ADP3404ARUZ-REEL7 [ADI]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, ROHS COMPLIANT, TSSOP-28, Power Management Circuit;
ADP3404ARUZ-REEL7
型号: ADP3404ARUZ-REEL7
厂家: ADI    ADI
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, ROHS COMPLIANT, TSSOP-28, Power Management Circuit

光电二极管
文件: 总12页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
GSM Power Management System  
ADP3404  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Handles all GSM Baseband Power Management  
Functions  
VBAT  
Four LDOs Optimized for Specific GSM Subsystems  
Charges Back-Up Capacitor for Real-Time Clock  
Charge Pump and Logic Level Translators for 3 V and 5 V  
GSM SIM Modules  
ADP3404  
DIGITAL  
VCC  
LDO  
Narrow Body 4.4 mm 28-Lead TSSOP Package  
RESET  
APPLICATIONS  
PWRONKEY  
GSM/DCS/PCS Handsets  
TeleMatic Systems  
ICO/Iridium Terminals  
RTC LDO  
VRTC  
ROWX  
POWER-UP  
SEQUENCING  
AND  
PROTECTION  
LOGIC  
XTAL OSC  
LDO  
PWRONIN  
ANALOGON  
RESCAP  
VTCXO  
VCCA  
GENERAL DESCRIPTION  
ANALOG  
LDO  
CHRON  
The ADP3404 is a multifunction power management system IC  
optimized for GSM cell phones. The wide input voltage range of  
3.0 V to 7.0 V makes the ADP3404 ideal for both single cell  
Li-Ion and three cell NiMH designs. The current consumption  
of the ADP3404 has been optimized for maximum battery life,  
featuring a ground current of only 230 µA when the phone is in  
standby (digital LDO, analog LDO, and SIM card supply active).  
An undervoltage lockout (UVLO) prevents the startup when  
there is not enough energy in the battery. All four integrated  
LDOs are optimized to power one of the critical sub-blocks of the  
phone. Their novel anyCAP® architecture requires only very  
small output capacitors for stability, and the LDOs are insensitive  
to the capacitors’ equivalent series resistance (ESR). This makes  
them stable with any capacitor, including ceramic (MLCC) types  
for space-restricted applications.  
SIMBAT  
CAP+  
CAP؊  
CHARGE  
VSIM  
PUMP  
SIMPROG  
SIMON  
BUFFER  
REFOUT  
DGND  
REF  
SIMGND  
+
RESETIN  
CLKIN  
LOGIC LEVEL  
TRANSLATION  
AGND  
DATAIO  
CLK RST  
I/O  
A step-up converter is implemented to supply both the SIM  
module and the level translation circuitry to adapt logic signals  
for 3 V and 5 V SIM modules. Sophisticated controls are avail-  
able for power-up during battery charging, keypad interface and  
charging of an auxiliary back-up capacitor for the real-time clock.  
These allow an easy interface between ADP3404, GSM proces-  
sor, charger, and keypad. Furthermore, a reset circuit and a  
thermal shutdown function have been implemented to support  
reliable system design.  
anyCAP is a registered trademark of Analog Devices, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: www.analog.com  
© Analog Devices, Inc., 2001  
(–20؇C TA +85؇C, VBAT = 3 V to 7 V, CVBAT = CSIMBAT = CVSIM = 10 F, CVCC = CVCCA = 2.2 F,  
VRTC = 0.1 F, CVTCXO = 0.22 F, CVCAP = 0.1 F, minimum loads applied on all outputs,  
unless otherwise noted.)  
C
ADP3404–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS1  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
SHUTDOWN SUPPLY CURRENT  
VBAT = Low (UVLO Low)  
VBAT = High (UVLO High)  
IBAT  
VBAT = 2.7 V  
VBAT = 3.6 V, VRTC On  
3
12  
20  
30  
µA  
µA  
OPERATING GROUND CURRENT  
VCC, VRTC, VCCA, REFOUT On  
VCC, VRTC, VCCA, REFOUT  
and VSIM On  
IGND  
Minimum Loads, VBAT = 3.6 V  
175 240  
µA  
Minimum Loads, VBAT = 3.6 V  
Minimum Loads, VBAT = 3.6 V  
Maximum Loads, VBAT = 3.6 V  
230 340  
260 400  
15  
µA  
µA  
mA  
All LDOs and VSIM On  
All LDOs and VSIM On  
UVLO CHARACTERISTICS  
UVLO On Threshold  
UVLO Hysteresis  
VBATUVLO  
3.2  
200  
3.3  
V
mV  
INPUT CHARACTERISTICS  
Input High Voltage  
PWRONIN and ANALOGON  
PWRONKEY  
Input Low Voltage  
VIH  
VIL  
2
V
V
0.7 VBAT  
PWRONIN and ANALOGON  
PWRONKEY  
0.4  
V
V
0.3 VBAT  
PWRONKEY INPUT PULLUP  
RESISTANCE TO VBAT  
15  
20  
25  
kΩ  
CHRON CHARACTERISTICS  
CHRON Threshold  
CHRON Hysteresis Resistance  
CHRON Input Bias Current  
VT  
RIN  
IB  
2.38  
108  
2.48 2.58  
125 138  
0.5  
V
2.38 < CHRON < VT  
CHRON > VT  
kΩ  
µA  
ROWX CHARACTERISTICS  
ROWX Output Low Voltage  
VOL  
IIH  
PWRONKEY = Low  
IOL = 200 µA  
PWRONKEY = High  
V(ROWX) = 5 V  
0.4  
1
V
ROWX Output High Leakage  
Current  
µA  
SHUTDOWN  
Thermal Shutdown Threshold2  
Thermal Shutdown Hysteresis  
Junction Temperature  
Junction Temperature  
160  
35  
ºC  
ºC  
DIGITAL LDO (VCC)  
Output Voltage  
VCC  
Line, Load, Temp  
2.400  
2.450 2.500  
V
mV  
mV  
Line Regulation  
VCC  
3 V < VBAT < 7 V, Min Load  
50 µA < ILOAD < 100 mA,  
VBAT = 3.6 V  
2
Load Regulation  
VCC  
15  
Output Capacitor3  
CO  
2.2  
µF  
ANALOG LDO (VCCA)  
Output Voltage  
VCCA  
Line, Load, Temp  
2.710  
2.765 2.820  
V
mV  
mV  
Line Regulation  
VCCA  
3 V < VBAT < 7 V, Min Load  
200 µA < ILOAD < 130 mA,  
VBAT = 3.6 V  
2
Load Regulation  
VCCA  
15  
Output Capacitor3  
Dropout Voltage  
CO  
VDO  
2.2  
65  
µF  
mV  
VO = VINITIAL – 100 mV  
215  
I
LOAD = 130 mA  
Ripple Rejection  
VBAT/  
VCCA  
VNOISE  
f = 217 Hz (t = 4.6 ms)  
VBAT = 3.6 V  
70  
75  
dB  
Output Noise Voltage  
f = 10 Hz to 100 kHz  
ILOAD = 130 mA, VBAT = 3.6 V  
µV rms  
–2–  
REV. 0  
ADP3404  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CRYSTAL OSCILLATOR LDO (VTCXO)  
Output Voltage  
Line Regulation  
VTCXO  
VTCXO  
VTCXO  
Line, Load, Temp  
2.710  
2.765 2.820  
2
1
V
mV  
mV  
3 V < VBAT < 7 V, Min Load  
100 µA < ILOAD < 5 mA,  
VBAT = 3.6 V  
Load Regulation  
Output Capacitor3  
Dropout Voltage  
CO  
VDO  
0.22  
65  
µF  
mV  
VO = VINITIAL – 100 mV  
150  
I
LOAD = 5 mA  
Ripple Rejection  
VBAT/  
VTCXO  
VNOISE  
f = 217 Hz (t = 4.6 ms)  
VBAT = 3.6 V  
f = 10 Hz to 100 kHz  
72  
80  
dB  
Output Noise Voltage  
µV rms  
ILOAD = 5 mA, VBAT = 3.6 V  
VOLTAGE REFERENCE (REFOUT)  
Output Voltage  
VREFOUT  
Line, Load, Temp  
1.192  
1.210 1.228  
V
Line Regulation  
Load Regulation  
VREFOUT  
VREFOUT  
3 V < VBAT < 7 V, Min Load  
0 µA < ILOAD < 50 µA,  
VBAT = 3.6 V  
2
0.5  
mV  
mV  
Ripple Rejection  
VBAT/  
VREFOUT  
CO  
f = 217 Hz (t = 4.6 ms),  
VBAT = 3.6 V  
65  
75  
dB  
Maximum Capacitive Load  
Output Noise Voltage  
100  
pF  
µV rms  
VNOISE  
f = 10 Hz to 100 kHz  
VBAT = 3.6 V  
40  
REAL-TIME CLOCK LDO/BATTERY  
CHARGER (VRTC)  
Maximum Output Voltage  
Current Limit  
Off Reverse Leakage Current  
VRTC  
IMAX  
IL  
ILOAD 10 µA  
2.400  
2.450 2.500  
V
µA  
µA  
175  
2.0 V < VBAT < UVLO  
1
SIM CHARGE PUMP (VSIM)  
Output Voltage for 5 V SIM Modules  
VSIM  
VSIM  
0 mA ILOAD 10 mA  
SIMPROG = High  
0 mA ILOAD 6 mA  
SIMPROG = Low  
4.70  
2.82  
5.00  
3.00  
5.30  
3.18  
V
V
Output Voltage for 3 V SIM Modules  
GSM/SIM LOGIC TRANSLATION  
(GSM INTERFACE)  
Input High Voltage (SIMPROG, SIMON, VIH  
RESETIN, CLKIN)  
VCC – 0.6  
V
V
V
V
Input Low Voltage (SIMPROG, SIMON,  
RESETIN, CLKIN)  
VIL  
0.6  
DATAIO  
VIL  
VOL (I/O) = 0.4 V,  
IOL (I/O) = 1 mA  
0.230  
0.335  
V
OL (I/O) = 0.4 V,  
OL (I/O ) = 0 mA  
IIH, IOH 10 µA  
VIL = 0 V  
I
VIH, VOH  
IIL  
=
VCC – 0.4  
16  
V
mA  
V
–0.9  
0.420  
24  
VOL  
RIN  
VIL (I/O) = 0.4 V  
DATAIO Pull-Up Resistance to VCC  
20  
kΩ  
REV. 0  
–3–  
ADP3404–SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
SIM INTERFACE  
VSIM = 5 V  
RST  
RST  
CLK  
CLK  
I/O  
I/O  
I/O  
I/O  
VOL  
VOH  
VOL  
VOH  
VIL  
VIH, VOH  
IIL  
VOL  
I = +200 µA  
I = –20 µA  
I = +200 µA  
I = –20 µA  
0.6  
0.5  
0.4  
V
V
V
V
V
V
mA  
V
VSIM – 0.7  
0.7 VSIM  
VSIM – 0.4  
IIH, IOH  
VIL = 0 V  
=
20 µA  
–0.9  
0.4  
IOL = 1 mA  
DATAIO 0.23 V  
VSIM = 3 V  
RST  
RST  
CLK  
CLK  
I/O  
VOL  
VOH  
VOL  
VOH  
VIL  
I = +200 µA  
I = –20 µA  
I = +20 µA  
I = –20 µA  
0.2 VSIM  
0.2 VSIM  
0.4  
V
V
V
V
V
V
0.8 VSIM  
0.7 VSIM  
VSIM – 0.4  
I/O  
I/O  
VIH, VOH  
IIL  
IIH, IOH  
VIL= 0 V  
=
20 µA  
–0.9  
0.4  
mA  
V
I/O  
VOL  
IOL = 1 mA  
DATAIO 0.23 V  
I/O Pull-Up Resistance to VSIM  
Max Frequency (CLK)  
Prop Delay (CLK)  
Output Rise/Fall Times (CLK)  
Output Rise/Fall Times (I/O, RST)  
Duty Cycle (CLK)  
RIN  
fMAX  
tD  
tR, tF  
tR, tF  
D
8
5
10  
12  
kΩ  
MHz  
ns  
ns  
µs  
%
CL = 30 pF  
30  
9
50  
18  
1
CL = 30 pF  
CL = 30 pF  
D CLKIN = 50%  
f = 5 MHz  
47  
53  
RESET GENERATOR (RESET)  
Output High Voltage  
Output Low Voltage  
Delay Time per Unit Capacitance  
Applied to RESCAP Pin  
VOH  
VOL  
tD  
IOH = –15 µA  
IOL = –15 µA  
VCC – 0.3  
1.0  
V
V
ms/nF  
0.3  
NOTES  
1All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods .  
2This feature is intended to protect against catastrophic failure of the device. Maximum allowed operating junction temperature is 125 °C. Operation beyond 125°C  
could cause permanent damage to the device.  
3Required for stability.  
Specifications subject to change without notice.  
–4–  
REV. 0  
ADP3404  
ABSOLUTE MAXIMUM RATINGS*  
PIN FUNCTION DESCRIPTIONS  
Voltage on Any Pin with Respect to Any  
Pin  
Mnemonic  
Function  
GND Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +10 V  
Voltage on Any Pin May Not Exceed VBAT, with the  
Following Exceptions: VRTC,  
1
2
3
RESCAP  
DGND  
VTCXO  
Reset Delay Timing Cap  
Digital Ground  
Crystal Oscillator Low Dropout  
Regulator  
VSIM, CAP+, PWRONIN, I/O, CLK, RST  
Storage Temperature Range . . . . . . . . . . . . –65  
Operating Temperature Range . . . . . . . . . . . –20  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 125  
°
C to +150  
°C  
°C to +85°C  
4
5
6
7
8
9
RESET  
REFOUT  
VCCA  
AGND  
VBAT  
VCC  
Main Reset  
°C  
Reference Output  
Analog Low Dropout Regulator  
Analog Ground  
Battery Input Voltage  
Digital Low Dropout Regulator  
θJA, Thermal Impedance (TSSOP-28) . . 4-Layer Board 68  
°
C/W  
θJA, Thermal Impedance (TSSOP-28) . . 6-Layer Board 62  
°C/W  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
*This is a stress rating only, operation beyond these limits can cause the device to  
be permanently damaged.  
10  
11  
12  
PWRONKEY  
ANALOGON  
PWRONIN  
Power-On/-Off Key  
VTCXO Enable  
Power On/Off Signal from  
Microprocessor  
Microprocessor Keyboard Output  
Charger On/Off Input  
Real-Time Clock Supply/Coin  
Cell Battery Charger  
Negative Side of Boost Capacitor  
Battery Input for the SIM  
Charge Pump  
Non-Level-Shifted Bidirectional  
Data I/O  
Non-Level-Shifted SIM Reset  
Non-Level-Shifted Clock  
Charge Pump Ground  
PIN CONFIGURATION  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RESCAP  
DGND  
CAP+  
VSIM  
13  
14  
15  
ROWX  
CHRON  
VRTC  
3
VTCXO  
RESET  
CLK  
4
SIMON  
5
REFOUT  
VCCA  
SIMPROG  
RST  
6
16  
17  
CAP–  
SIMBAT  
7
AGND  
I/O  
ADP3404  
(Not To Scale)  
8
VBAT  
VCC  
SIMGND  
CLKIN  
RESETIN  
DATAIO  
SIMBAT  
CAP–  
9
18  
DATAIO  
PWRONKEY  
10  
11  
12  
13  
14  
ANALOGON  
PWRONIN  
ROWX  
19  
20  
21  
22  
RESETIN  
CLKIN  
SIMGND  
I/O  
CHRON  
VRTC  
NARROW BODY  
TSSOP-28  
Level-Shifted Bidirectional SIM  
Data Input/Output  
23  
24  
RST  
SIMPROG  
Level-Shifted SIM Reset  
VSIM Programming:  
ORDERING GUIDE  
Low = 3 V, High = 5 V  
VSIM Enable  
Level-Shifted SIM Clock  
SIM Supply  
Positive Side of Boost Capacitor  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
25  
26  
27  
28  
SIMON  
CLK  
VSIM  
CAP+  
ADP3404ARU –20°C to +85°C 28-Lead TSSOP RU-28  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADP3404 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
ADP3404  
Table I. LDO Control Logic  
Inputs  
Outputs  
UVLO  
CHRON  
PWRONKEY  
PWRONIN  
ANALOGON  
VRTC  
VCC VCCA REFOUT VTCXO  
L
X
H
X
L
X
X
L
X
X
X
L
X
X
X
X
L
Off  
On  
On  
On  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
On  
On  
Off  
Off  
On  
H
H
H
H
H
H
H
H
L
H
H
L
H
X = Don’t care  
Bold denotes the active control signal.  
Table II. VSIM Control Logic  
Inputs  
Outputs  
VSIM  
VCC  
RESET  
SIMON  
SIMPROG  
Off  
On  
On  
On  
On  
L
L
H
H
H
X
X
L
H
H
X
X
X
L
Off  
Off  
Off  
3 V  
5 V  
H
X = Don’t care  
VBAT  
DIGITAL LDO  
ADP3404  
VBAT  
VCC  
2.45V  
OUT  
PG  
VREF  
EN  
20k  
ADJ  
UVLO  
GND  
UVLO  
DGND  
POWER GOOD  
PWRONKEY  
ROWX  
OVER  
TEMP  
RTC LDO  
VRTC  
2.45V  
OUT  
VBAT  
EN  
GND  
PWRONIN  
RESCAP  
RESET  
RESET  
GENERATOR  
XTAL OSC LDO  
VBAT  
VTCXO  
2.765V  
CHARGER  
VREF  
EN  
OUT  
CHRON  
ON  
THRESHOLD  
GND  
ANALOGON  
SIMBAT  
CAP+  
ANALOG LDO  
VBAT  
EN  
CHARGE  
PUMP  
3V/5V  
EN GND  
CAP–  
VCCA  
2.765V  
VREF  
EN  
OUT  
SIMPROG  
SIMON  
GND  
SIMGND  
RESETIN  
EN  
LOGIC  
LEVEL  
REF  
CLKIN  
REFOUT  
AGND  
BUFFER  
TRANSLATION  
DATAIO  
+
1.210V  
I/O CLK RST  
VSIM  
Figure 1. Functional Block Diagram  
–6–  
REV. 0  
Typical Performance CharacteristicsADP3404  
200  
350  
300  
250  
200  
150  
100  
180  
160  
+85؇C  
PWRONIN, SIMON, AND ANALOGON  
PWRONIN AND SIMON  
140  
120  
100  
80  
60  
40  
20  
0
+25؇C  
؊20؇C  
PWRONIN  
0
3
4
5
6
7
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
VRTC V  
VBAT V  
TPC 1. Ground Current vs. Battery Voltage  
TPC 4. RTC I/V Characteristic  
160  
MLCC CAPS  
VBAT 100mV/DIV  
140  
120  
100  
80  
3.2  
3.0  
VCC 10mV/DIV  
VCCA 10mV/DIV  
VTCXO 10mV/DIV  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
120  
140  
LOAD CURRENT mA  
TIME 100s/DIV  
TPC 2. VCCA Dropout Voltage vs. Load Current  
TPC 5. Line Transient Response, Maximum Loads  
80  
70  
60  
50  
40  
30  
20  
10  
0
MLCC CAPS  
VBAT (100mV/DIV)  
3.2  
3.0  
VCC (10mV/DIV)  
VCCA (10mV/DIV)  
VTCXO (10mV/DIV)  
0
1
2
3
4
5
TIME 100s/DIV  
LOAD CURRENT mA  
TPC 3. VTCXO Dropout Voltage vs. Load Current  
TPC 6. Line Transient Response, Minimum Loads  
REV. 0  
–7–  
ADP3404  
MLCC CAPS  
I = 100mA  
I
LOAD  
PWRONIN AND ANALOGON (2V/DIV)  
VCCA (100mV/DIV)  
I = 200A  
VCC  
REFOUT (100mV/DIV)  
VCC (100mV/DIV)  
VTCXO (100mV/DIV)  
TIME 200s/DIV  
TIME 50s/DIV  
TPC 7. VCC Load Step  
TPC 10. Turn-On Transients, Maximum Loads  
80  
70  
MLCC CAPS  
I = 130mA  
I
LOAD  
VCCA  
VTCXO  
I = 50A  
60  
50  
40  
30  
20  
10  
0
REFOUT  
MLCC OUTPUT CAPS  
VBAT = 3.2V, FULL LOADS  
VCC  
VCCA  
1
10  
100  
1k  
10k  
100k  
TIME 100s/DIV  
FREQUENCY Hz  
TPC 11. Ripple Rejection vs. Frequency  
TPC 8. VCCA Load Step  
80  
70  
60  
50  
40  
30  
20  
10  
0
REFOUT  
PWRONIN AND ANALOGON (2V/DIV)  
VCCA (100mV/DIV)  
VCC  
VTCXO (100mV/DIV)  
VCC (100mV/DIV)  
VTCXO  
VCCA  
FREQUENCY = 217Hz  
MAX LOADS  
2.5  
2.6  
2.7  
2.8  
2.9  
VBAT V  
3.0  
3.1  
3.2  
3.3  
TIME 50s/DIV  
TPC 9. Turn-On Transients, Minimum Loads  
TPC 12. Ripple Rejection vs. Battery Voltage  
–8–  
REV. 0  
ADP3404  
These functions have traditionally been done either as a discrete  
implementation or as a custom ASIC design. ADP3404 combines  
the benefits of both worlds by providing an integrated standard  
product solution where every block is optimized to operate in a  
GSM environment while maintaining a cost competitive solution.  
600  
500  
FULL LOAD  
MLCC CAPS  
VCCA  
TCXO  
400  
300  
200  
100  
0
Figure 2 shows the external circuitry associated with the ADP3404.  
Only a few support components, mainly decoupling capacitors,  
are required.  
Input Voltage  
REF  
The input voltage range for ADP3404 is 3 V to 7 V and optimized  
for a single Li-Ion cell or three NiMH/NiCd cells. The thermal  
impedance (θJA) of the ADP3404 is 62°C/W for 6-layer boards.  
The charging voltage for a high capacity NiMH cell can be as high as  
5.5 V. Power dissipation should be calculated at maximum ambient  
10  
100  
1k  
10k  
100k  
FREQUENCY Hz  
temperatures and battery voltage in order not to exceed the 125°C  
TPC 13. Output Noise Density  
THEORY OF OPERATION  
The ADP3404 is a power management chip optimized for use  
with GSM baseband chipsets in handset applications. Figure 1  
shows a block diagram of the ADP3404.  
maximum allowable junction temperature. Figure 3 shows the maxi-  
mum total LDO output current as a function of ambient temperature  
and battery voltage.  
However, high battery voltages normally occur only when the  
battery is being charged and the handset is not in conversation  
mode. In this mode there is a relatively light load on the LDOs.  
A fully charged Li-Ion battery is 4.25 V, where the LDOs deliver  
The ADP3404 contains several blocks:  
Four Low Dropout Regulators (Digital, Analog, Crystal  
Oscillator, Real-Time Clock)  
the maximum 240 mA up to the max 85°C ambient temperature.  
Reset Generator  
Buffered Precision Reference  
SIM Interface Logic Level Translation (3 V/5 V)  
SIM Voltage Supply  
Power On/Off Logic  
Undervoltage Lockout  
ANALOG GND  
1
2
28  
27  
26  
25  
RESCAP  
DGND  
CAP+  
VSIM  
100nF  
DIGITAL AND  
SIM GND  
10F  
3
VTCXO  
RESET  
REFOUT  
CLK  
CLK TO SIM CARD  
0.22F  
4
SIMON  
GSM  
PROCESSOR  
5
SIMPROG 24  
10⍀  
2.2F  
100nF  
ADP3404  
6
23  
VCCA  
RST  
RST TO SIM CARD  
I/O TO SIM CARD  
7
AGND  
I/O 22  
8
21  
20  
VBAT  
SIMGND  
CLKIN  
10F  
9
VCC  
SIM PINS  
OF  
2.2F  
1 LI-ION  
10  
11  
12  
13  
14  
RESETIN 19  
PWRONKEY  
OR  
GSM PROCESSOR  
3 NIMH  
18  
ANALOGON  
PWRONIN  
ROWX  
DATAIO  
GSM  
100nF  
17  
16  
15  
SIMBAT  
CAP–  
PROCESSOR  
CHARGER  
INPUT  
CHRON  
VRTC  
CAPACITOR-  
TYPE BACK-UP  
COIN CELL  
R1  
100nF  
R2  
TSSOP-28  
10F  
Figure 2. Typical Application Circuit  
REV. 0  
–9–  
ADP3404  
300  
The ADP3404 supplies current both for charging the coin cell and  
for the RTC module when the digital supply is off. The nominal  
charging voltage is 2.45 V, which ensures long cell life while obtain-  
ing in excess of 90% of the nominal capacity. In addition, it features  
a very low quiescent current (10 µA) since this LDO is running all  
the time, even when the handset is switched off. It also has reverse  
current protection with low leakage which is needed when the main  
battery is removed and the coin cell supplies the RTC module.  
6-LAYER BOARD  
= 62؇C/W  
VBAT = 5V  
JA  
250  
200  
150  
100  
50  
VBAT = 5.5V  
VBAT = 6V  
VBAT = 7V  
Reference Output (REFOUT)  
The reference output is a low noise, high precision reference with a  
guaranteed accuracy of 1.5% over temperature. The reference can  
be fed to the baseband converter, such as the AD6425, improving  
the absolute accuracy of the converters from 5% to 1.5%. This  
significantly reduces calibration time needed for the baseband  
converter during production.  
0
؊20  
0
20  
40  
60  
80 85  
AMBIENT TEMPERATURE ؇C  
Figure 3. Total LDO Load Current vs. Temperature and VBAT  
SIM Interface  
The SIM interface generates the needed SIM voltage—either 3 V  
or 5 V, dependent on SIM type, and also performs the needed  
logic level translation. Quiescent current is low, as the SIM card  
will be powered all the time. Note that DATAIO and I/O have  
integrated pull-up resistors as shown in Figure 5. See Table II for  
the control logic of the charge pump output, VSIM.  
Low Dropout Regulators (LDOs)  
The ADP3404 high-performance LDOs are optimized for their  
given functions by balancing quiescent current, dropout voltage,  
line/load regulation, ripple rejection, and output noise. 2.2 µF  
tantalum or MLCC ceramic capacitors are recommended for  
use with the digital and analog LDOs, and 0.22 µF for the  
TCXO LDO.  
Digital LDO (VCC)  
ADP3404  
The digital LDO (VCC) supplies all the digital circuitry in the  
handset (baseband processor, baseband converter, external  
memory, display, etc.). The LDO has been optimized for very  
low quiescent current (30 µA maximum) at light loads as this  
LDO is on at all times.  
VCC  
VSIM  
LEVEL  
SHIFT  
RESETIN  
CLKIN  
RST  
CLK  
VCC  
VCC  
VSIM  
VSIM  
LEVEL  
SHIFT  
Analog LDO (VCCA)  
This LDO has the same features as the digital LDO. It has further-  
more been optimized for good low frequency ripple rejection for use  
with analog sections in order to reject the ripple coming from the RF  
power amplifier. VCCA is rated to 130 mA load which is sufficient  
to supply the complete analog section of a baseband converter such  
as the AD6421/AD6425, including a 32 earpiece.  
DATAIO  
I/O  
Figure 5. Schematic for Level Translators  
Power-On/-Off  
ADP3404 handles all issues regarding power-on/-off of the hand-  
set. It is possible to turn on the ADP3404 in three different ways:  
TCXO LDO (VTCXO)  
The TCXO LDO is intended as a supply for temperature com-  
pensated crystal oscillator, which needs its own ultralow noise  
supply. The output current is rated to 5 mA for the TCXO LDO.  
Pulling PWRONKEY Low  
Pulling PWRONIN High  
CHRON exceeds threshold  
RTC LDO (VRTC)  
The RTC LDO charges a capacitor-type backup coin cell to run  
the real-time clock module. It has been targeted to charge elec-  
tric double layer capacitors such as the PAS621 from Kanebo.  
The PAS621 has a small physical size (6.8 mm diameter) and a  
nominal capacity of 0.3 F, giving many hours of backup time.  
Pulling PWRONKEY key low is the normal way of turning on the  
handset. This will turn on all the LDOs as long as PWRONKEY is  
held low. The microprocessor then starts and pulls PWRONIN  
high after which PWRONKEY can be released. PWRONIN going  
high will also turn on the handset. This is the case when the alarm  
in the RTC module expires.  
GSM PROCESSOR  
ADP3404  
An external charger can also turn on the phone. The turn-on  
threshold and hysteresis can be programmed via external resistors  
to allow full flexibility with any external charger and battery chem-  
istry. These resistors are referred to as R1 and R2 in Figure 2.  
VRTC  
VRTC  
COIN  
CELL  
RTC  
MODULE  
PWRONIN  
PWRON  
Figure 4. Connecting VRTC and PWRONIN to the Chipset  
–10–  
REV. 0  
ADP3404  
Undervoltage Lockout (UVLO)  
LDO Capacitor Selection  
The UVLO function in the ADP3404 prevents startup when the  
initial voltage of the main battery is below the 3.2 V threshold.  
If the battery is this low with no load, there will be little or no  
capacity left. When the battery is greater than 3.2 V, as with the  
insertion of a fresh battery, the UVLO comparator trips, the  
RTC LDO is enabled, and the threshold is reduced to 3.0 V.  
This allows the handset to start normally until the battery volt-  
age decays to 3.0 V open circuit. Once the 3.2 V threshold is  
exceeded, the RTC LDO is enabled. If, however, if the backup  
coin cell is not connected, or is damaged or discharged below  
1.5 V, the RTC LDO will not start on its own. In this situation,  
the RTC LDO will be started by enabling the VCC LDO.  
The performance of any LDO is a function of the output capaci-  
tor. The digital and analog LDOs require a 2.2 µF capacitor and  
the TCXO LDO requires a 0.22 µF capacitor. Larger values  
may be used, but the overshoot at startup will increase slightly.  
If a larger output capacitor is desired, be sure to check that the  
overshoot and settling time are acceptable for the application.  
All the LDOs are stable with a wide range of capacitor types and  
ESR due to Analog DevicesanyCAP technology. The ADP3404  
is stable with extremely low ESR capacitors (ESR ~ 0), such as  
multilayer ceramic capacitors, but care should be taken in their  
selection. Note that the capacitance of some capacitor types show  
wide variations over temperature or with dc voltage. A good quality  
dielectric, X7R or better, is recommended.  
Once the system is started, i.e., the phone is turned on and the  
VCC LDO is up and running, the UVLO function is entirely  
disabled. The ADP3404 is then allowed to run down to very low  
battery voltages, typically around 2 V. The battery voltage is  
normally monitored by the microprocessor and usually shuts the  
phone off at around 3.0 V.  
The RTC LDO has a rechargeable coin cell or an electric double-  
layer capacitor as a load, but a 0.1 µF ceramic capacitor is recom-  
mended for stability and best performance.  
Charge Pump Capacitor Selection  
For the input (SIMBAT) and output (VSIM) of the SIM charge  
pump, use 10 µF low ESR capacitors. The use of low ESR capaci-  
tors improves the noise and efciency of the SIM charge pump.  
Multilayer ceramic chip capacitors provide the best combination of  
low ESR and small size but may not be cost effective. A lower cost  
alternative may be to use a 10 µF tantalum capacitor with a small  
(1 µF to 2 µF) ceramic capacitor in parallel.  
If the phone is off, i.e., the VCC LDO is off, and the battery  
voltage drops below 3.0 V, the UVLO circuit disables startup  
and the RTC LDO. This is implemented with very low quies-  
cent current, typically 3 µA, to protect the main battery against  
any damage. NiMH batteries can reverse polarity if the 3-cell  
battery voltage drops below 3.0 V and a current of more than  
about 40 µA continues to flow. Lithium ion batteries will lose  
their capacity, although the built-in safety circuits normally  
present in these cells will most likely prevent any damage.  
For the lowest ripple and best efciency, use a 0.1 µF, ceramic  
capacitor for the charge pump ying capacitor (CAP+ and CAP).  
A good quality dielectric, such as X7R is recommended.  
RESET  
Setting the Charger Turn-On Threshold  
ADP3404 contains reset circuitry that is active both at power-up  
and at power-down. RESET is held low at power-up. An inter-  
nal power-good signal starts the reset delay. The delay is set by  
an external capacitor on RESCAP:  
The ADP3404 can be turned on when the charger input exceeds  
a programmable threshold voltage. The chargers threshold and  
hysteresis are set by selecting the values for R1 and R2 shown in  
Figure 2.  
tRESET = 1.0 ms/nF ×CRESCAP  
The turn-on threshold for the charger is calculated using:  
A 100 nF capacitor will produce a 100 ms reset time. At power-off,  
RESET will be kept low to prevent any spurious microprocessor  
starts. The current capability of RESET is low (a few hundred  
nA) when VCC is off, to minimize power consumption. There-  
fore, RESET should only be used to drive a single CMOS input.  
When VCC is on, RESET will drive about 15 µA.  
R2 + RHYS  
VCHR  
=
× R1 +1 ×V  
T
R2 × R  
HYS  
Where VT is the CHRON threshold voltage and RHYS is the  
CHRON hysteresis resistance.  
The hysteresis is determined using:  
Overtemperature Protection  
The maximum die temperature for ADP3404 is 125  
°C. If the die  
VT  
RHYS  
VHYS  
=
× R1  
temperature exceeds 160 C, the ADP3404 will disable all the LDOs  
°
except the RTC LDO, which has very limited current capabilities.  
The LDOs will not be re-enabled before the die temperature is  
Combining the above equations and solving for R1 and R2 gives  
the following formulas:  
below 125°C, regardless of the state of PWRONKEY, PWRONIN,  
and CHRON. This ensures that the handset will always power-off  
before the ADP3404 exceeds its absolute maximum thermal ratings.  
RHYS  
VT  
R1 =  
×VHYS  
APPLICATIONS INFORMATION  
Input Capacitor Selection  
R1× RHYS  
R2 =  
VCHR  
VT  
For the input voltage, VBAT, of the ADP3404, a local bypass  
capacitor is recommended. Use a 5 µF to 10 µF, low ESR capaci-  
tor. Multilayer ceramic chip capacitors provide the best combina-  
tion of low ESR and small size, but may not be cost effective. A  
lower cost alternative may be to use a 5 µF to 10 µF tantalum  
capacitor with a small (1 µF to 2 µF) ceramic in parallel.  
1 × RHYS R1  
Example: R1 = 10 kand R2 = 30.2 kgives a charger thresh-  
old (not counting the drop in the power Schottky diode) of  
3.5 V 160 mV with a 200 mV 30 mV hysteresis.  
REV. 0  
–11–  
ADP3404  
Charger Diode Selection  
Printed Circuit Board Layout Considerations  
Use the following general guidelines when designing printed  
circuit boards:  
The diode shown in Figure 2 is used to prevent the battery from  
discharging into the charger turn-on setting resistors, R1 and R2. A  
Schottky diode is recommended to minimize the voltage difference  
from the charger to the battery and the power dissipation. Choose  
a diode with a current rating high enough to handle both the battery  
charging current and the current the ADP3404 will draw if pow-  
ered up during charging. The battery charging current is dependent  
on the battery chemistry, and the charger circuit. The ADP3404  
current will be dependent on the loading.  
1. Split the battery connection to the VBAT and SIMBAT pins  
of the ADP3404. Use separate traces for each connection  
and locate the input capacitors as close to the pins as possible.  
2. SIM input and output capacitors should be returned to the  
SIMGND and kept as close as possible to the ADP3404 to  
minimize noise. Traces to the SIM charge pump capacitor  
should be kept as short as possible to minimize noise.  
3. VCCA and VTCXO capacitors should be returned to AGND.  
4. VCC and VRTC capacitors should be returned to DGND.  
5. Split the ground connections. Use separate traces or planes for  
the analog, digital, and power grounds, and tie them together  
at a single point, preferably close to the battery return.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead Thin Shrink Small Outline (TSSOP)  
(RU-28)  
0.386 (9.80)  
0.378 (9.60)  
28  
15  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
14  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
–12–  
REV. 0  

相关型号:

ADP3405

GSM Power Management System
ADI

ADP3405ARU

GSM Power Management System
ADI

ADP3405ARU-REEL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 4.40 MM, TSSOP-28, Power Management Circuit
ADI

ADP3405ARU-REEL

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 4.40 MM, TSSOP-28
ROCHESTER

ADP3405ARU-REEL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, 4.40 MM, TSSOP-28
ROCHESTER

ADP3408

GSM Power Management System
ADI

ADP3408ACP-1.8

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, EXPOSED PAD, MO-220-VHHD-2, LFCSP-32, Power Management Circuit
ADI

ADP3408ACP-1.8-RL

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, EXPOSED PAD, MO-220-VHHD-2, LFCSP-32, Power Management Circuit
ADI

ADP3408ACP-1.8-RL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, EXPOSED PAD, MO-220-VHHD-2, LFCSP-32
ROCHESTER

ADP3408ACP-2.5-RL7

1-CHANNEL POWER SUPPLY SUPPORT CKT, QCC32, 5 X 5 MM, EXPOSED PAD, MO-220-VHHD-2, LFCSP-32
ROCHESTER
ETC

ADP3408ARU-1.8-RL

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO28, MO-153AE, TSSOP-28
ROCHESTER