ADP3333ARM-3.15 [ADI]

IC VREG 3.15 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MINI, MSOP-8, Fixed Positive Single Output LDO Regulator;
ADP3333ARM-3.15
型号: ADP3333ARM-3.15
厂家: ADI    ADI
描述:

IC VREG 3.15 V FIXED POSITIVE LDO REGULATOR, 0.23 V DROPOUT, PDSO8, ULTRA SMALL, MINI, MSOP-8, Fixed Positive Single Output LDO Regulator

光电二极管 输出元件 调节器
文件: 总12页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Accuracy Ultralow IQ, 300 mA,  
anyCAP Low Dropout Regulator  
ADP3333  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High accuracy over line and load: 0.8% @ 25°C,  
1.8% over temperature  
Q1  
IN  
OUT  
THERMAL  
PROTECTION  
ADP3333  
Ultralow dropout voltage: 230 mV (maximum) @ 300 mA  
Requires only COUT = 1.0 µF for stability  
anyCAP is stable with any type of capacitor (including MLCC)  
Current and thermal limiting  
Low noise  
Low shutdown current: < 1 µA  
R1  
CC  
g
DRIVER  
m
R2  
SD  
BAND GAP  
REF  
2.6 V to 12 V supply range  
−40°C to +85°C ambient temperature range  
Ultrasmall 8-lead MSOP package  
GND  
Figure 1.  
APPLICATIONS  
Cellular phones  
PCMCIA cards  
Personal digital assistants (PDAs)  
DSP/ASIC supplies  
GENERAL DESCRIPTION  
The ADP3333 is a member of the ADP333x family of precision  
low dropout (LDO) anyCAP® voltage regulators. Pin compatible  
with the MAX8860, the ADP3333 operates with a wider input  
voltage range of 2.6 V to 12 V and delivers a load current up to  
300 mA. ADP3333 stands out from other conventional LDOs  
with a novel architecture and an enhanced process that enables  
it to offer performance advantages over its competition. Its  
patented design requires only a 1.0 μF output capacitor for  
stability. This device is insensitive to output capacitor equivalent  
series resistance (ESR) and is stable with any good quality  
capacitor, including ceramic (MLCC) types for space-restricted  
applications. The ADP3333 achieves exceptional accuracy of  
0.8% at room temperature and 1.8% over temperature, line,  
and load variations. The dropout voltage of the ADP3333 is  
only 140 mV (typical) at 300 mA. This device also includes a  
safety current limit, thermal overload protection, and a shutdown  
feature. In shutdown mode, the ground current is reduced to  
less than 1 μA. The ADP3333 has ultralow quiescent current,  
70 μA (typical) in light load situations.  
ADP3333  
4
1
NC  
V
2
IN  
IN  
V
OUT  
OUT  
+
C
IN  
1µF  
+
C
OUT  
1µF  
SD  
7
GND  
3
ON  
NC = NO CONNECT  
OFF  
Figure 2. Typical Application Circuit  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2001–2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP3333  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation .........................................................................9  
Applications Information .............................................................. 10  
Capacitor Selection .................................................................... 10  
Output Current Limit ................................................................ 10  
Thermal Overload Protection .................................................. 10  
Calculating Junction Temperature........................................... 10  
Shutdown Mode ......................................................................... 10  
PCB Layout Considerations...................................................... 10  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 11  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
4/09—Rev. A to Rev. B  
8/03—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Voltage Accuracy, Line Regulation, Load  
Changes to Figure 1...........................................................................1  
Updated Output Capacitor Section.............................................. 10  
Updated Calculating Junction Temperature Section................. 10  
Updated Outline Dimensions....................................................... 11  
Updated Ordering Guide .............................................................. 11  
Regulation, and Dropout Voltage Parameters, Table 1................ 3  
Changes to Table 2............................................................................ 4  
Added Thermal Resistance Section and Table 3; Renumbered  
Sequentially ....................................................................................... 4  
Changes to Table 4 ............................................................................ 5  
Changes to Figure 5 and Figure 7................................................... 6  
Changes to Figure 10, Figure 11, Figure 13, and Figure 15......... 7  
Changes to Figure 16 and Figure 17............................................... 8  
Changes to Output Capacitor Section and Calculating Junction  
Temperature Section ...................................................................... 10  
Updated Outline Dimensions....................................................... 11  
Changes to Ordering Guide .......................................................... 11  
Rev. B | Page 2 of 12  
 
ADP3333  
SPECIFICATIONS  
VIN = 6.0 V, CIN = COUT = 1.0 µF, TJ = −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter1  
OUTPUT  
Voltage Accuracy2  
Symbol  
Condition  
Min Typ Max Unit  
VOUT  
VIN = VOUTNOM + 0.3 V to 12 V, IL = 0.1 mA to 300 mA, TJ = 25°C −0.8  
VIN = VOUTNOM + 0.3 V to 12 V, IL = 0.1 mA to 300 mA −1.8  
+0.8  
+1.8  
%
%
Line Regulation2  
Load Regulation  
Dropout Voltage  
ΔVIN/ΔVOUT VIN = VOUTNOM + 0.3 V to 12 V, TJ = 25°C  
ΔVOUT/ΔIOUT IL = 0.1 mA to 300 mA, TJ = 25°C  
0.04  
0.04  
mV/V  
mV/mA  
VDROPOUT  
VOUT = 98% of VOUTNOM  
IL = 300 mA  
140 230  
105 185  
30  
mV  
mV  
mV  
IL = 200 mA  
IL = 0.1 mA  
Peak Load Current  
Output Noise  
ILDPK  
VNOISE  
VIN = VOUTNOM + 1 V  
f = 10 Hz to 100 kHz, CL = 10 μF, IL = 300 mA  
600  
45  
mA  
μV rms  
GROUND CURRENT  
In Regulation  
IGND  
IL = 300 mA  
2.0  
2.0  
1.5  
1.4  
5.5  
4.3  
3.3  
mA  
mA  
mA  
mA  
μA  
IL = 300 mA, TJ = 25°C  
IL = 300 mA, TJ = 85°C  
IL = 200 mA  
IL = 10 mA  
200 275  
IL = 0.1 mA  
70  
70  
70  
0.01  
100  
190  
160  
1
μA  
μA  
μA  
μA  
In Dropout  
IGND  
VIN = VOUTNOM − 100 mV, IL = 0.1 mA  
VIN = VOUTNOM − 100 mV, IL = 0.1 mA, TJ = 0°C to 125°C  
SD = 0 V, VIN = 12 V  
In Shutdown  
SHUTDOWN  
IGNDSD  
VTHSD  
ISD  
Threshold Voltage  
Regulator on  
2.0  
V
Regulator off  
0 ≤ SD ≤ 12 V  
0.4  
7
V
SD Input Current  
0.85  
0.8  
μA  
μA  
μA  
μA  
0 ≤ SD ≤ 5 V  
4.5  
1
1
Output Current in Shutdown IOSD  
TJ = 25°C, VIN = 12 V  
TJ = 125°C, VIN = 12 V  
0.01  
0.01  
1 Application stable with no load.  
2 VIN = 2.6 V for models with VOUTNOM ≤ 2.3 V.  
Rev. B | Page 3 of 12  
 
 
ADP3333  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Input Supply Voltage  
Shutdown Input Voltage  
Power Dissipation  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
−0.3 V to +16 V  
−0.3 V to +16 V  
Internally Limited  
−40°C to +85°C  
−40°C to +125°C  
JEDEC J-STD-020  
Table 3. Thermal Resistance  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
8-Lead MSOP (4-Layer)  
8-Lead MSOP (2-Layer)  
158  
220  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. B | Page 4 of 12  
 
 
 
ADP3333  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
OUT  
IN  
1
2
3
4
8
7
6
5
NC  
SD  
NC  
NC  
ADP3333  
TOP VIEW  
GND  
(Not to Scale)  
1
NC  
NC = NO CONNECT  
1
CAN BE CONNECTED  
TO ANY OTHER PIN.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
OUT  
IN  
GND  
Output of the Regulator. Bypass to ground with a 1.0 μF or larger capacitor.  
Input Pin. Bypass to ground with a 1.0 μF or larger capacitor.  
Ground Pin.  
4 to 6, 8 NC  
SD  
No Connect. Best thermal performance is achieved when the NC pins are connected to the GND plane.  
Active Low Shutdown Pin. Connect to ground to disable the regulator output. When shutdown is not used,  
connect this pin to the IN pin.  
7
Rev. B | Page 5 of 12  
 
ADP3333  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.502  
2.5  
2.0  
1.5  
1.0  
V
= 2.5V  
V
= 6V  
IN  
OUT  
0mA  
2.500  
2.498  
2.496  
2.494  
2.492  
100mA  
200mA  
300mA  
0.5  
0
2.490  
2.488  
3
4
5
6
7
8
9
10  
11  
12  
0
50  
100  
150  
200  
250  
300  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Figure 4. Line Regulation Output Voltage vs. Input Voltage  
Figure 7. Ground Current vs. Output Current  
2.502  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 6V  
= 2.5V  
IN  
OUT  
0mA  
2.500  
2.498  
2.496  
2.494  
2.492  
200mA  
300mA  
–0.1  
–0.2  
–0.3  
–0.4  
2.490  
2.488  
0mA  
–25  
0
50  
100  
150  
200  
250  
300  
–50  
0
25  
50  
75  
100  
125  
OUTPUT CURRENT (mA)  
JUNCTION TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Output Current  
Figure 8. Output Voltage Variation % vs. Junction Temperature  
140  
120  
100  
80  
3.5  
V
= 2.5V  
OUT  
V
= 6V  
I
= 100µA  
IN  
L
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 300mA  
L
I
= 200mA  
L
I
= 100mA  
L
I
L
= 0µA  
60  
40  
20  
I
= 0mA  
L
0
0
2
4
6
8
10  
12  
–50  
–25  
0
25  
50  
75  
100  
125  
INPUT VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
Figure 6. Ground Current vs. Input Voltage  
Figure 9. Ground Current vs. Junction Temperature  
Rev. B | Page 6 of 12  
 
ADP3333  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
R
C
= 2.5V  
= 8.3  
= 1µF  
OUT  
L
L
2.52  
2.51  
2.50  
2.49  
3.50  
3.00  
0
50  
100  
150  
200  
250  
300  
40  
80  
140  
TIME (µs)  
180  
OUTPUT CURRENT (mA)  
Figure 10. Dropout Voltage vs. Output Current  
Figure 13. Line Transient Response, CL = 1 µF  
V
= 2.5V  
V
= 2.5V  
OUT  
OUT  
R
C
= 8.3Ω  
= 10µF  
L
L
SD = V  
IN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.52  
2.51  
2.50  
2.49  
R
= 8.3  
L
V
IN  
V
OUT  
3.50  
3.00  
1
2
3
4
40  
80  
140  
TIME (µs)  
180  
TIME (Seconds)  
Figure 11. VOUT During Power-Up/Power-Down  
Figure 14. Line Transient Response, CL = 10 µF  
V
V
C
= 4V  
IN  
C
= 1µF  
OUT  
= 2.5V  
OUT  
= 1µF  
3
2
1
0
4
2
0
2.7  
2.6  
2.5  
2.4  
L
C
= 10µF  
OUT  
300  
10  
V
= 2.5V  
OUT  
SD = V  
R
IN  
= 8.3Ω  
L
200  
400  
600  
800  
200  
400  
600  
800  
TIME (µs)  
TIME (µs)  
Figure 12. Power-Up Response  
Figure 15. Load Transient Response, CL = 1 µF  
Rev. B | Page 7 of 12  
ADP3333  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 2.2V  
OUT  
V
V
C
= 4V  
= 2.5V  
IN  
OUT  
= 10µF  
C
= 10µF  
= 500mA  
L
I
L
2.7  
2.6  
2.5  
2.4  
L
C
= 1µF  
= 500mA  
L
I
L
C
= 1µF  
L
I
= 50µA  
L
300  
10  
C
= 10µF  
L
I
= 50µA  
L
10  
100  
1k  
10k  
100k  
1M  
10M  
200  
400  
600  
800  
FREQUENCY (Hz)  
TIME (µs)  
Figure 19. Power Supply Ripple Rejection  
Figure 16. Load Transient Response, CL = 10 µF  
120  
100  
2.5  
0
80  
60  
40  
3
300mA  
V
= 6V  
2
IN  
0mA  
1
20  
0
0
V
= 3.6V  
400  
IN  
0
10  
20  
30  
40  
50  
200  
600  
800  
C
(µF)  
L
TIME (µs)  
Figure 20. RMS Noise vs. CL (10 Hz to 100 kHz)  
Figure 17. Short-Circuit Current  
100  
10  
V
= 2.5V  
OUT  
= 1mA  
I
L
1µF  
3
2
1
0
10µF  
C
= 10µF  
L
C
= 1µF  
L
1
10µF  
0.1  
0.01  
1µF  
V
V
R
= 6V  
= 2.5V  
IN  
OUT  
= 8.3Ω  
L
2
0
0.001  
10  
100  
1k  
10k  
100k  
1M  
200  
400  
600  
800  
FREQUENCY (Hz)  
TIME (µs)  
Figure 21. Output Noise Density  
Figure 18. Turn-On/Turn-Off Response  
Rev. B | Page 8 of 12  
 
ADP3333  
THEORY OF OPERATION  
The ADP3333 anyCAP LDO uses a single control loop for  
regulation and reference functions (see Figure 22). The output  
voltage is sensed by a resistive voltage divider consisting of R1  
and R2 that is varied to provide the available output voltage  
option. Feedback is taken from this network by way of a series  
diode (D1) and a second resistor divider (R3 and R4) to the  
input of an amplifier.  
temperature stable output. This unique arrangement specifically  
corrects for the loading of the divider so that the error resulting  
from base current loading in conventional circuits is avoided.  
The patented amplifier controls a new and unique noninverting  
driver that drives the pass transistor, Q1. The use of this special  
noninverting driver enables the frequency compensation to  
include the load capacitor in a pole splitting arrangement to  
achieve reduced sensitivity to the value, type, and ESR of the  
load capacitance.  
INPUT  
OUTPUT  
ATTENUATION  
BAND GAP OUT  
Q1  
(V /V  
)
R1  
(a)  
COMPENSATION  
CAPACITOR  
Most LDOs place very strict requirements on the range of ESR  
values for the output capacitor because they are difficult to  
stabilize due to the uncertainty of load capacitance and resistance.  
Moreover, the ESR value required to keep conventional LDOs  
stable changes depending on load and temperature. These ESR  
limitations make designing with LDOs more difficult because  
of their unclear specifications and extreme variations over  
temperature.  
C
L
D1  
R3  
PTAT  
OS  
NONINVERTING  
WIDEBAND  
DRIVER  
FB  
V
g
m
PTAT  
CURRENT  
R
L
R4  
R2  
ADP3333  
GND  
Figure 22. Functional Block Diagram  
A very high gain error amplifier is used to control this loop.  
The amplifier is constructed in such a way that at equilibrium it  
produces a large, temperature-proportional input offset voltage  
that is repeatable and very well controlled. The temperature  
proportional offset voltage is combined with the complementary  
diode voltage to form a virtual band gap voltage, implicit in the  
network, although it never appears explicitly in the circuit.  
Ultimately, this patented design makes it possible to control the  
loop with only one amplifier. This technique also improves the  
noise characteristics of the amplifier by providing more flexibility  
on the trade-off of noise sources and leads to a low noise design.  
With the ADP3333 anyCAP LDO, this is no longer true. This  
device can be used with virtually any good quality capacitor,  
with no constraint on the minimum ESR. Its innovative design  
allows the circuit to be stable with just a small 1.0 μF capacitor  
on the output. Additional advantages of the pole splitting  
scheme include superior line noise rejection and very high  
regulator gain, which leads to excellent line and load regulation.  
An impressive 1.8% accuracy is guaranteed over line, load, and  
temperature.  
Additional features of the circuit include current limit and  
thermal shutdown.  
The R1, R2 divider is chosen in the same ratio as the band gap  
voltage to the output voltage. Although the R1/R2 resistor  
divider is loaded by the diode, D1, and a second divider  
consisting of R3 and R4, the values can be chosen to produce a  
Rev. B | Page 9 of 12  
 
 
ADP3333  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
CALCULATING JUNCTION TEMPERATURE  
Device power dissipation is calculated as follows:  
PD = (VIN VOUT) IL + (VIN) IGND  
The stability and transient response of the LDO is a function of  
the output capacitor. The ADP3333 is stable with a wide range  
of capacitor values, types, and ESR (anyCAP). A capacitor as  
low as 1.0 μF is all that is needed for stability. Larger capacitors  
can be used if high current surges on the output are anticipated.  
The ADP3333 is stable with extremely low ESR capacitors (ESR  
≈ 0), such as multilayer ceramic capacitors (MLCC) or OSCON.  
Note that the effective capacitance of some capacitor types falls  
below the minimum rated value over temperature or with dc  
voltage. Ensure that the capacitor provides at least 1.0 μF of  
capacitance over temperature and dc bias.  
where IL and IGND are the load current and ground current, and  
VIN and VOUT are the input and output voltages, respectively.  
Assuming the worst-case operating conditions are IL = 300 mA,  
IGND = 2.0 mA, VIN = 4.0 V, and VOUT = 3.0 V, the device power  
dissipation is  
PD = (4.0 V − 3.0 V) 300 mA + (4.0 V) 2.0 mA = 308 mW  
The package used on the ADP3333 has a thermal resistance of  
158°C/W for 4-layer boards. The junction temperature rise  
above ambient is approximately equal to  
Input Bypass Capacitor  
TJA = 0.308 W × 158°C/W = 48.7°C  
An input bypass capacitor is not strictly required but is recom-  
mended in any application involving long input wires or high  
source impedance. Connecting a 1.0 μF capacitor from the input to  
ground reduces the circuit’s sensitivity to printed circuit board  
(PCB) layout and input transients. If a larger output capacitor is  
necessary, then a larger value input capacitor is also recommended.  
Therefore, to limit the junction temperature to 125°C, the  
maximum allowable ambient temperature is  
TA(MAX) = 125°C − 48.7°C = 76.3°C  
SHUTDOWN MODE  
SD  
Applying a high signal to the shutdown pin, , or connecting  
OUTPUT CURRENT LIMIT  
IN  
it to the input pin, , turns the output on. Pulling the shutdown  
The ADP3333 is short-circuit protected by limiting the pass  
transistors base drive current. The maximum output current is  
limited to about 1 A (see Figure 17).  
pin to 0.3 V or below, or connecting it to ground, turns the  
output off. In shutdown mode, the quiescent current is reduced  
to less than 1 μA.  
THERMAL OVERLOAD PROTECTION  
PCB LAYOUT CONSIDERATIONS  
The ADP3333 is protected against damage due to excessive power  
dissipation by its thermal overload protection circuit. Thermal  
protection limits the die temperature to a maximum of 165°C.  
Under extreme conditions (that is, high ambient temperature and  
power dissipation) where the die temperature starts to rise above  
165°C, the output current is reduced until the die temperature  
drops to a safe level.  
Use the following general guidelines when designing printed  
circuit boards:  
Keep the output capacitor as close as possible to the output  
and ground pins.  
Keep the input capacitor as close as possible to the input  
and ground pins.  
PCB traces with larger cross sectional areas remove more  
heat from the ADP3333. For optimum heat transfer, use  
thick copper with wide traces.  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For normal  
operation, the devices power dissipation should be externally  
limited so that the junction temperature does not exceed 125°C.  
Connect the NC pins (Pin 4, Pin 5, Pin 6, and Pin 8) to  
ground for better thermal performance.  
The thermal resistance can be decreased by approximately  
10% by adding a few square centimeters of copper area to  
the lands connected to the pins of the LDO.  
Use additional copper layers or planes to reduce the  
thermal resistance. Again, connecting the other layers to  
the GND and NC pins of the ADP3333 is best, but not  
necessary. When connecting the ground pad to other  
layers, use multiple vias.  
Rev. B | Page 10 of 12  
 
 
 
 
 
 
 
ADP3333  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 23. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Output Voltage (V)  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
Branding  
LKA  
LKA  
LKB  
LKB  
LKC  
LKC  
LKD  
LKD  
LKE  
ADP3333ARM-1.5-RL  
ADP3333ARM-1.5-RL7  
ADP3333ARM-1.8-RL  
ADP3333ARM-1.8-RL7  
ADP3333ARM-2.5-RL  
ADP3333ARM-2.5-RL7  
ADP3333ARM-2.77-RL  
ADP3333ARM-2.77-R7  
ADP3333ARM-3-REEL  
ADP3333ARM-3-REEL7  
ADP3333ARM-3.15-RL  
ADP3333ARM-3.15-R7  
ADP3333ARM-3.3-RL  
ADP3333ARM-3.3-RL7  
ADP3333ARM-5-REEL  
ADP3333ARM-5-REEL7  
ADP3333ARMZ-1.5-R71  
ADP3333ARMZ-1.5-RL1  
ADP3333ARMZ-1.8-RL1  
ADP3333ARMZ-1.8RL71  
ADP3333ARMZ-2.5-RL1  
ADP3333ARMZ-2.5-R71  
ADP3333ARMZ-2.77R71  
ADP3333ARMZ-3-R71  
ADP3333ARMZ-3.15R71  
ADP3333ARMZ-3.3-R71  
ADP3333ARMZ-3.3-RL1  
ADP3333ARMZ-5-R71  
ADP3333ARMZ-5-RL1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
2.77  
2.77  
3
3
LKE  
LKF  
LKF  
3.15  
3.15  
3.3  
3.3  
5
LKG  
LKG  
LKH  
LKH  
L1X  
L1X  
L1U  
L1U  
L1V  
L1V  
L1Y  
L1W  
L1Z  
L20  
5
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
2.77  
3.0  
3.15  
3.3  
3.3  
5.0  
5.0  
L20  
L21  
L21  
1 Z = RoHS Compliant Part.  
Rev. B | Page 11 of 12  
 
 
 
ADP3333  
NOTES  
©2001–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02615-0-4/09(B)  
Rev. B | Page 12 of 12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY