CH2 3.40mV  
W
W
W
0
0.1  
0.2  
0.3  
0.4  
0.5  
(A)  
0.6  
0.7  
0.8  
0.9  
1.0  
B
T
18.20%  
CH3 5.00V  
W
I
OUT  
Figure 13. Line Transient, PWM Mode (VIN = 3.0 V to 3.6 V, VOUT = 5.0 V)  
Figure 10. Load Regulation (VIN = 3.6 V, VOUT = 3.3 V)  
2.8  
V
V
= 3.0V TO 3.6V  
IN  
= 3.3V  
OUT  
V
IN  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
–40°C  
+25°C  
SW1  
SW2  
4
2
3
+85°C  
V
OUT  
1
B
B
B
CH1 50.0mV  
M40.0µs A CH2 3.40V  
CH2 1.00V  
CH4 5.00V  
W
W
W
2.3  
2.7  
3.1  
3.5  
3.9  
(V)  
4.3  
4.7  
5.1  
5.5  
B
T
18.20%  
CH3 5.00V  
W
V
IN  
Figure 11. Frequency vs. Input Voltage Over Temperature (VOUT = 3.3 V)  
Figure 14. Line Transient, PWM Mode (VIN = 3.0 V to 3.6 V, VOUT = 3.3 V)  
Rev. PrB | Page 7 of 16  
ADP2503/ADP2504  
Preliminary Technical Data  
V
V
= 3.0V TO 3.6V  
IN  
SW1  
= 2.8V  
OUT  
V
IN  
SW1  
SW2  
4
4
I
OUT  
2
3
2
1
V
V
= 3.6V  
= 3.3V  
V
IN  
OUT  
OUT  
V
OUT  
1
B
B
B
B
CH1 100mV  
W
CH1 50.0mV  
CH4 1.00V  
CH4 5.00V  
M40.0µs  
A CH2 3.40mVꢀꢀ  
CH2 500mA M100µs  
A
CH2  
–115mA  
W
W
W
B
B
T
18.20%ꢀꢀ  
T
45.40%  
CH3 5.00V  
CH4 2.00V  
W
W
Figure 15. Line Transient, PWM Mode (VIN = 3.0 V to 3.6 V, VOUT = 2.8 V)  
Figure 18. Mode Change by Load Transients, Load Rise (VOUT = 3.3 V)  
V
V
= 3.6V  
= 3.3V  
IN  
OUT  
SW1  
V
OUT  
1
I
OUT  
4ꢀꢀ  
2ꢀꢀ  
I
OUT  
SW1  
SW2  
2ꢀꢀ  
4
3
V
V
= 3.6V  
= 3.3V  
IN  
OUT  
V
OUT  
1
B
CH1 100mV  
CH3 5.00V  
CH2 250mA M100µs  
A CH2 60.0mA  
W
B
W
CH1 100mV  
CH2 500mA M100µs  
A
CH2  
410mA  
B
B
T
W
25.80%  
CH4 5.00V  
W
B
T
45.40%  
CH4 2.00V  
W
Figure 16. Load Transient (VIN = 3.6 V VOUT = 3.3 V, IOUT = 100 mA to 350 mA)  
Figure 19. Mode Change by Load Transients, Load Fall (VOUT = 3.3 V)  
V
V
= 3.6V  
= 3.3V  
V
V
= 4.0V  
IN  
OUT  
IN  
= 3.3V  
OUT  
SW2  
SW1  
V
OUT  
1
2
3
4
I
OUT  
SW1  
SW2  
I
SW  
2
1
4
3
V
OUT  
B
CH1 100mV  
CH2 250mA M100µs  
A CH2 60.0mA  
W
B
CH1 50.0mV  
CH3 5.00V  
CH2 250mA M 400ns  
A
CH3  
2.40V  
W
B
B
T
23.00%  
CH3 5.00V  
CH4 5.00V  
W
W
B
B
T
50.00%  
CH4 5.00V  
W
W
Figure 17. Load Transient (VIN = 3.6 V VOUT = 3.3 V, IOUT = 10 mA to 300 mA)  
Figure 20. Typical PWM Switching Waveform, Buck Operation (VOUT = 3.3 V)  
Rev. PrB | Page 8 of 16  
Preliminary Technical Data  
ADP2503/ADP2504  
V
V
= 3.0V  
IN  
= 3.3V  
OUT  
SW2  
SW1  
4
3
4
SW1  
V
= 3.3V  
OUT  
V
OUT  
1
2
I
I
SW  
SW  
2
1
EN  
V
OUT  
3
B
B
B
CH2 500mAꢀ  
W
CH1 20.0mV  
CH3 5.00V  
CH2 250mA M 400ns  
A
CH4  
2.40V  
CH1 2.00V  
CH3 5.00V  
M 100µs  
A CH3 2.40V  
W
W
B
B
B
B
T
50.80%  
T
9.400%  
CH4 5.00V  
CH4 5.00V  
W
W
W
W
Figure 21. Typical PWM Switching Waveform, Boost Operation (VOUT = 3.3 V)  
Figure 24. Startup into PWM Mode (VOUT = 3.3 V, IOUT = 300 mA)  
V
V
= 3.0Vꢀꢀ  
IN  
= 3.3Vꢀꢀ  
OUT  
SW2  
SW1  
SW1  
4
3
4
V
OUT  
V
= 3.3V  
OUT  
1
2
I
I
SW  
SW  
2
1
EN  
V
OUT  
3
B
B
B
CH2 500mAꢀ  
W
CH1 20.0mV  
CH3 5.00V  
CH2 250mA M 400ns  
A
CH4  
2.40V  
CH1 2.00V  
CH3 5.00V  
M 100µs  
A CH3 2.40V  
W
W
B
B
B
B
T
50.00%  
T
9.400%  
CH4 5.00V  
CH4 5.00V  
W
W
W
W
Figure 22. Typical PWM Switching Waveform, Buck-Boost Operation  
(VOUT = 3.3 V)  
Figure 25. Startup into PWM Mode (VOUT = 3.3 V, IOUT = 10 mA)  
V
V
= 3.0Vꢀꢀ  
= 3.3Vꢀꢀ  
IN  
OUT  
SW1  
SW2  
SW1  
4
3
V
= 3.3V  
OUT  
V
OUT  
4ꢀꢀ  
1ꢀꢀ  
I
SW  
2
I
SW  
2
1
ENꢀꢀ  
V
OUTꢀꢀ  
3
B
B
B
CH2 500mAꢀ  
W
CH1 100mV  
CH3 5.00V  
CH2 1.00A ꢀ  
M 4.00µs  
15.20%  
A
CH2  
820mA  
CH1 2.00V  
CH3 5.00V  
M 100µs  
A CH3 2.40V  
W
W
B
B
B
B
T
T
9.400%  
CH4 5.00V  
CH4 5.00V  
W
W
W
W
Figure 23. Typical PSM Switching Waveform, Buck-Boost Operation  
(VOUT = 3.3 V)  
Figure 26. Startup into PSM Mode (VOUT = 3.3 V, IOUT = 10 mA)  
Rev. PrB | Page 9 of 16  
ADP2503/ADP2504  
Preliminary Technical Data  
THEORY OF OPERATION  
1.0µH  
SW1  
SW2  
4
2
ADP2503/ADP2504  
VIN  
8
ADP2503/ADP2504  
BIASING  
VBAT = 2.3V  
PMOS1  
PMOS2  
PVIN  
VOUT  
TO 5.5V  
5
1
10µF  
NMOS1  
NMOS2  
22µF  
2.25V  
SOFT START  
UVLO  
FB  
10  
BAND GAP  
THERMAL  
REFERENCE  
PROTECTION  
–0.5V  
PWM CONTROL  
EN  
EN  
CS  
6
7
SYNC  
PGND  
OSCILLATOR  
AGND  
9
3
Figure 27. ADP2503/ADP2504 Block Diagram  
The ADP2503/ADP2504 are synchronous average current-  
mode switching buck-boost regulators designed to maintain a  
fixed output voltage VOUT from an input supply VIN that can be  
above, equal to, or below VOUT. When VIN is significantly greater  
than VOUT, the device is in buck mode: PMOS2 is always active,  
NMOS2 is always off and the switches PMOS1, NMOS1 consti-  
POWER SAVE MODE  
When the SYNC pin is low, the ADP2503/ADP2504 can operate  
in power save mode (PSM). In this mode, when the load  
current becomes lower than 75 mA nominally at VIN = 3.6 V,  
the controller pulls up VOUT and then halts the switching regime  
until VOUT goes back to a restart value. Then VOUT is pulled up  
again for a new cycle. This minimizes the switching losses at  
light load. When the load rises above 150 mA, the  
ADP2503/ADP2504 revert back to fixed PWM mode. This  
results in about 75 mA of hysteresis between PSM and fixed  
PWM, preventing oscillations between these two modes.  
tute a buck converter. When VIN is significantly lower than VOUT  
the device is in boost mode: PMOS1 is always active, NMOS1 is  
always off and the switches NMOS2, PMOS2 constitute a boost  
converter. When VIN is in the range [VOUT − 10%; VOUT + 10%],  
the ADP2503/ADP2504 automatically enter the buck-boost  
mode. In buck-boost mode, the two operations buck (PMOS1  
and NMOS1 switching in antiphase) and boost (NMOS2 and  
PMOS2 switching in antiphase) take place at each period of the  
clock. This is aimed at maintaining the regulation and keeping a  
minimal current ripple in the inductor to guarantee good  
transient performances.  
,
SOFT START  
When the ADP2503/ADP2504 are started, VOUT is ramped from  
0 V to its final programmed value in 200 ꢀs (typ). This limits  
the inrush current to less than 600 mA for a nominal output  
capacitor of 20 ꢀF. Because the VOUT start-up slope is constant,  
the inrush current becomes larger if the output capacitor is  
made larger.  
REVERSE CURRENT LIMIT  
In case of a short circuit on VOUT to a value greater than  
expected, the inductor current becomes negative (reverse  
current). The negative peak value is limited to 1.1 A by  
deactivating the switch PMOS2.  
Rev. PrB | Page 10 of 16  
Preliminary Technical Data  
ADP2503/ADP2504  
ENABLE  
THERMAL SHUTDOWN  
The device starts operation with soft start when the EN pin is  
brought high. Pulling the EN pin low forces the device into  
shutdown, with a typical shutdown current of 0.2 μA.  
When the junction temperature, TJ, exceeds 150°C typical,  
the device goes into thermal shutdown. In this mode, the power  
switches are turned off. The device resumes operation when the  
junction temperature again falls below 125°C typical.  
In this mode, the PMOS power switches are turned off, the  
NMOS power switches are turned on, and the control circuitry is  
not enabled. For proper operation, the EN pin must be  
terminated and must not be left floating.  
SHORT CIRCUIT PROTECTION  
When the nominal inductor peak current value of 1.5 A is  
reached, the ADP2503/ADP2504 first switch off the NMOS2  
transistor if it was active. If the current thereafter continues to  
increase by an extra amount of 200 mA, the PMOS1 transistor  
is also switched off. This operation is reversible when the short  
circuit stops. It allows the inductor current ripple to be mini-  
mized close to 1.5 A and, thus, the controller to restore VOUT  
even if a high load current is maintained after the short circuit.  
UNDERVOLTAGE LOCKOUT  
The undervoltage lockout circuit prevents the device from oper-  
ating incorrectly at low input voltages. It prevents the converter  
from turning on the power switches under undefined conditions  
and therefore, prevents deep discharge of the battery supply. VIN  
must be greater than 2.25 V to enable the converter. During  
operation, if VIN drops below 2.18 V, the ADP2503/ADP2504  
are disabled until the supply exceeds the UVLO rising threshold.  
Rev. PrB | Page 11 of 16  
ADP2503/ADP2504  
Preliminary Technical Data  
APPLICATIONS INFORMATION  
INDUCTOR SELECTION  
Table 4. Sample of Recommended Inductors  
Dimensions  
L × W × H  
(mm)  
2.8 × 2.8 × 1.0  
2.8 × 2.8 × 1.0  
2.5 × 2 × 1.2  
2.5 × 2 × 1  
The high 2.5 MHz switching frequency of the ADP2503/  
ADP2504 allows for minimal output voltage ripple, while  
minimizing inductor size and cost. Careful inductor selection  
also optimizes efficiency and reduces electromagnetic interfe-  
rence (EMI). The selection of the inductor value determines the  
inductor current ripple and loop dynamics.  
Value  
Vendor (ꢀH)  
DCR  
(mΩ) (A)  
ISAT  
Part No.  
DE2810C  
DE2810C  
Toko  
Toko  
Toko  
Murata  
Murata  
TDK  
1.2  
1.5  
1
55  
60  
1.7  
1.5  
1.8  
1.6  
1.5  
1.5  
1.2  
1.7  
1.3  
MDT2520-CN 100  
1
LQM2HP-G0  
LQM2HP-G0  
CPL2512T  
CPL2512T  
LPS3010  
55  
70  
90  
120  
85  
VOUT ×(VIN VOUT  
VIN ×fOSC ×L  
)
1.5  
1.0  
1.5  
2.5 × 2 × 1  
ΔIL , peak (Buck) =ꢀ  
2.5 × 1.5 × 1.2  
2.5 × 1.5 × 1.2  
3.0 × 3.0 × 0.9  
3.0 × 3.0 × 0.9  
TDK  
(VOUT VIN )  
VIN  
fOSC ×L  
Coilcraft 1.0  
Coilcraft 1.5  
ΔIL , peak (Boost) =  
×ꢀ  
VOUT  
LPS3010  
120  
where fOSC is the switching frequency (typically 2.5 MHz),  
and L is the inductor value in henries.  
Output Capacitor Selection  
The output capacitor selection determines the output voltage  
ripple, transient response and the loop dynamics of the  
ADP2503/ADP2504. The output voltage ripple for a given  
output capacitor is given by  
A larger inductor value reduces the current ripple (and  
therefore peak inductor current), but is physically larger in size  
with increased dc resistance. Inductor values between 1 μH and  
1.5 μH are usually suggested. The maximum inductor value to  
ensure stability is 2.0 μH. For increased efficiency with the  
ADP2504, it is suggested a 1.5 μH inductor be used.  
VOUT ×(VIN VOUT  
)
ΔVOUT, peak (Buck) =ꢀ  
ΔVOUT, peak(Boost) =ꢀ  
VIN ×8 ×L × (fOSC  
)
2 ×COUT  
The inductor peak current is at the maximum in boost mode.  
To determine the actual maximum inductor current in boost  
mode, the input dc current should be estimated.  
I
LOAD×(VOUT VIN )  
COUT ×VOUT ×fOSC  
If the ADP2503/ADP2504 are operating in buck mode, the  
worst-case voltage ripple occurs for the highest input voltage,  
VIN. If the ADP2503/ADP2504 are operating in boost mode, the  
worst-case voltage ripple occurs for the lowest input voltage, VIN.  
ꢀ  
ꢀ  
VOUT  
VIN  
1
η
ꢀ  
IIN(MAX) =ILOAD(MAX)  
×
×ꢀꢀ  
ꢀ  
ꢀ  
where η is efficiency (assume η ≈ 0.85 to 0.90).  
The maximum voltage overshoot, or undershoot is inversely  
proportional to the value of the output capacitor. To ensure  
stability and excellent transient response, it is recommended to  
use a minimum of 22 μF X5R 6.3 V or 2 × 10 μF X5R 6.3 V  
capacitors at the output. The effective capacitance (includes  
temperature, dc bias effects) needed for stability is 14 μF.  
The saturation current rating of the inductor must be at least  
IIN(MAX) + ΔILOAD/2.  
Ceramic multilayer inductors can be used with lower current  
designs for a reduced overall solution size and dc resistance (DCR).  
These are available in low profile packages. Care must be taken as  
these derate quickly as the inductor value is increased especially at  
higher operating temperatures.  
Ferrite core inductors have good core loss characteristics as well as  
reasonable dc resistance. A shielded ferrite inductor reduces the  
EMI generated by the inductor.  
Table 5. Recommended Output Capacitors  
Dimensions  
L × W × H (mm)  
Vendor  
Murata  
TDK  
Murata  
TDK  
Value  
Part No.  
2 × 10 μF, 6.3 V  
2 × 10 μF, 6.3 V  
22 μF, 6.3 V  
22 μF, 6.3 V  
22 μF, 10 V  
10 μF, 10 V  
GRM188R60J106ME47  
C1608JB0J106K  
GRM21BR60J226ME39  
C2012X5R0J226M  
C3216X5R1A226K  
GRM21BR71A106KE51L  
1.6 × 0.8 × 0.8 (2)  
1.6 × 0.8 × 0.8 (2)  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25  
2 × 1.25 × 1.25 (2)  
TDK  
Murata  
Rev. PrB | Page 12 of 16  
Preliminary Technical Data  
ADP2503/ADP2504  
Table 6. Recommended Input Capacitors  
Input Capacitor Selection  
Dimensions  
L × W × H  
(mm)  
The ADP2503/ADP2504 require an input capacitor to filter  
noise on the VIN pin, and provide the transient currents while  
maintaining constant input and output voltage. A 10 μF X5R/  
X7R ceramic capacitor rated for 6.3 V is the minimum recom-  
mended input capacitor. Increased input capacitance reduces  
the amplitude of the switching frequency ripple on the battery.  
Because of the dc bias characteristics of ceramic capacitors, a  
0603, 6.3 V X5R/X7R, 10 μF ceramic capacitor is preferable.  
Vendor Value  
Part No.  
Murata 10 μF, 6.3 V GRM188R60J106ME47 1.6 × 0.8 × 0.8  
TDK 10 μF, 6.3 V C1608JB0J106K 1.6 × 0.8 × 0.8  
Rev. PrB | Page 13 of 16  
ADP2503/ADP2504  
Preliminary Technical Data  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP2503/ADP2504 performance,  
causing electromagnetic interference (EMI) and electromagnetic  
compatibility (EMC) performance, ground bounce, and voltage  
losses. Poor layout can also affect regulation and stability. A  
good layout is implemented using the following rules:  
ꢀꢀ Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
ꢀꢀ Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
ꢀꢀ Use a ground plane with several vias connecting to the  
component side ground to further reduce noise interference  
on sensitive circuit nodes.  
ꢀꢀ Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies and large tracks act like  
antennas.  
ADP2503/ADP2504 EVALUATION BOARD  
10mm  
L1  
VIN  
VOUT  
J1  
J3  
C1  
C2 C3  
JP1  
8mm  
JP1  
U1  
C4  
R3  
PGND  
J4  
PGND  
J2  
TP2  
TP1  
R2  
1
R1  
1
J6  
J5  
EN  
SYNC  
Figure 28. ADP2503/ADP2504 Evaluation Board  
Rev. PrB | Page 14 of 16  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADP2503/ADP2504  
0.30  
0.23  
0.18  
3.00  
BSC SQ  
0.50 BSC  
10  
6
5
PIN 1 INDEX  
AREA  
1.74  
1.64  
1.49  
*
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
1
PIN 1  
INDICATOR  
(R 0.20)  
TOP VIEW  
2.48  
2.38  
2.23  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
*
PADDLE CONNECTED TO GND.  
SEATING  
PLANE  
0.20 REF  
Figure 298. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Maximum Temperature  
Voltage Current  
Range  
−40°C to +85°C  
Package  
Model  
Package Description  
Option  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
Branding  
ADP2503ACPZ-2.8-R71  
ADP2503ACPZ-3.3-R71  
ADP2503ACPZ-3.5-R71  
ADP2503ACPZ-4.2-R71  
ADP2503ACPZ-4.5-R71  
ADP2503ACPZ-5.0-R71  
ADP2504ACPZ-2.8-R71  
ADP2504ACPZ-3.3-R71  
ADP2504ACPZ-3.5-R71  
ADP2504ACPZ-4.2-R71  
ADP2504ACPZ-4.5-R71  
ADP2504ACPZ-5.0-R71  
2.8 V  
3.3 V  
3.5 V  
4.2 V  
4.5 V  
5.0 V  
2.8 V  
3.3 V  
3.5 V  
4.2 V  
4.5 V  
5.0 V  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
0.6 A  
1 A  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
L9Y  
L9Z  
LAP  
LA0  
LA1  
LA2  
L9T  
L85  
LAN  
L9U  
L9V  
L9W  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1 A  
1 A  
1 A  
1 A  
1 A  
1 Z = RoHS Compliant Part.  
Rev. PrB | Page 15 of 16  
ADP2503/ADP2504  
NOTES  
Preliminary Technical Data  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07475-0-8/08(PrB)  
Rev. PrB | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY