ADP3000AR-12 [ADI]

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V and Adjustable High Frequency Switching Regulator; 微功率升压/降压型固定3.3 V , 5 V , 12 V和可调式高频开关稳压器
ADP3000AR-12
型号: ADP3000AR-12
厂家: ADI    ADI
描述:

Micropower Step-Up/Step-Down Fixed 3.3 V, 5 V, 12 V and Adjustable High Frequency Switching Regulator
微功率升压/降压型固定3.3 V , 5 V , 12 V和可调式高频开关稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总12页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower Step-Up/Step-Down  
Fixed 3.3 V, 5 V, 12 V and Adjustable  
High Frequency Switching Regulator  
a
ADP3000  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Operates at Supply Voltages from 2 V to 30 V  
Works in Step-Up or Step-Down Mode  
Very Few External Components Required  
High Frequency Operation Up to 400 kHz  
Low Battery Detector on Chip  
User Adjustable Current Limit  
Fixed and Adjustable Output Voltage  
8-Pin DIP and SO-8 Package  
SET  
A1  
A0  
V
IN  
I
GAIN BLOCK/  
ERROR AMP  
LIM  
SW1  
1.245V  
REFERENCE  
400kHz  
OSCILLATOR  
Small Inductors and Capacitors  
DRIVER  
SW2  
COMPARATOR  
APPLICATIONS  
ADP3000  
Notebook, Palmtop Computers  
Cellular Telephones  
Hard Disk Drives  
R1  
R2  
GND  
SENSE  
Portable Instruments  
Pagers  
6.8µH  
IN5817  
V
IN  
3.3V @  
180mA  
2V–3.2V  
100µF  
10V  
120Ω  
GENERAL DESCRIPTION  
1
2
The ADP3000 is a versatile step-up/step-down switching  
regulator that operates from an input supply voltage of 2 V to  
12 V in step-up mode and up to 30 V in step-down mode.  
I
V
LIM  
IN  
SW1  
3
8
ADP3000-3.3V  
The ADP3000 operates in Pulse Frequency Mode (PFM) and  
consumes only 500 µA, making it highly suitable for applica-  
tions that require low quiescent current.  
FB  
(SENSE)  
C1  
100µF  
10V  
+
GND  
5
SW2  
4
The ADP3000 can deliver an output current of 100 mA at  
3 V from a 5 V input in step-down configuration and 180 mA at  
3.3 V from a 2 V input in step-up configuration.  
C1, C2: AVX TPS D107 M010R0100  
L1: SUMIDA CD43-6R8  
The auxiliary gain amplifier can be used as a low battery detector,  
linear regulator undervoltage lockout or error amplifier.  
Figure 1. Typical Application  
The ADP3000 operates at 400 kHz switching frequency. This  
allows the use of small external components (inductors and  
capacitors), making the device very suitable for space constrained  
designs.  
V
IN  
R
120Ω  
5V–6V  
C1  
100µF  
10V  
LIM  
1
2
3
I
V
SW1  
LIM  
IN  
8
4
FB  
ADP3000  
L1  
10µH  
V
SW2  
OUT  
R2  
GND  
5
3V  
100mA  
150kΩ  
1%  
CL  
100µF  
10V  
+
D1  
1N5818  
R1  
110kΩ  
1%  
C1, C2: AVX TPS D107 M010R0100  
L1: SUMIDA CD43-100  
Figure 2. Step-Down Mode Operation  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1997  
(0؇C T +70؇C, V = 3 V unless otherwise noted)*  
ADP3000–SPECIFICATIONS  
A
IN  
ADP3000  
Typ  
Parameter  
Conditions  
Symbol  
Min  
Max  
Units  
INPUT VOLTAGE  
Step-Up Mode  
Step-Down Mode  
VIN  
2.0  
12.6  
30.0  
V
V
SHUTDOWN QUIESCENT CURRENT  
VFB > 1.43 V; VSENSE > 1.1 × VOUT IQ  
500  
µA  
COMPARATOR TRIP POINT  
VOLTAGE  
ADP30001  
1.20  
1.245  
1.30  
V
OUTPUT SENSE VOLTAGE  
ADP3000-3.32  
3.135 3.3  
3.465  
5.25  
12.60  
V
V
V
ADP3000-52  
ADP3000-122  
VOUT  
4.75  
5.00  
11.40 12.00  
COMPARATOR HYSTERESIS  
OUTPUT HYSTERESIS  
ADP3000  
8
12.5  
mV  
ADP3000-3.3  
ADP3000-5  
ADP3000-12  
32  
32  
75  
50  
50  
120  
mV  
mV  
mV  
OSCILLATOR FREQUENCY  
DUTY CYCLE  
fOSC  
D
350  
65  
400  
80  
2
450  
kHz  
%
VFB > VREF  
SWITCH ON TIME  
ILIM Tied to VIN, VFB = 0  
TA = +25°C  
tON  
1.5  
2.55  
µs  
SWITCH SATURATION VOLTAGE  
STEP-UP MODE  
V
V
IN = 3.0 V, ISW = 650 mA  
IN = 5.0 V, ISW = 1 A  
VSAT  
0.5  
0.8  
1.1  
0.75  
1.1  
1.5  
V
V
V
STEP-DOWN MODE  
VIN = 12 V, ISW = 650 mA  
ADP3000 VFB = 0 V  
VSET = VREF  
FEEDBACK PIN BIAS CURRENT  
SET PIN BIAS CURRENT  
GAIN BLOCK OUTPUT LOW  
IFB  
160  
200  
0.15  
330  
400  
0.4  
nA  
nA  
V
ISET  
VOL  
ISINK = 300 µA  
VSET = 1.00 V  
REFERENCE LINE REGULATION  
5 V VIN 30 V  
2 V VIN 5 V  
0.02  
0.2  
0.15  
0.6  
%/V  
%/V  
GAIN BLOCK GAIN  
RL = 100 k3  
AV  
1000 6000  
V/V  
µA  
GAIN BLOCK CURRENT SINK  
CURRENT LIMIT  
VSET 1 V  
ISINK  
ILIM  
300  
400  
220 from ILIM to VIN  
mA  
CURRENT LIMIT TEMPERATURE  
COEFFICIENT  
–0.3  
1
%/°C  
µA  
SWITCH OFF LEAKAGE CURRENT  
Measured at SW1 Pin  
10  
VSW1 = 12 V, TA = +25°C  
MAXIMUM EXCURSION BELOW GND  
TA = +25°C  
I
SW1 10 µA, Switch Off  
–400  
–350  
mV  
NOTES  
1This specification guarantees that both the high and low trip point of the comparator fall within the 1.20 V to 1.30 V range.  
2The output voltage waveform will exhibit a sawtooth shape due to the comparator hysteresis. The output voltage on the fixed output versions will always be within the  
specified range.  
3100 kresistor connected between a 5 V source and the AO pin.  
*All limits at temperature extremes are guaranteed via correlation using standard statistical methods.  
Specifications subject to change without notice.  
REV. 0  
–2–  
ADP3000  
PIN DESCRIPTIONS  
Function  
ABSOLUTE MAXIMUM RATINGS  
Input Supply Voltage, Step-Up Mode . . . . . . . . . . . . . . . 15 V  
Input Supply Voltage, Step-Down Mode . . . . . . . . . . . . . 36 V  
SW1 Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V  
SW2 Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VIN  
Feedback Pin Voltage (ADP3000) . . . . . . . . . . . . . . . . . .5.5 V  
Switch Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5 A  
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . 500 mW  
Operating Temperature Range . . . . . . . . . . . . . 0°C to +70°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . .+300°C  
Thermal Impedance  
Mnemonic  
ILIM  
For normal conditions this pin is connected to  
VIN. When lower current is required, a resistor  
should be connected between ILIM and VIN.  
Limiting the switch current to 400 mA is  
achieved by connecting a 220 resistor.  
VIN  
Input Voltage.  
SW1  
Collector of power transistor. For step-down  
configuration, connect to VIN. For step-up  
configuration, connect to an inductor/diode.  
SO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170°C/W  
N-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W  
SW2  
Emitter of power transistor. For step-down  
configuration, connect to inductor/diode.  
For step-up configuration, connect to ground.  
Do not allow this pin to go more than a diode  
drop below ground.  
PIN CONFIGURATIONS  
8-Lead Plastic DIP  
(N-8)  
8-Lead SOIC  
(SO-8)  
GND  
AO  
Ground.  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
I
FB (SENSE)*  
SET  
I
FB (SENSE)*  
SET  
Auxiliary Gain (GB) output. The open col-  
lector can sink 300 µA. It can be left open  
if not used.  
LIM  
LIM  
ADP3000  
TOP VIEW  
(Not to Scale)  
ADP3000  
TOP VIEW  
(Not to Scale)  
V
V
IN  
IN  
SW1  
SW2  
AO  
SW1  
SW2  
AO  
GND  
GND  
SET  
SET Gain amplifier input. The amplifier’s  
positive input is connected to SET pin and its  
negative input is connected to 1.245 V. It can  
be left open if not used.  
* FIXED VERSIONS  
* FIXED VERSIONS  
FB/SENSE  
On the ADP3000 (adjustable) version, this pin  
is connected to the comparator input. On the  
ADP3000-3.3, ADP3000-5 and ADP3000-12,  
the pin goes directly to the internal resistor  
divider that sets the output voltage.  
ORDERING GUIDE  
Output  
Voltage  
Package  
Option  
Model  
ADP3000AN-3.3  
ADP3000AR-3.3  
3.3 V  
3.3 V  
N-8  
SO-8  
ADP3000AN-5  
ADP3000AR-5  
5 V  
5 V  
N-8  
SO-8  
ADP3000AN-12  
ADP3000AR-12  
12 V  
12 V  
N-8  
SO-8  
ADP3000AN  
ADP3000AR  
Adjustable  
Adjustable  
N-8  
SO-8  
N = plastic DIP, SO = small outline package.  
SET  
SET  
A2  
A0  
A1  
A0  
V
V
IN  
IN  
I
I
GAIN BLOCK/  
ERROR AMP  
GAIN BLOCK/  
ERROR AMP  
LIM  
LIM  
SW1  
SW1  
1.245V  
REFERENCE  
1.245V  
REFERENCE  
A1  
OSCILLATOR  
OSCILLATOR  
DRIVER  
DRIVER  
SW2  
SW2  
COMPARATOR  
COMPARATOR  
ADP3000  
ADP3000  
R1  
R2  
GND  
FB  
GND  
SENSE  
Figure 3a. Functional Block Diagram for Adjustable Version  
Figure 3b. Functional Block Diagram for Fixed Version  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADP3000 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
ADP3000–Typical Characteristics  
2.5  
1400  
1200  
1.4  
1.2  
1.0  
0.8  
V
= 5V @ T = +25°C  
A
IN  
2.0  
QUIESCENT CURRENT @ T = +25°C  
A
1000  
800  
600  
400  
200  
0
1.5  
1.0  
0.5  
0
V
= 12V @ T = +25°C  
A
V
= 5V @ T = +25  
°
C
IN  
IN  
A
0.6  
0.4  
0.2  
0.0  
V
= 3V @ T = +25°C  
A
IN  
V
= 2V @ T = +25°C  
A
IN  
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.5  
0.8  
0.9  
1.5  
3
6
9
12 15 18 21 24 27 30  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
SWITCH CURRENT – A  
INPUT VOLTAGE – V  
SWITCH CURRENT – A  
Figure 4. Switch ON Voltage vs.  
Switch Current in Step-Up Mode  
Figure 6. Quiescent Current vs.  
Input Voltage  
Figure 5. Saturation Voltage vs.  
Switch Current in Step-Down Mode  
406  
1.8  
0.8  
V
= 12V  
T = +25°C  
A
OSCILLATOR FREQUENCY –  
V
= 5V  
IN  
T
= 0°C  
IN  
A
1.6  
@ T = +25°C  
405  
404  
403  
402  
401  
400  
399  
396  
A
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
T
= 0°C  
A
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= +25°C  
A
T
= +85°C  
A
T
A
= +85°C  
0.1  
0
1
10  
100  
1k  
2
4
6
8
10 12 15 18 21 24 27 30  
1
10  
100  
1k  
INPUT VOLTAGE – V  
R
Ω  
LIM  
R
Ω  
LIM  
Figure 8b. Maximum Switch Current  
vs. RLIM in Step-Down Mode (12 V)  
Figure 7. Oscillator Frequency vs.  
Input Voltage  
Figure 8a. Maximum Switch Current  
vs. RLIM in Step-Down Mode (5 V)  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.8  
440  
430  
420  
410  
400  
390  
380  
370  
360  
350  
V
= 3V  
IN  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 0°C  
A
T
= +25°C  
A
T
= +85°C  
A
340  
330  
–40  
0
25  
70  
C (T  
85  
1
10  
100  
1k  
–40  
0
25  
70  
C (T  
85  
R
Ω  
TEMPERATURE –  
°
)
LIM  
A
TEMPERATURE –  
°
)
A
Figure 8c. Maximum Switch Current  
vs. RLIM in Step-Up Mode (3 V)  
Figure 10. Switch ON Time vs.  
Temperature  
Figure 9. Oscillator Frequency vs.  
Temperature  
REV. 0  
–4–  
ADP3000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
V
= 12V @ I = 0.65A  
SW  
IN  
V
= 3V @ I  
= 0.65A  
IN  
SW  
–40  
0
25  
70  
C (T  
85  
–40  
0
25  
70  
C (T )  
A
85  
–40  
0
25  
70  
C (T  
85  
TEMPERATURE –  
°
)
TEMPERATURE –  
°
TEMPERATURE –  
°
)
A
A
Figure 11. Duty Cycle vs.  
Temperature  
Figure 12. Saturation Voltage vs.  
Temperature in Step-Up Mode  
Figure 13. Switch ON Voltage vs.  
Temperature in Step-Down Mode  
250  
700  
350  
300  
250  
200  
150  
100  
50  
V
= 20V  
IN  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
0
–40  
0
–40  
0
25  
70  
C (T  
85  
–40  
0
25  
70  
C (T  
85  
0
25  
70  
85  
TEMPERATURE –  
°
)
TEMPERATURE –  
°
)
A
TEMPERATURE – °C (T  
)
A
A
Figure 14. Feedback Bias Current  
vs. Temperature  
Figure 15. Quiescent Current vs.  
Temperature  
Figure 16. Set Pin Bias Current vs.  
Temperature  
REV. 0  
–5–  
ADP3000  
THEORY OF OPERATION  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
Inductor Selection  
For most applications the inductor used with the ADP3000 will  
fall in the range between 4.7 µH to 33 µH. Table I shows  
recommended inductors and their vendors.  
The ADP3000 is a versatile, high frequency, switch mode  
power supply (SMPS) controller. The regulated output  
voltage can be greater than the input voltage (boost or step-up  
mode) or less than the input (buck or step-down mode). This  
device uses a gated oscillator technique to provide high perfor-  
mance with low quiescent current.  
When selecting an inductor, it is very important to make sure  
that the inductor used with the ADP3000 is able to handle a  
current that is higher than the ADP3000’s current limit without  
saturation.  
A functional block diagram of the ADP3000 is shown in  
Figure 3a. The internal 1.245 V reference is connected to one  
input of the comparator, while the other input is externally  
connected (via the FB pin) to a resistor divider connected to  
the regulated output. When the voltage at the FB pin falls below  
1.245 V, the 400 kHz oscillator turns on. A driver amplifier  
provides base drive to the internal power switch and the switching  
action raises the output voltage. When the voltage at the FB  
pin exceeds 1.245 V, the oscillator is shut off. While the  
oscillator is off, the ADP3000 quiescent current is only 500 µA.  
The comparator’s hysteresis ensures loop stability without  
requiring external components for frequency compensation.  
As a rule of thumb, powdered iron cores saturate softly, whereas  
Ferrite cores saturate abruptly. Rod or “open” drum core  
geometry inductors saturate gradually. Inductors that saturate  
gradually are easier to use. Even though rod or drum core  
inductors are attractive in both price and physical size, these  
types of inductors must be handled with care because they have  
high magnetic radiation. Toroid or “closed” core geometry  
should be used when minimizing EMI is critical.  
In addition, inductor dc resistance causes power loss. It is best  
to use low dc resistance inductors so that power loss in the  
inductor is kept to the minimum. Typically, it is best to use an  
inductor with a dc resistance lower than 0.2 .  
The maximum current in the internal power switch can be set  
by connecting a resistor between VIN and the ILIM pin. When  
the maximum current is exceeded, the switch is turned OFF.  
The current limit circuitry has a time delay of about 0.3 µs. If  
an external resistor is not used, connect ILIM to VIN. This  
yields the maximum feasible current limit. Further information  
on ILIM is included in the “Applications” section of this data  
sheet. The ADP3000 internal oscillator provides typically 1.7  
µs ON and 0.8 µs OFF times.  
Table I. Recommended Inductors  
V
endor  
Series  
Core Type  
Phone Numbers  
Coiltronics OCTAPAC  
Coiltronics UNIPAC  
Toroid  
Open  
(407) 241-7876  
(407) 241-7876  
An uncommitted gain block on the ADP3000 can be con-  
nected as a low battery detector. The inverting input of the  
gain block is internally connected to the 1.245 V reference.  
The noninverting input is available at the SET pin. A resistor  
divider, connected between VIN and GND with the junction  
connected to the SET pin, causes the AO output to go LOW  
when the low battery set point is exceeded. The AO output is  
an open collector NPN transistor that can sink in excess of  
300 µA.  
Sumida  
Sumida  
CD43, CD54  
CDRH62, CDRH73, Semi-Closed  
CDRH64 Geometry  
Open  
(847) 956-0666  
(847) 956-0666  
Capacitor Selection  
For most applications, the capacitor used with the ADP3000  
will fall in the range between 33 µF to 220 µF. Table II shows  
recommended capacitors and their vendors.  
For input and output capacitors, use low ESR type capacitors  
for best efficiency and lowest ripple. Recommended capacitors  
include AVX TPS series, Sprague 595D series, Panasonic HFQ  
series and Sanyo OS-CON series.  
The ADP3000 provides external connections for both the  
collector and emitter of its internal power switch, which permits  
both step-up and step-down modes of operation. For the step-  
up mode, the emitter (Pin SW2) is connected to GND and the  
collector (Pin SW1) drives the inductor. For step-down mode,  
the emitter drives the inductor while the collector is connected  
to VIN.  
When selecting a capacitor, it is important to make sure the  
maximum capacitor ripple current rms rating is higher than the  
ADP3000’s rms switching current.  
The output voltage of the ADP3000 is set with two external  
resistors. Three fixed voltage models are also available:  
ADP3000–3.3 (+3.3 V), ADP3000–5 (+5 V) and ADP3000–12  
(+12 V). The fixed voltage models include laser-trimmed  
voltage-setting resistors on the chip. On the fixed voltage models  
of the ADP3000, simply connect the feedback pin (Pin 8)  
directly to the output voltage.  
It is best to protect the input capacitor from high turn-on cur-  
rent charging surges by derating the capacitor voltage by 2:1.  
For very low input or output voltage ripple requirements,  
Sanyo OS-CON series capacitors can be used since this type of  
capacitor has very low ESR. Alternatively, two or more tanta-  
lum capacitors can be used in parallel.  
REV. 0  
–6–  
ADP3000  
The delay through the current limiting circuit is approximately  
0.3 µs. If the switch ON time is reduced to less than 1.7 µs,  
accuracy of the current trip-point is reduced. Attempting to  
program a switch ON time of 0.3 µs or less will produce  
spurious responses in the switch ON time. However, the  
ADP3000 will still provide a properly regulated output voltage.  
Table II. Recommended Capacitors  
Vendor  
Series  
Type  
Phone Numbers  
AVX  
Sanyo  
Sprague  
Panasonic  
TPS  
OS-CON  
595D  
Surface Mount  
Through-Hole  
Surface Mount  
Through-Hole  
(803) 448-9411  
(619) 661-6835  
(603) 224-1961  
(201) 348-5200  
HFQ  
PROGRAMMING THE GAIN BLOCK  
The gain block of the ADP3000 can be used as a low battery  
detector, error amplifier or linear post regulator. The gain block  
consists of an op amp with PNP inputs and an open-collector  
NPN output. The inverting input is internally connected to the  
ADP3000’s 1.245 V reference, while the noninverting input is  
available at the SET pin. The NPN output transistor will sink in  
excess of 300 µA.  
DIODE SELECTION  
The ADP3000’s high switching speed demands the use of  
Schottky diodes. Suitable choices include the 1N5817, 1N5818,  
1N5819, MBRS120LT3 and MBR0520LT1. Do not use fast  
recovery diodes because their high forward drop lowers effi-  
ciency. Neither general-purpose diodes nor small signal diodes  
should be used.  
Figure 18 shows the gain block configured as a low battery  
monitor. Resistors R1 and R2 should be set to high values to  
reduce quiescent current, but not so high that bias current in  
the SET input causes large errors. A value of 33 kfor R2 is a  
good compromise. The value for R1 is then calculated from the  
formula:  
PROGRAMMING THE SWITCHING CURRENT LIMIT  
OF THE POWER SWITCH  
The ADP3000’s RLIM pin permits the cycle by cycle switch  
current limit to be programmed with a single external resistor.  
This feature offers major advantages which ultimately decrease  
the component cost and P.C.B. real estate. First, it allows the  
ADP3000 to use low value, low saturation current and physi-  
cally small inductors. Additionally, it allows the ADP3000 to  
use a physically small surface mount tantalum capacitor with a  
typical ESR of 0.1 to achieve an output ripple as low as 40  
mV to 80 mV, as well as low input ripple.  
VLOBATT 1.245V  
R1=  
1.245V  
R2  
where VLOBATT is the desired low battery trip point. Since the  
gain block output is an open-collector NPN, a pull-up resistor  
should be connected to the positive logic power supply.  
As a rule of thumb, the current limit is usually set to approximately  
3 to 5 times the full load current for boost applications and  
about 1.5–3 times of the full load current in buck applications.  
5V  
R
L
The internal structure of the ILIM circuit is shown in Figure 17.  
Q1 is the ADP3000’s internal power switch, which is paralleled  
by sense transistor Q2. The relative sizes of Q1 and Q2 are  
scaled so that IQ2 is 0.5% of IQ1. Current flows to Q2 through  
both an internal 80 resistor and the RLIM resistor. The voltage  
on these two resistors biases the base-emitter junction of the  
oscillator-disable transistor, Q3. When the voltage across R1  
and RLIM exceeds 0.6 V, Q3 turns on and terminates the output  
pulse. If only the 80 internal resistor is used (i.e. the ILIM pin  
is connected directly to VIN), the maximum switch current will  
be 1.5 A. Figure 8a gives values for lower current-limit values.  
47kΩ  
V
IN  
ADP3000  
1.245V  
REF  
R1  
V
BATT  
AO  
TO  
SET  
PROCESSOR  
R2  
33kΩ  
GND  
1.6MΩ  
R
HYS  
V
– 1.245V  
LB  
R1 =  
37.7µA  
V
= BATTERY TRIP POINT  
LB  
Figure 18. Setting the Low Battery Detector Trip Point  
R
LIM  
(EXTERNAL)  
V
IN  
I
V
LIM  
IN  
80Ω  
(INTERNAL)  
R1  
Q3  
I
Q1  
ADP3000  
SW1  
200  
Q1  
DRIVER  
Q2  
400kHz  
OSC  
POWER  
SWITCH  
SW2  
Figure 17. ADP3000 Current Limit Operation  
REV. 0  
–7–  
ADP3000  
The circuit of Figure 18 may produce multiple pulses when  
approaching the trip point due to noise coupled into the SET  
input. To prevent multiple interrupts to the digital logic,  
hysteresis can be added to the circuit (Figure 18). Resistor RHYS  
with a value of 1 Mto 10 M, provides the hysteresis. The  
addition of RHYS will change the trip point slightly, so the new  
value for R1 will be:  
Step-Down  
1
VO  
VIN VCE  
2 IO  
ISW  
PD  
=
ISW VCESAT 1+  
+ I  
[
V
[
]
]
Q
IN  
,
β
SAT  
(
)
where: ISW is ILIMIT in the case of current limit is programmed  
externally or maximum inductor current in the case of  
current limit is not programmed eternally.  
VLOBATT 1.245V  
R1=  
VCE(SAT) = Check this value by applying ISW to Figure 8b.  
1.2 V is typical value.  
1.245V  
R2  
VL 1.245V  
RL + RHYS  
D = 0.75 (Typical Duty Ratio for a Single Switching  
where VL is the logic power supply voltage, RL is the pull-up  
resistor, and RHYS creates the hysteresis.  
Cycle).  
VO = Output Voltage.  
IO = Output Current.  
POWER TRANSISTOR PROTECTION DIODE IN STEP-  
DOWN CONFIGURATION  
When operating the ADP3000 in the step-down mode, the  
output voltage is impressed across the internal power switch’s  
emitter-base junction when the switch is off. In order to protect  
the switch, a Schottky diode must be placed in a series with  
SW2 when the output voltage is set to higher than 6 V. Figure  
19 shows the proper way to place the protection diode, D2.  
The selection of this diode is identical to the step-down commut-  
ing diode (see Diode Selection section for information).  
V
IN = Input Voltage.  
IQ = 500 µA (Typical Shutdown Quiescent Current).  
β = 30 (Typical Forced Beta).  
The temperature rise can be calculated from:  
T = PD ×θJA  
where:  
T = Temperature Rise.  
PD = Device Power Dissipation.  
θJA = Thermal Resistance (Junction-to-Ambient).  
V
IN  
D1, D2 = 1N5818 SCHOTTKY DIODES  
+
R3  
C2  
1
2
3
As example, consider a boost converter with the following  
specifications:  
V
> 6V  
OUT  
I
V
SW1  
LIM  
IN  
FB  
8
4
VIN = 2 V, IO = 180 mA, VO = 3.3 V.  
ADP3000  
D2  
D1  
L1  
R2  
R1  
SW2  
I
SW = 0.8 A (Externally Programmed).  
GND  
5
+
C1  
With Step-Up Power Dissipation Equation:  
(2)(0.8)  
30  
2
3.3  
(4) 0.18  
0.8  
PD = 0.82 × 1+  
0.75 1–  
+ 500E 6  
[
2
][ ]  
[
]
Figure 19. Step-Down Model VOUT > 6.0 V  
THERMAL CONSIDERATIONS  
Power dissipation internal to the ADP3000 can be approximated  
with the following equations.  
= 185 mW  
Using the SO-8 Package: T = 185 mW (170°C/W) = 31.5°C.  
Using the N-8 Package: T = 185 mW (120°C/W) = 22.2°C.  
At a 70°C ambient, die temperature would be 101.45°C for  
SO-8 package and 92.2°C for N-8 package. These junction  
temperatures are well below the maximum recommended  
junction temperature of 125°C.  
Step-Up  
VIN ISW  
VIN 4IO  
VO ISW  
P
D = ISW 2R +  
D 1–  
+ I  
[
V
Q IN  
]
[
]
β
Finally, the die temperature can be decreased up to 20% by  
using a large metal ground plate as ground pickup for the  
ADP3000.  
where: ISW is ILIMIT in the case of current limit programmed  
externally, or maximum inductor current in the case of  
current limit not programmed externally.  
R = 1 (Typical RCE(SAT)).  
D = 0.75 (Typical Duty Ratio for a Single Switching  
Cycle).  
VO = Output Voltage.  
IO = Output Current.  
VIN = Input Voltage.  
IQ = 500 µA (Typical Shutdown Quiescent Current).  
β = 30 (Typical Forced Beta)  
REV. 0  
–8–  
ADP3000  
Typical Application Circuits  
L1  
15µH  
L1  
1N5817  
6.8µH 1N5817  
V
IN  
4.5V 5.5V  
V
V
IN  
2V 3.2V  
OUT  
V
OUT  
+
C1  
100µF  
10V  
12V  
50mA  
124Ω  
+
C1  
100µF  
10V  
3.3V  
180mA  
120Ω  
1
2
1
2
I
LIM  
V
IN  
I
LIM  
V
IN  
3
8
SW1  
3
8
SW1  
ADP3000-12V  
ADP3000-3.3V  
SENSE  
SENSE  
+
SW2  
4
C2  
GND  
5
+
SW2  
4
C2  
100µF  
10V  
GND  
5
100µF  
16V  
L1 = SUMIDA CD54-150  
L1 = SUMIDA CD43-6R8  
C1, C2 = AVX TPS D107 M010R100  
TYPICAL EFFICIENCY = 75%  
C1 = AVX TPS D107 M010R0100  
C2 = AVX TPS E107 M016R0100  
TYPICAL EFFICIENCY = 75%  
Figure 23. 4.5 V to 12 V/ 50 mA Step-Up Converter  
Figure 20. 2 V to 3.3 V/180 mA Step-Up Converter  
V
IN  
L1  
6.8µH 1N5817  
5V 6V  
+
V
C1  
100µF  
10V  
IN  
120Ω  
V
OUT  
2V 3.2V  
+
C1  
100µF  
10V  
5V  
100mA  
120Ω  
1
2
3
I
V
SW1  
LIM  
1
IN  
2
FB  
8
4
I
LIM  
V
IN  
L1  
10µH  
3
8
SW1  
ADP3000-ADJ  
ADP3000-5V  
SW2  
GND  
V
OUT  
SENSE  
R2  
150kΩ  
3V  
100mA  
5
GND  
5
+
SW2  
4
C2  
100µF  
10V  
+
C2  
100µF  
10V  
L1 = SUMIDA CD43-100  
D1  
IN5817  
R1  
110kΩ  
C1, C2 = AVX TPS D107 M010R100  
TYPICAL EFFICIENCY = 75%  
L1 = SUMIDA CD43-6R8  
C1, C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 80%  
Figure 24. 5 V to 3 V/100 mA Step-Down Converter  
Figure 21. 2 V to 5 V/100 mA Step-Up Converter  
V
L1  
IN  
6.8µH 1N5817  
10V 13V  
V
+
IN  
C1  
33µF  
20V  
250Ω  
V
OUT  
2.7V 4.5V  
+
C1  
100µF  
10V  
5V  
150mA  
120Ω  
1
2
3
I
V
SW1  
1
2
LIM  
IN  
SENSE  
I
8
4
LIM  
V
IN  
L1  
10µH  
3
8
SW1  
ADP3000-5V  
ADP3000-5V  
SW2  
V
GND  
5
SENSE  
OUT  
5V  
+
GND  
5
SW2  
4
C2  
100µF  
10V  
250mA  
C2  
+
L1 = SUMIDA CD43-100  
D1  
100µF  
10V  
C1 = AVX TPS D336 M020R0200  
C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 77%  
IN5817  
L1 = SUMIDA CD43-6R8  
C1, C2 = AVX TPS D107 M010R100  
TYPICAL EFFICIENCY = 80%  
Figure 25. 10 V to 5 V/250 mA Step-Down Converter  
Figure 22. 2.7 V to 5 V/150 mA Step-Up Converter  
REV. 0  
–9–  
ADP3000  
V
IN  
5V  
+
C1  
47µF  
16V  
240Ω  
1
2
3
I
V
SW1  
LIM  
IN  
SENSE  
8
4
L1  
15µH  
ADP3000-5V  
SW2  
GND  
+
C2  
5
D1  
IN5817  
100µF  
10V  
V
OUT  
L1 = SUMIDA CD53-150  
–5V  
100mA  
C1 = AVX TPS D476 M016R0150  
C2 = AVX TPS D107 M010R0100  
TYPICAL EFFICIENCY = 60%  
Figure 26. 5 V to –5 V/100 mA Inverter  
(SUMIDA – CDRH62)  
2.5V 4.2V  
330kΩ  
100kΩ  
120Ω  
6.8µH  
2N2907  
IN5817  
+
100µF  
10V  
I
V
LIM  
IN  
V
IN1  
IN2  
O1  
3V  
100mA  
AVX-TPS  
100kΩ  
10kΩ  
1µF  
6V  
(MLC)  
SET  
SW1  
100µF  
10V  
AVX-TPS  
+
33nF  
348kΩ  
1%  
1MΩ  
ADP3302AR1  
90kΩ  
ADP3000  
1µF  
6V  
(MLC)  
90kΩ  
FB  
A
O
SD  
200kΩ  
1%  
V
3V  
100mA  
O2  
GND SW2  
GND  
Figure 27. 1 Cell LI-ION to 3 V/200 mA Converter with Shutdown at VIN 2.5 V  
AT V 2.5V  
IN  
80  
SHDN IQ = 500µA  
I
= 50mA + 50mA  
O
75  
70  
65  
I
= 100mA + 100mA  
O
V
IN  
(V)  
2.6  
3.0  
3.4  
3.8  
4.2  
Figure 28. Typical Efficiency of the Circuit of Figure 27  
REV. 0  
–10–  
ADP3000  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.430 (10.92)  
0.348 (8.84)  
8
5
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
0.280 (7.11)  
0.240 (6.10)  
4
1
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
x 45°  
0.195 (4.95)  
0.115 (2.93)  
0.0098 (0.25)  
0.0040 (0.10)  
0.210 (5.33)  
MAX  
0.0099 (0.25)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
8°  
0°  
0.015 (0.381)  
0.008 (0.204)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
REV. 0  
–11–  
–12–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY