ADP3634ARHZ-RL [ADI]

High Speed, Dual, 4 A MOSFET Driver with Thermal Protection; 高速,双通道,4个MOSFET驱动器与过热保护
ADP3634ARHZ-RL
型号: ADP3634ARHZ-RL
厂家: ADI    ADI
描述:

High Speed, Dual, 4 A MOSFET Driver with Thermal Protection
高速,双通道,4个MOSFET驱动器与过热保护

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总16页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Dual, 4 A MOSFET Driver  
with Thermal Protection  
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
FEATURES  
GENERAL DESCRIPTION  
Industry-standard-compatible pinout  
High current drive capability  
Precise threshold shutdown comparator  
UVLO with hysteresis  
Overtemperature warning signal  
Overtemperature shutdown  
The ADP362x/ADP363x is a family of high current and dual high  
speed drivers, capable of driving two independent N-channel  
power MOSFETs. The family uses the industry-standard foot-  
print but adds high speed switching performance and improved  
system reliability.  
The family has an internal temperature sensor and provides  
two levels of overtemperature protection, an overtemperature  
warning, and an overtemperature shutdown at extreme junction  
temperatures.  
3.3 V-compatible inputs  
10 ns typical rise time and fall time @ 2.2 nF load  
Matched propagation delays between channels  
Fast propagation delay  
The SD function, generated from a precise internal comparator,  
provides fast system enable or shutdown. This feature allows  
redundant overvoltage protection, complementing the protec-  
tion inside the main controller device, or provides safe system  
shutdown in the event of an overtemperature warning.  
9.5 V to 18 V supply voltage (ADP3633/ADP3634/ADP3635)  
4.5 V to 18 V supply voltage (ADP3623/ADP3624/ADP3625)  
Parallelable dual outputs  
Rated from −40°C to +85°C ambient temperature  
Thermally enhanced packages, 8-lead SOIC_N_EP and  
8-lead MINI_SO_EP  
The wide input voltage range allows the driver to be compatible  
with both analog and digital PWM controllers.  
APPLICATIONS  
Digital power controllers are supplied from a low voltage  
supply, and the driver is supplied from a higher voltage supply.  
The ADP362x/ADP363x family adds UVLO and hysteresis  
functions, allowing safe startup and shutdown of the higher  
voltage supply when used with low voltage digital controllers.  
AC-to-dc switch mode power supplies  
DC-to-dc power supplies  
Synchronous rectification  
Motor drives  
The device family is available in thermally enhanced SOIC_N_EP  
and MINI_SO_EP packaging to maximize high frequency and  
current switching in a small printed circuit board (PCB) area.  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
ADP3623/ADP3624/ADP3625  
ADP3633/ADP3634/ADP3635  
8
OTW  
1
SD  
OVERTEMPERATURE  
PROTECTION  
V
V
DD  
EN  
NONINVERTING  
2
3
4
INA,  
INA  
7
OUTA  
INVERTING  
PGND  
6
5
UVLO  
VDD  
NONINVERTING  
INB,  
INB  
OUTB  
INVERTING  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Theory of Operation ...................................................................... 12  
INA INB  
Input Drive Requirements (INA,  
, INB,  
, and SD).. 12  
Low-Side Drivers (OUTA, OUTB) .......................................... 12  
Shutdown (SD) Function .......................................................... 12  
Overtemperature Protections ................................................... 12  
Supply Capacitor Selection ....................................................... 13  
PCB Layout Considerations...................................................... 13  
Parallel Operation ...................................................................... 13  
Thermal Considerations............................................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Timing %JBHSBNT .......................................................  
.... ..... 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Test Circuit ...................................................................................... 11  
REVISION HISTORY  
7/09—Rev. 0 to Rev. A  
Added ADP3623, ADP3625, ADP3633, and  
Changes to Figure 16 to Figure 19 Captions............................... 10  
Changes to Figure 20...................................................................... 11  
Changes to Figure 21, Input Drive Requirements (INA,  
ADP3635..............................................................................Universal  
Changes to Features Section, General Description Section,  
and Figure 1....................................................................................... 1  
Changes to Table 1............................................................................ 3  
Added Figure 4; Renumbered Sequentially .................................. 4  
Added Figure 7.................................................................................. 7  
Added Table 3; Renumbered Sequentially .................................... 7  
Added Figure 9 and Table 5............................................................. 8  
Changes to Figure 10........................................................................ 9  
INA  
INB  
, INB,  
, and SD) Section, and Figure 22........................ 12  
Changes to Figure 23 and Parallel Operation Section............... 13  
Changes to Design Example Section ........................................... 14  
Changes to Ordering Guide.......................................................... 16  
5/09—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
SPECIFICATIONS  
VDD = 12 V, TJ = −40°C to +125°C, unless otherwise noted.1  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min Typ Max Unit  
SUPPLY  
Supply Voltage Range  
VDD  
VDD  
IDD  
ADP3633/ADP3634/ADP3635  
ADP3623/ADP3624/ADP3625  
No switching, INA, INA, INB, and INB disabled  
SD = 5 V  
9.5  
4.5  
18  
18  
3
V
V
mA  
mA  
Supply Current  
Standby Current  
UVLO  
1.2  
1.2  
ISBY  
3
Turn-On Threshold Voltage  
VUVLO_ON  
VUVLO_ON  
VDD rising, TA = 25°C, ADP3633/ADP3634/ADP3635  
VDD rising, TA = 25°C, ADP3623/ADP3624/ADP3625  
8.0  
3.8  
7.0  
3.5  
8.7  
4.2  
7.7  
3.9  
1.0  
0.3  
9.5  
4.5  
8.5  
4.3  
V
V
V
V
V
V
Turn-Off Threshold Voltage  
Hysteresis  
VUVLO_OFF VDD falling, TA = 25°C, ADP3633/ADP3634/ADP3635  
VUVLO_OFF VDD falling, TA = 25°C, ADP3623/ADP3624/ADP3625  
ADP3633/ADP3634/ADP3635  
ADP3623/ADP3624/ADP3625  
DIGITAL INPUTS (INA, INA, INB, INB, SD)  
Input Voltage High  
Input Voltage Low  
VIH  
VIL  
2.0  
V
V
0.8  
Input Current  
SD Threshold High  
IIN  
0 V < VIN < VDD  
−20  
+20  
µA  
V
V
V
mV  
µA  
VSD_H  
VSD_H  
VSD_L  
VSD_HYST  
1.19 1.28 1.38  
1.21 1.28 1.35  
0.95 1.0  
TA = 25°C  
TA = 25°C  
TA = 25°C  
SD Threshold Low  
SD Hysteresis  
Internal Pull-Up/Pull-Down Current  
OUTPUTS (OUTA, OUTB)  
1.05  
320  
240  
280  
6
Output Resistance, Unbiased  
Peak Source Current  
Peak Sink Current  
VDD = PGND  
See Figure 20  
See Figure 20  
80  
4
−4  
kΩ  
A
A
SWITCHING TIME  
OUTA, OUTB Rise Time  
OUTA, OUTB Fall Time  
tRISE  
tFALL  
tD1  
tD2  
tdL_SD  
tdH_SD  
CLOAD = 2.2 nF, see Figure 3 and Figure 4  
CLOAD = 2.2 nF, see Figure 3 and Figure 4  
CLOAD = 2.2 nF, see Figure 3 and Figure 4  
CLOAD = 2.2 nF, see Figure 3 and Figure 4  
See Figure 2  
10  
10  
14  
22  
32  
48  
2
25  
25  
30  
35  
45  
75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OUTA, OUTB Rising Propagation Delay  
OUTA, OUTB Falling Propagation Delay  
SD Propagation Delay Low  
SD Propagation Delay High  
Delay Matching Between Channels  
OVERTEMPERATURE PROTECTION  
Overtemperature Warning Threshold  
Overtemperature Shutdown Threshold  
Temperature Hysteresis for Shutdown  
Temperature Hysteresis for Warning  
Overtemperature Warning Low  
See Figure 2  
TW  
TSD  
THYS_SD  
THYS_W  
VOTW_OL  
See Figure 6  
See Figure 6  
See Figure 6  
See Figure 6  
120  
150  
135  
165  
30  
150  
180  
°C  
°C  
°C  
°C  
V
10  
Open drain, −500 µA  
0.4  
1 All limits at temperature extremes guaranteed via correlation using standard statistical quality control (SQC) methods.  
Rev. A | Page 3 of 16  
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
TIMING %*" ( 3" . 4  
SD  
tdL_SD  
tdH_SD  
90%  
OUTA,  
OUTB  
10%  
Figure 2. Shutdown Timing Diagram  
INA,  
INB  
V
IH  
V
IL  
tD1  
tRISE  
tD2 tFALL  
90%  
90%  
OUTA,  
OUTB  
10%  
10%  
Figure 3. Output Timing Diagram (Noninverting)  
INA,  
INB  
V
V
IH  
IL  
tD1  
tRISE  
tD2 tFALL  
90%  
90%  
OUTA,  
OUTB  
10%  
10%  
Figure 4. Output Timing Diagram (Inverting)  
V
UVLO_ON  
V
UVLO_OFF  
DD  
V
UVLO MODE  
OUTPUTS DISABLED  
NORMAL OPERATION  
UVLO MODE  
OUTPUTS DISABLED  
Figure 5. UVLO Function  
Rev. A | Page 4 of 16  
 
 
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
T
SD  
TSD THYS_SD  
T
W
TW THYS_W  
T
J
NORMAL OPERATION  
OT WARNING  
OT SHUTDOWN  
OT WARNING  
NORMAL OPERATION  
OUTPUTS  
ENABLED  
OUTPUTS  
DISABLED  
OUTPUTS  
ENABLED  
OTW  
Figure 6. Overtemperature Warning and Shutdown  
Rev. A | Page 5 of 16  
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
Table 2.  
Parameter  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
VDD  
OUTA, OUTB  
DC  
<200 ns  
INA, INA, INB, INB, and SD  
ESD  
−0.3 V to +20 V  
−0.3 V to VDD + 0.3 V  
−2 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
3.5 kV  
ESD CAUTION  
SOIC_N_EP  
MINI_SO_EP  
1.5 kV  
1.0 kV  
θJA, JEDEC 4-Layer Board  
SOIC_N_EP1  
MINI_SO_EP1  
59°C/W  
43°C/W  
Junction Temperature Range  
Storage Temperature Range  
Lead Temperature  
Soldering (10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
−40°C to +150°C  
−65°C to +150°C  
300°C  
215°C  
260°C  
1 θJA is measured per JEDEC standards, JESD51-2, JESD51-5, and JESD51-7, as  
appropriate with the exposed pad soldered to the PCB.  
Rev. A | Page 6 of 16  
 
 
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SD  
1
8 OTW  
ADP3623/  
ADP3633  
TOP VIEW  
INA  
PGND  
INB  
2
3
4
7
6
5
OUTA  
VDD  
(Not to Scale)  
OUTB  
NOTES  
1. THE EXPOSED PAD OF THE PACKAGE IS NOT DIRECTLY  
CONNECTED TO ANY PIN OF THE PACKAGE, BUT IT IS  
ELECTRICALLY AND THERMALLY CONNECTED TO THE DIE  
SUBSTRATE, WHICH IS THE GROUND OF THE DEVICE.  
Figure 7. ADP3623/ADP3633 Pin Configuration  
Table 3. ADP3623/ADP3633 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
SD  
INA  
Output Shutdown. When high, this pin disables normal operation, forcing OUTA and OUTB low.  
Inverting Input Pin for Channel A Gate Driver.  
Ground. This pin should be closely connected to the source of the power MOSFET.  
Inverting Input Pin for Channel B Gate Driver.  
Output Pin for Channel B Gate Driver.  
Power Supply Voltage. Bypass this pin to PGND with a ~1 µF to 5 µF ceramic capacitor.  
Output Pin for Channel A Gate Driver.  
PGND  
INB  
OUTB  
VDD  
OUTA  
OTW  
Overtemperature Warning Flag. Open drain, active low.  
SD  
INA  
1
2
3
4
8
7
6
5
OTW  
OUTA  
VDD  
ADP3624/  
ADP3634  
TOP VIEW  
PGND  
INB  
(Not to Scale)  
OUTB  
NOTES  
1. THE EXPOSED PAD OF THE PACKAGE IS NOT DIRECTLY  
CONNECTED TO ANY PIN OF THE PACKAGE, BUT IT IS  
ELECTRICALLY AND THERMALLY CONNECTED TO THE DIE  
SUBSTRATE, WHICH IS THE GROUND OF THE DEVICE.  
Figure 8. ADP3624/ADP3634 Pin Configuration  
Table 4. ADP3624/ADP3634 Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
3
4
5
6
7
8
SD  
INA  
Output Shutdown. When high, this pin disables normal operation, forcing OUTA and OUTB low.  
Input Pin for Channel A Gate Driver.  
Ground. This pin should be closely connected to the source of the power MOSFET.  
Input Pin for Channel B Gate Driver.  
Output Pin for Channel B Gate Driver.  
Power Supply Voltage. Bypass this pin to PGND with a ~1 µF to 5 µF ceramic capacitor.  
Output Pin for Channel A Gate Driver.  
PGND  
INB  
OUTB  
VDD  
OUTA  
OTW  
Overtemperature Warning Flag. Open drain, active low.  
Rev. A | Page 7 of 16  
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
SD  
INA  
1
2
3
4
8
7
6
5
OTW  
OUTA  
VDD  
ADP3625/  
ADP3635  
TOP VIEW  
PGND  
INB  
(Not to Scale)  
OUTB  
NOTES  
1. THE EXPOSED PAD OF THE PACKAGE IS NOT DIRECTLY  
CONNECTED TO ANY PIN OF THE PACKAGE, BUT IT IS  
ELECTRICALLY AND THERMALLY CONNECTED TO THE DIE  
SUBSTRATE, WHICH IS THE GROUND OF THE DEVICE.  
Figure 9. ADP3625/ADP3635 Pin Configuration  
Table 5. ADP3625/ADP3635 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
SD  
INA  
Output Shutdown. When high, this pin disables normal operation, forcing OUTA and OUTB low.  
Inverting Input Pin for Channel A Gate Driver.  
Ground. This pin should be closely connected to the source of the power MOSFET.  
Input Pin for Channel B Gate Driver.  
Output Pin for Channel B Gate Driver.  
Power Supply Voltage. Bypass this pin to PGND with a ~1 µF to 5 µF ceramic capacitor.  
Output Pin for Channel A Gate Driver.  
PGND  
INB  
OUTB  
VDD  
OUTA  
OTW  
Overtemperature Warning Flag. Open drain, active low.  
Rev. A | Page 8 of 16  
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
20  
15  
10  
5
9
8
7
6
5
4
V
UVLO_ON  
V
UVLO_OFF  
ADP3633/ADP3634/ADP3635  
tFALL  
tRISE  
ADP3623/ADP3624/ADP3625  
V
UVLO_ON  
V
UVLO_OFF  
0
3
0
5
10  
(V)  
15  
20  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
V
TEMPERATURE (°C)  
DD  
Figure 13. Rise and Fall Times vs. VDD  
Figure 10. UVLO vs. Temperature  
70  
60  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
tFALL  
tdH_SD  
tRISE  
tdL_SD  
6
tD2  
tD1  
4
2
0
–50  
0
5
10  
DD  
15  
20  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
V
(V)  
TEMPERATURE (°C)  
Figure 11. Rise and Fall Times vs. Temperature  
Figure 14. Propagation Delay vs. VDD  
60  
50  
40  
30  
20  
10  
0
1400  
1200  
1000  
800  
V
= 12V  
DD  
tdH_SD  
SD THRESHOLD HIGH  
SD THRESHOLD LOW  
tdL_SD  
600  
tD2  
tD1  
400  
SD THRESHOLD HYSTERESIS  
200  
0
–50  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Propagation Delay vs. Temperature  
Figure 15. Shutdown Threshold vs. Temperature  
Rev. A | Page 9 of 16  
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
OUTA/OUTB  
OUTA/OUTB  
2
2
INA/INB  
= 12V  
INA/INB  
V
V
= 12V  
TIME = 20ns/DIV  
DD  
DD  
1
1
TIME = 20ns/DIV  
Figure 16. Typical Rise Propagation Delay (Noninverting)  
Figure 18. Typical Rise Time (Noninverting)  
OUTA/OUTB  
OUTA/OUTB  
2
2
INA/INB  
INA/INB  
V
= 12V  
DD  
1
V
= 12V  
1
DD  
TIME = 20ns/DIV  
TIME = 20ns/DIV  
Figure 17. Typical Fall Propagation Delay (Noninverting)  
Figure 19. Typical Fall Time (Noninverting)  
Rev. A | Page 10 of 16  
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
TEST CIRCUIT  
ADP3623/ADP3624/ADP3625  
ADP3633/ADP3634/ADP3635  
OTW  
8
1
SD  
SCOPE  
PROBE  
NONINVERTING  
INA,  
INA  
A
OUTA  
2
7
INVERTING  
V
DD  
PGND  
VDD  
3
4
6
5
4.7µF  
CERAMIC  
100nF  
CERAMIC  
NONINVERTING  
C
LOAD  
B
INB,  
INB  
OUTB  
INVERTING  
Figure 20. Test Circuit  
Rev. A | Page 11 of 16  
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
THEORY OF OPERATION  
The ADP362x/ADP363x family of dual drivers is optimized for  
driving two independent enhancement N-channel MOSFETs or  
insulated gate bipolar transistors (IGBTs) in high switching  
frequency applications.  
this feature ensures that the power MOSFET is normally off  
when bias voltage is not present.  
When interfacing the ADP362x/ADP363x family to external  
MOSFETs, the designer should consider ways to make a robust  
design that minimizes stresses on both the driver and the  
MOSFETs. These stresses include exceeding the short time  
duration voltage ratings on the OUTA and OUTB pins, as well  
as the external MOSFET.  
These applications require high speed, fast rise and fall times, as  
well as short propagation delays. The capacitive nature of the  
aforementioned gated devices requires high peak current  
capability as well.  
ADP3623/ADP3624/ADP3625  
ADP3633/ADP3634/ADP3635  
Power MOSFETs are usually selected to have a low on resistance  
to minimize conduction losses, which usually implies a large  
input gate capacitance and gate charge.  
8
1
2
OTW  
SD  
V
DS  
NONINVERTING  
INA,  
INA  
A
SHUTDOWN (SD) FUNCTION  
OUTA  
7
The ADP362x/ADP363x family features an advanced shutdown  
function, with accurate threshold and hysteresis.  
INVERTING  
V
DD  
PGND  
VDD  
3
4
6
5
The SD signal is an active high signal. An internal pull-up is  
present on this pin and, therefore, it is necessary to pull down  
the pin externally for drivers to operate normally.  
NONINVERTING  
V
DS  
B
INB,  
INB  
OUTB  
In some power systems, it is sometimes necessary to provide an  
additional overvoltage protection (OVP) or overcurrent protection  
(OCP) shutdown signal to turn off the power devices (MOSFETs  
or IGBTs) in case of failure of the main controller.  
INVERTING  
Figure 21. Typical Application Circuit  
An accurate internal reference is used for the SD comparator so  
INPUT DRIVE REQUIREMENTS (INA, INA, INB, INB,  
AND SD)  
that it can be used to detect OVP or OCP fault conditions.  
+
The ADP362x/ADP363x family inputs are designed to meet the  
requirements of modern digital power controllers; the signals  
are compatible with 3.3 V logic levels. At the same time, the  
DC  
OUTPUT  
AC  
INPUT  
input structure allows for input voltages as high as VDD  
.
The signals applied to the inputs (INA, , INB, and  
)
INA  
INB  
OUTA  
PGND  
should have steep and clean fronts. It is not recommended to  
apply slow changing signals to drive these inputs because they  
can result in multiple switching when the thresholds are  
crossed, causing damage to the power MOSFET or IGBT.  
SD  
V
EN  
An internal pull-down resistor is present at the input, which  
guarantees that the power device is off in the event that the  
input is left floating.  
ADP3623/ADP3624/ADP3625  
ADP3633/ADP3634/ADP3635  
Figure 22. Shutdown Function Used for Redundant OVP  
The SD input has a precision comparator with hysteresis and is  
therefore suitable for slow changing signals (such as a scaled  
down output voltage); see the Shutdown (SD) Function section  
for more details on this comparator.  
OVERTEMPERATURE PROTECTIONS  
The ADP362x/ADP363x family provides two levels of  
overtemperature protections:  
LOW-SIDE DRIVERS (OUTA, OUTB)  
Overtemperature warning (OTW)  
Overtemperature shutdown  
The ADP362x/ADP363x family of dual drivers is designed to  
drive ground referenced N-channel MOSFETs. The bias is  
internally connected to the VDD supply and PGND.  
The overtemperature warning is an open-drain logic signal and  
is active low. In normal operation, when no thermal warning is  
present, the signal is high, whereas when the warning threshold  
is crossed, the signal is pulled low.  
When the ADP362x/ADP363x family is disabled, both low-side  
gates are held low. An internal impedance is present between  
the OUTA/OUTB pins and GND, even when VDD is not present;  
Rev. A | Page 12 of 16  
 
 
 
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
3.3V  
Place the VDD bypass capacitor as close as possible to the  
VDD and PGND pins.  
VDD  
Use vias to other layers, when possible, to maximize  
thermal conduction away from the IC.  
OTW  
FLAGIN  
Figure 24 shows an example of the typical layout based on the  
preceding guidelines.  
ADP3623/ADP3624/ADP3625/  
ADP3633/ADP3634/ADP3635  
ADP1043A  
PGND  
VDD  
OTW  
ADP3623/ADP3624/ADP3625/  
ADP3633/ADP3634/ADP3635  
PGND  
OTW  
Figure 23.  
Signaling Scheme Example  
OTW  
The  
open-drain configuration allows connection of  
multiple devices to the same warning bus in a wire-ORe d  
configuration, as shown in Figure 23.  
The overtemperature shutdown turns off the device to protect it  
in the event that the die temperature exceeds the absolute maxi-  
mum limit in Table 2.  
Figure 24. External Component Placement Example  
Note that the exposed pad of the package is not directly  
connected to any pin of the package, but it is electrically and  
thermally connected to the die substrate, which is the ground of  
the device.  
SUPPLY CAPACITOR SELECTION  
For the supply input (VDD) of the ADP362x/ADP363x family, a  
local bypass capacitor is recommended to reduce the noise and  
to supply some of the peak currents that are drawn.  
PARALLEL OPERATION  
The two driver channels present in the ADP3623/ADP3633 or  
ADP3624/ADP3634 devices can be combined to operate in  
parallel to increase drive capability and minimize power  
dissipation in the driver.  
An improper decoupling can dramatically increase the rise  
times, cause excessive resonance on the OUTA and OUTB pins,  
and, in some extreme cases, even damage the device, due to  
inductive overvoltage on the VDD or OUTA/OUTB pins.  
The connection scheme for the ADP3624/ADP3634 devices is  
shown in Figure 25. In this configuration, INA and INB are  
connected together, and OUTA and OUTB are connected  
together.  
The minimum capacitance required is determined by the size  
of the gate capacitances being driven, but as a general rule, a  
4.7 µF, low ESR capacitor should be used. Multilayer ceramic  
chip (MLCC) capacitors provide the best combination of low  
ESR and small size. Use a smaller ceramic capacitor (100 nF)  
with a better high frequency characteristic in parallel to the  
main capacitor to further reduce noise.  
Particular attention must be paid to the layout in this case to  
optimize load sharing between the two drivers.  
8
1
OTW  
SD  
ADP3624/ADP3634  
Keep the ceramic capacitor as close as possible to the ADP362x/  
ADP363x device, and minimize the length of the traces going  
from the capacitor to the power pins of the device.  
INA  
OUTA  
2
A
7
V
DD  
PCB LAYOUT CONSIDERATIONS  
PGND  
INB  
VDD  
3
4
6
5
Use the following general guidelines when designing printed  
circuit boards (PCBs):  
V
DS  
OUTB  
B
Trace out the high current paths and use short, wide  
(>40 mil) traces to make these connections.  
Minimize trace inductance between the OUTA and OUTB  
outputs and MOSFET gates.  
Connect the PGND pin of the ADP362x/ADP363x device  
as closely as possible to the source of the MOSFETs.  
Figure 25. Parallel Operation  
Rev. A | Page 13 of 16  
 
 
 
 
 
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
In all practical applications where the external resistor is in the  
THERMAL CONSIDERATIONS  
order of a few ohms, the contribution of the external resistor  
can be neglected, and the extra loss is assumed in the driver,  
providing a good guard band to the power loss calculations.  
When designing a power MOSFET gate drive, the maximum  
power dissipation in the driver must be considered to avoid  
exceeding maximum junction temperature.  
In addition to the gate charge losses, there are also dc bias  
losses, due to the bias current of the driver. This current is  
present regardless of the switching.  
Data on package thermal resistance is provided in Table 2 to  
help the designer in this task.  
There are several equally important aspects that must be  
considered.  
P
DC = VDD × IDD  
The total estimated loss is the sum of PDC and PGATE  
LOSS = PDC + (n × PGATE  
where n is the number of gates driven.  
.
Gate charge of the power MOSFET being driven  
Bias voltage value used to power the driver  
Maximum switching frequency of operation  
Value of external gate resistance  
Maximum ambient (and PCB) temperature  
Type of package  
P
)
When the total power loss is calculated, the temperature  
increase can be calculated as  
ΔTJ = PLOSS × θJA  
All of these factors influence and limit the maximum allowable  
power dissipated in the driver.  
Design Example  
For example, consider driving two IRFS4310Z MOSFETs with a  
The gate of a power MOSFET has a nonlinear capacitance  
characteristic. For this reason, although the input capacitance  
is usually reported in the MOSFET data sheet as CISS, it is not  
useful to calculate power losses.  
V
DD of 12 V at a switching frequency of 300 kHz, using an  
ADP3624 in the SOIC_N_EP package.  
The maximum PCB temperature considered for this design is 85°C.  
From the MOSFET data sheet, the total gate charge is QG = 120 nC.  
The total gate charge necessary to turn on a power MOSFET  
device is usually reported on the device data sheet under QG.  
This parameter varies from a few nanocoulombs (nC) to several  
hundreds of nC, and is specified at a specific VGS value (10 V  
or 4.5 V).  
P
P
P
GATE = 12 V × 120 nC × 300 kHz = 432 mW  
DC = 12 V × 1.2 mA = 14.4 mW  
LOSS = 14.4 mW + (2 × 432 mW) = 878.4 mW  
From the MOSFET data sheet, the SOIC_N_EP thermal  
resistance is 59°C/W.  
The power necessary to charge and then discharge the gate of a  
power MOSFET can be calculated as:  
ΔTJ = 878.4 mW × 59°C/W = 51.8°C  
TJ = TA + ΔTJ = 136.8°C ≤ TJMAX  
P
GATE = VGS × QG × fSW  
where:  
This estimated junction temperature does not factor in the  
power dissipated in the external gate resistor and, therefore,  
provides a certain guard band.  
V
GS is the bias voltage powering the driver (VDD).  
QG is the total gate charge.  
fSW is the maximum switching frequency.  
If a lower junction temperature is required by the design,  
the MINI_SO_EP package can be used, which provides a  
thermal resistance of 43°C/W, so that the maximum junction  
temperature is  
The power dissipated for each gate (PGATE) still needs to be multip-  
lied by the number of drivers (in this case, 1 or 2) being used  
in each package, and it represents the total power dissipated in  
charging and discharging the gates of the power MOSFETs.  
ΔTJ = 878.4 mW × 43°C/W = 37.7°C  
TJ = TA + ΔTJ = 122.7°C ≤ TJMAX  
Not all of this power is dissipated in the gate driver because part  
of it is actually dissipated in the external gate resistor, RG. The  
larger the external gate resistor is, the smaller the amount of  
power that is dissipated in the gate driver.  
Other options to reduce power dissipation in the driver include  
reducing the value of the VDD bias voltage, reducing switching fre-  
quency, and choosing a power MOSFET with smaller gate charge.  
In modern switching power applications, the value of the gate  
resistor is kept at a minimum to increase switching speed and  
minimize switching losses.  
Rev. A | Page 14 of 16  
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
OUTLINE DIMENSIONS  
FOR PROPER CONNECTION OF  
5.00 (0.197)  
4.90 (0.193)  
4.80 (0.189)  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
2.29 (0.090)  
4.00 (0.157)  
3.90 (0.154)  
3.80 (0.150)  
SECTION OF THIS DATA SHEET.  
2.29 (0.090)  
8
5
6.20 (0.244)  
6.00 (0.236)  
5.80 (0.228)  
TOP VIEW  
1
4
BOTTOM VIEW  
(PINS UP)  
1.27 (0.05)  
BSC  
0.50 (0.020)  
0.25 (0.010)  
45°  
1.65 (0.065)  
1.25 (0.049)  
1.75 (0.069)  
1.35 (0.053)  
1.27 (0.050)  
0.40 (0.016)  
0.10 (0.004)  
MAX  
SEATING  
PLANE  
8°  
0°  
0.25 (0.0098)  
0.17 (0.0067)  
0.51 (0.020)  
0.31 (0.012)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 26. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body (RD-8-1)  
Dimensions shown in millimeters and (inches)  
3.10  
3.00  
2.90  
2.26  
2.16  
2.06  
8
1
5
4
5.05  
4.90  
4.75  
3.10  
3.00  
2.90  
1.83  
1.73  
1.63  
TOP  
VIEW  
EXPOSED  
PAD  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
BOTTOM VIEW  
0.525 BSC  
1.10 MAX  
0.65 BSC  
SECTION OF THIS DATA SHEET.  
0.94  
0.86  
0.78  
0.23  
0.18  
0.13  
0.70  
0.55  
0.40  
0.15  
0.10  
0.05  
SEATING  
PLANE  
8°  
0°  
0.40  
0.33  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA-T  
Figure 27. 8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]  
(RH-8-1)  
Dimensions shown in millimeters  
Rev. A | Page 15 of 16  
 
ADP3623/ADP3624/ADP3625/ADP3633/ADP3634/ADP3635  
ORDERING GUIDE  
UVLO  
Option Range  
Temperature  
Package Ordering  
Model  
Package Description  
Option  
Quantity  
Branding  
ADP3623ARDZ-RL1 4.5 V  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package  
(SOIC_N_EP), 13“ Tape and Reel  
RD-8-1  
2,500  
ADP3623ARHZ-RL1 4.5 V  
8-Lead Mini Small Outline Package (MINI_SO_EP), RH-8-1  
13”Tape and Reel  
3,000  
2,500  
P3  
ADP3624ARDZ1  
ADP3624ARDZ-RL1 4.5 V  
ADP3624ARHZ1  
4.5 V  
4.5 V  
8-Lead Standard Small Outline Package  
(SOIC_N_EP)  
8-Lead Standard Small Outline Package  
(SOIC_N_EP), Tape Reel  
RD-8-1  
RD-8-1  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Mini Small Outline Package (MINI_SO_EP) RH-8-1  
P4  
P4  
ADP3624ARHZ-RL1 4.5 V  
ADP3625ARDZ-RL1 4.5 V  
ADP3625ARHZ-RL1 4.5 V  
ADP3633ARDZ-RL1 9.5 V  
ADP3633ARHZ-RL1 9.5 V  
8-Lead Mini Small Outline Package (MINI_SO_EP), RH-8-1  
Tape Reel  
3,000  
2,500  
3,000  
2,500  
3,000  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package  
(SOIC_N_EP), 13”Tape and Reel  
RD-8-1  
8-Lead Mini Small Outline Package (MINI_SO_EP), RH-8-1  
13”Tape and Reel  
P5  
L3  
8-Lead Standard Small Outline Package  
(SOIC_N_EP), 13”Tape and Reel  
RD-8-1  
8-Lead Mini Small Outline Package (MINI_SO_EP), RH-8-1  
13”Tape and Reel  
ADP3634ARDZ1  
ADP3634ARDZ-RL1 9.5 V  
ADP3634ARHZ1  
9.5 V  
9.5 V  
8-Lead Standard Small Outline Package  
(SOIC_N_EP)  
8-Lead Standard Small Outline Package  
(SOIC_N_EP), 13”Tape and Reel  
RD-8-1  
RD-8-1  
2,500  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Mini Small Outline Package (MINI_SO_EP) RH-8-1  
L4  
L4  
ADP3634ARHZ-RL1 9.5 V  
ADP3635ARDZ-RL1 9.5 V  
ADP3635ARHZ-RL1 9.5 V  
8-Lead Mini Small Outline Package (MINI_SO_EP), RH-8-1  
13”Tape and Reel  
3,000  
2,500  
3,000  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Standard Small Outline Package  
(SOIC_N_EP), 13”Tape and Reel  
RD-8-1  
8-Lead Mini Small Outline Package (MINI_SO_EP), RH-8-1  
13”Tape and Reel  
L5  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08132-0-7/09(A)  
Rev. A | Page 16 of 16  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY