ADP5062ACPZ-1-R7 [ADI]

Linear Li-Ion Battery Charger with Power Path and USB Compatibility in LFCSP;
ADP5062ACPZ-1-R7
型号: ADP5062ACPZ-1-R7
厂家: ADI    ADI
描述:

Linear Li-Ion Battery Charger with Power Path and USB Compatibility in LFCSP

电池
文件: 总44页 (文件大小:879K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Linear Li-Ion Battery Charger with Power  
Path and USB Compatibility in LFCSP  
Data Sheet  
ADP5062  
FEATURES  
GENERAL DESCRIPTION  
4 mm × 4 mm LFCSP package  
Fully programmable via I2C  
Flexible digital control inputs  
The ADP5062 charger is fully compliant with USB 3.0 and the  
USB Battery Charging Specification 1.2 and enables charging  
via the mini USB VBUS pin from a wall charger, car charger, or  
Up to 2.1 A current from an ac charger in LDO mode  
Operating input voltage from 4.0 V to 6.7 V  
Tolerant input voltage from −0.5 V to +20 V (USB VBUS)  
Fully compatible with USB 3.0 and USB Battery Charging  
Specification 1.2  
Built-in current sensing and limiting  
As low as 54 mΩ battery isolation FET between battery and  
charger output  
Thermal regulation prevents overheating  
Compliant with JEITA 1 and JEITA 2 Li-Ion battery charging  
temperature specifications  
SYS_EN flag permits the system to be disabled until battery is at  
the minimum required level for guaranteed system start-up  
USB host port.  
The ADP5062 operates from a 4 V to 6.7 V input voltage range  
but is tolerant of voltages up to 20 V thereby alleviating concerns  
about USB bus spikes during disconnect or connect scenarios.  
The ADP5062 features an internal FET between the linear  
charger output and the battery. This permits battery isolation  
and, hence, system powering under a dead battery or no battery  
scenario, which allows for immediate system function on connec-  
tion to a USB power supply.  
Based on the type of USB source, which is detected by an external  
USB detection chip, the ADP5062 can be set to apply the correct  
current limit for optimal charging and USB compliance.  
The ADP5062 has three factory-programmable digital input/out-  
put pins that provide maximum flexibility for different systems.  
These digital input/output pins permit combinations of features  
such as, input current limits, charging enable and disable, charging  
current limits, and a dedicated interrupt output pin.  
APPLICATIONS  
Digital still cameras  
Digital video cameras  
Single cell Li-Ion portable equipment  
PDAs, audio, and GPS devices  
Portable medical devices  
Mobile phones  
TYPICAL APPLICATION CIRCUIT  
ADP5062  
SYSTEM  
ISO_Sx  
VBUS  
VIN  
AC OR  
USB  
CBP  
C3  
22µF  
C4  
10µF  
C1  
10nF  
SCL  
SDA  
ISO_Bx  
CHARGER  
CONTROL  
BLOCK  
C2  
22µF  
BAT_SNS  
DIG_IO1  
DIG_IO2  
DIG_IO3  
Li-ion  
+
THR  
SYS_EN  
ILED  
VLED  
AGND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP5062  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Battery Isolation FET................................................................. 21  
Battery Detection ....................................................................... 21  
Battery Pack Temperature Sensing .......................................... 22  
I2C Interface ................................................................................ 26  
I2C Register Map......................................................................... 27  
Register Bit Descriptions........................................................... 28  
Applications Information .............................................................. 36  
External Components................................................................ 36  
PCB Layout Guidelines.............................................................. 38  
Power Dissipation and Thermal Considerations ....................... 39  
Charger Power Dissipation ....................................................... 39  
Junction Temperature ................................................................ 39  
Factory-Programmable Options .................................................. 40  
Charger Options......................................................................... 40  
I2C Register Defaults.................................................................. 41  
Digital Input and Output Options ........................................... 41  
Packaging and Ordering Information ......................................... 43  
Outline Dimensions................................................................... 43  
Ordering Guide .......................................................................... 43  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Typical Application Circuit ............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Input and Output Capacitances...................... 6  
I2C-Compatible Interface Timing Specifications..................... 6  
Absolute Maximum Ratings ....................................................... 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Temperature Characteristics..................................................... 12  
Typical Waveforms ..................................................................... 14  
Theory of Operation ...................................................................... 15  
Summary of Operation Modes................................................. 15  
Introduction ................................................................................ 16  
Charger Modes............................................................................ 18  
Thermal Management ............................................................... 21  
REVISION HISTORY  
10/13—Rev. A to Rev. B  
Changes to Table 19........................................................................ 28  
Changes to Table 26........................................................................ 32  
Changes to Charger Options Section and Table 41 ................... 40  
Changes to Ordering Guide .......................................................... 43  
4/13—Rev. 0 to Rev. A  
Changes to Figure 3.......................................................................... 9  
9/12—Revision 0: Initial Version  
Rev. B | Page 2 of 44  
 
Data Sheet  
ADP5062  
SPECIFICATIONS  
−40°C < TJ < +125°C, VVINx = 5.0 V, RHOT_RISE < RTHR < RCOLD_FALL, VBAT_SNS = 3.6 V, V ISO_Bx = VBAT_SNS, CVIN = 10 µF, CISO_S = 22 µF, CISO_B = 22 µF,  
C
CBP = 10 nF, all registers at default values, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VUVLO  
ILIM  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
GENERAL PARAMETERS  
Undervoltage Lockout  
Hysteresis  
1
2.25  
50  
2.35  
100  
92  
2.5  
V
Falling threshold, higher of VVINx and VBAT_SNS  
Hysteresis, higher of VVINx and VBAT_SNS rising1  
Nominal USB initialized current level2  
USB super speed  
USB enumerated current level (specification for  
China)  
150  
100  
150  
300  
mV  
mA  
mA  
mA  
Total Input Current  
74  
114  
425  
470  
500  
900  
1500  
mA  
mA  
mA  
mA  
µA  
USB enumerated current level  
Dedicated charger input  
Dedicated wall charger  
Charging or LDO mode  
DIS_IC1 = high, VISO_Bx < VINx < 5.5 V  
LDO mode, VISO_Sx > VBAT_SNS  
VINx Current Consumption  
Battery Current Consumption  
IQVIN  
IQVIN_DIS  
IQBATT  
2
280  
20  
450  
µA  
5
µA  
Standby, includes ISO_Sx pin leakage, VVINx = 0 V,  
TJ = −40°C to +85°C  
0.5  
0.9  
mA  
mA  
Standby, battery monitor active  
CHARGER  
Fast Charge Current CC Mode  
ICHG  
700  
750  
790  
VISO_Bx = 3.9 V; fast charge current accuracy is  
guaranteed at temperatures from TJ = −40°C to the  
isothermal regulation limit (typically TJ = +115°C)2, 3  
Fast Charge Current Accuracy  
−8  
+7  
%
ICHG = 400 mA to 1300 mA  
ICHG = 250 mA to 350 mA  
ICHG = 50 mA to 200 mA  
−33  
−45  
16  
+29  
+40  
25  
mA  
mA  
mA  
mA  
Trickle Charge Current2  
Weak Charge Current2, 3  
Trickle to Weak Charge Threshold  
Dead Battery  
ITRK_DEAD  
ICHG_WEAK  
20  
ITRK_DEAD + ICHG  
2, 4  
VTRK_DEAD  
2.4  
2.5  
2.6  
V
VTRK_DEAD < VBAT_SNS < VWEAK  
On BAT_SNS2  
Hysteresis  
ΔVTRK_DEAD  
100  
mV  
Weak Battery Threshold  
Weak to Fast Charge Threshold  
On BAT_SNS2, 4  
VWEAK  
ΔVWEAK  
VTRM  
2.89  
3.0  
3.11  
V
100  
4.200  
mV  
V
%
Battery Termination Voltage  
Termination Voltage Accuracy  
On BAT_SNS, TJ = 25°C, IEND = 52.5 mA2  
TJ = 0°C to 115°C2  
−0.25  
−1.04  
−1.16  
+0.25  
+0.89  
+1.20  
%
%
TJ = −40°C to +125°C  
Battery Overvoltage Threshold  
Charge Complete Current  
Charging Complete Current Threshold  
Accuracy  
VBATOV  
IEND  
VIN − 0.075  
52.5  
V
mA  
mA  
Relative to VINx voltage, BAT_SNS rising  
VBAT_SNS = VTRM  
IEND = 52.5 mA, TJ = 0°C to 115°C2  
15  
17  
98  
83  
59  
160  
2.2  
123  
390  
2.5  
mA  
mV  
V
IEND = 92.5 mA, TJ = 0°C to 115°C  
Relative to VTRM, BAT_SNS falling2  
Recharge Voltage Differential  
Battery Node Short Threshold Voltage2  
Battery Short Detection Current  
Charging Start Voltage Limit  
Charging Soft Start Current  
VRCH  
260  
2.4  
20  
VBAT_SHR  
ITRK_SHORT  
VCHG_VLIM  
ICHG_START  
tCHG_START  
2
mA  
V
mA  
ms  
ITRK_SHORT = ITRK_DEAD  
3.6  
185  
3.7  
260  
3
3.8  
365  
Voltage limit is not active by default  
VBAT_SNS > VTRK_DEAD  
Charging Soft Start Timer  
Rev. B | Page 3 of 44  
 
ADP5062  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
BATTERY ISOLATION FET  
Pin to Pin Resistance Between ISO_Sx  
and ISO_Bx  
RDSON_ISO  
VISO_SFC  
VTHISO  
54  
89  
mΩ  
On battery supplement mode, VINx = 0 V, VISO_Bx  
=
4.2 V, IISO_Bx = 500 mA  
Regulated System Voltage: VBAT Low  
3.6  
3.2  
0
3.8  
3.4  
5
4.0  
3.5  
12  
V
V
mV  
VTRM[5:0] programming ≥ 4.00 V  
VTRM[5:0] programming < 4.00 V  
Battery Supplementary Threshold  
LDO AND HIGH VOLTAGE BLOCKING  
Regulated System Voltage  
VISO_Sx < VISO_Bx, VSYS rising  
VISO_STRK  
4.214  
4.3  
4.386  
485  
4.0  
V
VSYSTEM[2:0] = 000 (binary) = 4.3 V, IISO_Sx  
100 mA, LDO mode2  
=
Load Regulation  
High Voltage Blocking FET (LDO FET)  
On Resistance  
Maximum Output Current  
VINx Input Voltage, Good Threshold  
Rising  
VINx Falling  
VINx Input Overvoltage Threshold  
Hysteresis  
−0.56  
330  
%/A  
mΩ  
IISO_Sx = 0 m A to 1500 mA  
IVINx = 500 mA  
RDS(ON)HV  
2.1  
3.9  
A
V
VISO_Sx = 4.3 V, LDO mode  
VVIN_OK_RISE  
3.75  
6.7  
VVIN_OK_FALL  
VVIN_OV  
ΔVVIN_OV  
TVIN_RISE  
3.6  
6.9  
0.1  
3.7  
7.2  
V
V
V
µs  
µs  
VINx Transition Timing  
10  
10  
Minimum rise time for VINx from 5 V to 20 V  
Minimum fall time for VINx from 4 V to 0 V  
TVIN_FALL  
THERMAL CONTROL  
Isothermal Charging Temperature  
Thermal Early Warning Temperature  
Thermal Shutdown Temperature  
TLIM  
TSDL  
TSD  
115  
130  
140  
110  
°C  
°C  
°C  
°C  
TJ rising  
TJ falling  
THERMISTOR CONTROL  
Thermistor Current  
10,000 NTC  
100,000 NTC  
INTC_10k  
INTC_100k  
CNTC  
400  
40  
μA  
μA  
pF  
°C  
Thermistor Capacitance  
Cold Temperature Threshold  
Resistance Thresholds  
Cool to Cold Resistance  
Cold to Cool Resistance  
Hot Temperature Threshold  
Resistance Thresholds  
Hot to Typical Resistance  
Typical to Hot Resistance  
100  
0
TNTC_COLD  
No battery charging occurs  
No battery charging occurs  
RCOLD_FALL  
RCOLD_RISE  
TNTC_HOT  
20,500  
25,600  
24,400  
60  
30,720  
Ω
Ω
°C  
RHOT_FALL  
RHOT_RISE  
3700  
3350  
Ω
Ω
2750  
3950  
JEITA1 Li-ION BATTERY CHARGING  
SPECIFICATION DEFAULTS5  
JEITA Cold Temperature  
Resistance Thresholds  
Cool to Cold Resistance  
Cold to Cool Resistance  
JEITA Cool Temperature  
TJEITA_COLD  
0
°C  
No battery charging occurs  
RCOLD_FALL  
RCOLD_RISE  
TJEITA_COOL  
20,500  
13,200  
25,600  
24,400  
10  
30,720  
19,800  
Ω
Ω
°C  
Battery charging occurs at 50% of programmed  
level  
Resistance Thresholds  
Typical to Cool Resistance  
Cool to Typical Resistance  
JEITA Warm Temperature  
RTYP_FALL  
RTYP_RISE  
TJEITA_WARM  
16,500  
15,900  
45  
Ω
Ω
°C  
Battery termination voltage (VTRM) is reduced by  
100 mV  
Resistance Thresholds  
Warm to Typical Resistance  
Typical to Warm Resistance  
RWARM_FALL  
RWARM_RISE  
5800  
5200  
Ω
Ω
4260  
6140  
Rev. B | Page 4 of 44  
Data Sheet  
ADP5062  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
JEITA Hot Temperature  
Resistance Thresholds  
Hot to Warm Resistance  
Warm to Hot Resistance  
TJEITA_HOT  
60  
°C  
No battery charging occurs  
RHOT_FALL  
RHOT_RISE  
3700  
3350  
Ω
Ω
2750  
3950  
JEITA2 Li-ION BATTERY CHARGING  
SPECIFICATION DEFAULTS5  
JEITA Cold Temperature  
Resistance Thresholds  
Cool to Cold Resistance  
Cold to Cool Resistance  
JEITA Cool Temperature  
TJEITA_COLD  
0
°C  
No battery charging occurs  
RCOLD_FALL  
RCOLD_RISE  
TJEITA_COOL  
20,500  
13,200  
25,600  
24,400  
10  
30,720  
19,800  
Ω
Ω
°C  
Battery termination voltage (VTRM) is reduced by  
100 mV  
Resistance Thresholds  
Typical to Cool Resistance  
Cool to Typical Resistance  
JEITA Warm Temperature  
RTYP_FALL  
RTYP_RISE  
TJEITA_WARM  
16,500  
15,900  
45  
Ω
Ω
°C  
Battery termination voltage (VTRM) is reduced by  
100 mV  
Resistance Thresholds  
Warm to Typical Resistance  
Typical to Warm Resistance  
JEITA Hot Temperature  
Resistance Thresholds  
Hot to Warm Resistance  
Warm to Hot Resistance  
BATTERY DETECTION  
Sink Current  
RWARM_FALL  
RWARM_RISE  
TJEITA_HOT  
5800  
5200  
60  
Ω
Ω
°C  
4260  
2750  
6140  
3950  
No battery charging occurs  
RHOT_FALL  
RHOT_RISE  
3700  
3350  
Ω
Ω
ISINK  
ISOURCE  
13  
7
20  
10  
34  
13  
mA  
mA  
Source Current  
Battery Threshold  
Low  
High  
Battery Detection Timer  
TIMERS  
VBATL  
VBATH  
tBATOK  
1.8  
1.9  
3.4  
333  
2.0  
V
V
ms  
Clock Oscillator Frequency  
Start Charging Delay  
Trickle Charge  
Fast Charge  
Charge Complete  
Deglitch  
fCLK  
tSTART  
tTRK  
tCHG  
tEND  
tDG  
2.7  
3
1
60  
600  
7.5  
31  
3.3  
MHz  
sec  
min  
min  
min  
ms  
VBAT_SNS = VTRM, ICHG < IEND  
Applies to VTRK_DEAD, VRCH, IEND, VWEAK, VVIN_OK_RISE, and  
VVIN_OK_FALL  
Watchdog2  
Safety  
Battery Short2  
ILED OUTPUT PINS  
Voltage Drop over ILED  
tWD  
32  
40  
30  
sec  
min  
sec  
tSAFE  
tBAT_SHR  
36  
44  
VILED  
VMAXILED  
200  
mV  
V
IILED = 20 mA  
Maximum Operating Voltage over  
ILED  
5.5  
SYS_EN OUTPUT PIN  
SYS_EN FET On Resistance  
RON_SYS_EN  
10  
Ω
ISYS_EN = 20 mA  
Rev. B | Page 5 of 44  
ADP5062  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUT PINS  
Maximum Voltage on Digital Inputs  
Maximum Logic Low Input Voltage  
Minimum Logic High Input Voltage  
Pull-Down Resistance  
VDIN_MAX  
VIL  
VIH  
5.5  
0.5  
V
V
V
kΩ  
Applies to SCL, SDA, DIG_IO1, DIG_IO2, DIG_IO3  
Applies to SCL, SDA, DIG_IO1, DIG_IO2, DIG_IO3  
Applies to SCL, SDA, DIG_IO1, DIG_IO2, DIG_IO3  
Applies to DIG_IO1, DIG_IO2, DIG_IO3  
1.2  
215  
350  
610  
1 Undervoltage lockout generated normally from ISO_Sx or ISO_Bx; in certain transition cases, it can be generated from VINx.  
2 These values are programmable via I2C. Values are given with default register values.  
3 The output current during charging may be limited by the input current limit or by the isothermal charging mode.  
4 During weak charging mode, the charger provides at least 20 mA of charging current via the trickle charge branch to the battery unless trickle charging is disabled.  
Any residual current that is not required by the system is also used to charge the battery.  
5 Either JEITA1 (default) or JEITA2 can be selected in I2C, or both JEITA functions can be enabled or disabled in I2C.  
RECOMMENDED INPUT AND OUTPUT CAPACITANCES  
Table 2.  
Parameter  
CAPACITANCES  
VINx  
CBP  
ISO_Sx  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CVINx  
CCBP  
CISO_Sx  
CISO_Bx  
4
6
10  
10  
10  
14  
100  
μF  
nF  
μF  
μF  
Effective capacitance  
Effective capacitance  
Effective capacitance  
Effective capacitance  
10  
22  
22  
ISO_Bx  
I2C-COMPATIBLE INTERFACE TIMING SPECIFICATIONS  
Table 3.  
Parameter1  
Symbol  
Min  
Typ  
Max  
Unit  
I2C-COMPATIBLE INTERFACE2  
Capacitive Load for Each Bus Line  
SCL Clock Frequency  
SCL High Time  
SCL Low Time  
CS  
fSCL  
400  
400  
pF  
kHz  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
tHIGH  
tLOW  
tSU, DAT  
tHD, DAT  
tSU, STA  
tHD, STA  
tBUF  
tSU, STO  
tR  
tF  
0.6  
1.3  
100  
0
0.6  
0.6  
1.3  
0.6  
20  
20  
0
Data Setup Time  
Data Hold Time  
0.9  
Setup Time for Repeated Start  
Hold Time for Start/Repeated Start  
Bus Free Time Between a Stop and a Start Condition  
Setup Time for Stop Condition  
Rise Time of SCL/SDA  
300  
300  
50  
Fall Time of SCL/SDA  
Pulse Width of Suppressed Spike  
tSP  
1 Guaranteed by design.  
2 A master device must provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL (see Figure 2).  
Rev. B | Page 6 of 44  
 
 
 
 
 
 
 
 
Data Sheet  
ADP5062  
Timing Diagram  
SDA  
tF  
tSP  
tR  
tBUF  
tLOW  
tR  
tSU, DAT  
tF  
tHD, STA  
SCL  
tSU, STO  
tSU, STA  
tHIGH  
tHD, DAT  
S
Sr  
P
S
S = START CONDITION  
Sr = REPEATED START CONDITION  
P = STOP CONDITION  
Figure 2. I2C Timing Diagram  
Rev. B | Page 7 of 44  
 
ADP5062  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Maximum Power Dissipation  
Table 4. Absolute Maximum Ratings  
Parameter  
The maximum safe power dissipation in the ADP5062 package  
is limited by the associated rise in junction temperature (TJ) on  
the die. At a die temperature of approximately 150°C (the glass  
transition temperature), the properties of the plastic change.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, thereby perma-  
nently shifting the parametric performance of the ADP5062.  
Exceeding a junction temperature of 175°C for an extended  
period can result in changes in the silicon devices, potentially  
causing failure.  
Rating  
VIN1, VIN2, VIN3 to AGND  
All Other Pins to AGND  
Continuous Drain Current, Battery Supple-  
mentary Mode, from ISO_Bx to ISO_Sx  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
–0.5 V to +20 V  
–0.3 V to +6 V  
2.1 A  
–65°C to +150°C  
–40°C to +125°C  
JEDEC J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
THERMAL RESISTANCE  
JA is specified for the worst-case conditions, that is, JA is  
specified for a device soldered in a circuit board for surface-  
mount packages.  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
20-Lead LFCSP  
35.6  
3.65  
°C/W  
Rev. B | Page 8 of 44  
 
 
 
 
Data Sheet  
ADP5062  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
SCL  
DIG_IO3  
DIG_IO2  
BAT_SNS  
DIG_IO1  
1
2
3
4
5
15 ILED  
14 ISO_B3  
13 ISO_B2  
12 ISO_B1  
11 ISO_S3  
ADP5062  
TOP VIEW  
(Not to Scale)  
NOTES  
1. CONNECTION OF THE EXPOSED PAD IS NOT REQUIRED. THE  
EXPOSED PAD CAN BE CONNECTED TO ANALOG GROUND TO  
IMPROVE HEAT DISSIPATION FROM THE PACKAGE TO BOARD.  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Name  
Type1 Description  
9, 10, 11  
ISO_S1, ISO_S2,  
ISO_S3  
I/O  
Linear Charger Supply Side Input to Internal Isolation FET/Battery Current Regulation FET. High  
current input/output.  
6, 7, 8  
20  
VIN1, VIN2, VIN3 I/O  
AGND  
Power Connections to USB VBUS. These pins are high current inputs when in charging mode.  
Analog Ground.  
G
12, 13, 14  
ISO_B1, ISO_B2, I/O  
ISO_B3  
Battery Supply Side Input to Internal Isolation FET/Battery Current Regulation FET.  
1
17  
5
SCL  
SDA  
DIG_IO1  
I
I2C-Compatible Interface Serial Clock.  
I2C-Compatible Interface Serial Data.  
Set Input Current Limit. This pin sets the input current limit directly. When DIG_IO1 = low or  
high-Z, the input limit is 100 mA. When DIG_IO1 = high, the input limit is 500 mA.2, 3  
I/O  
GPIO  
3
DIG_IO2  
GPIO  
Disable IC1. The DIG_IO2 pin sets the charger to the low current mode. When DIG_IO2 = low or  
high-Z, the charger operates in normal mode. When DIG_IO2 = high, the LDO and the charger are  
disabled and VINx current consumption is 280 µA (typical). In addition, when DIG_IO2 is high,  
20 V VINx input protection is disabled and the VINx voltage level must fulfill the condition,  
V
ISO_Bx < VVINx < 5.5 V.2, 3  
2
DIG_IO3  
THR  
GPIO  
I
Enable Charging. When DIG_IO3 = low or high-Z, charging is disabled. When DIG_IO3 = high,  
charging is enabled.2, 3  
Battery Pack Thermistor Connection. If this pin is not used, connect a dummy 10 kΩ resistor from  
THR to GND.  
18  
4
15  
16  
BAT_SNS  
ILED  
SYS_EN  
I
O
O
Battery Voltage Sense Pin.  
Open-Drain Output to Indicator LED.  
System Enable. This pin is the battery OK flag/open-drain pull-down FET to enable the system  
when the battery reaches the VWEAK level.  
19  
N/A4  
CBP  
EP  
I/O  
N/A4  
Bypass Capacitor Input.  
Exposed Pad. Connection of the exposed pad is not required. The exposed pad can be connected  
to analog ground to improve heat dissipation from the package to the board.  
1 I is input, O is output, I/O is input/output, G is ground, and GPIO is the factory programmable general-purpose input/output.  
2 See the Digital Input and Output Options section for details.  
3 The DIG_IOx setting defines the initial state of the ADP5062. If the parameter or the mode that is related to each DIG_IOx pin setting is changed (by programming an  
equivalent I2C register bit or bits), the I2C register setting takes precedence over the DIG_IOx pin setting. VINx connection or disconnection resets control to the  
DIG_IOx pin.  
4 N/A means not applicable.  
Rev. B | Page 9 of 44  
 
 
ADP5062  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VVINx = 5.0 V, C VINx = 10 µF, CISO_Sx = 44 µF, CISO_Bx = 22 µF, CCBP = 10 nF, all registers at default values, unless otherwise noted.  
4.40  
4.38  
4.36  
4.34  
4.32  
4.30  
4.28  
4.26  
4.24  
4.22  
4.20  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
0.01  
0.1  
1
0.01  
0.1  
1
SYSTEM OUTPUT CURRENT (A)  
SYSTEM OUTPUT CURRENT (A)  
Figure 7. System Voltage vs. System Output Current, LDO Mode, VVINx = 6.0 V,  
VSYSTEM[2:0] = 111 (Binary) = 5.0 V  
Figure 4. System Voltage vs. System Output Current, LDO Mode,  
VSYSTEM[2:0] = 000 (Binary) = 4.3 V  
4.5  
5.4  
LOAD = 100mA  
LOAD = 100mA  
LOAD = 500mA  
LOAD = 500mA  
4.4  
5.2  
LOAD = 1000mA  
LOAD = 1000mA  
5.0  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
4.0  
4.4  
4.8  
5.2  
5.6  
6.0  
6.4  
6.8  
4.0  
4.4  
4.8  
5.2  
5.6  
6.0  
6.4  
6.8  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 5. System Voltage vs. Input Voltage (in Dropout), LDO Mode,  
VSYSTEM[2:0] = 000 (Binary) = 4.3 V  
Figure 8. System Voltage vs. Input Voltage (in Dropout), LDO Mode,  
VSYSTEM[2:0] = 111 (Binary) = 5.0 V  
1000  
900  
700  
WEAK  
600  
CHARGE  
800  
500  
700  
600  
500  
400  
300  
200  
100  
0
LIMIT = 900mA  
LIMIT = 500mA  
LIMIT = 100mA  
FAST CHARGE  
400  
300  
200  
TRICKLE CHARGE  
100  
0
2.3  
2.7  
3.2  
3.7  
4.2  
2.8  
3.3  
3.8  
4.3  
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
Figure 6. Input Current-Limited Charge Current vs. Battery Voltage  
Figure 9. Battery Charge Current vs. Battery Voltage, ICHG[4:0] = 01001  
(Binary) = 500 mA, ILIM[3:0] = 1111 (Binary) = 2100 mA  
Rev. B | Page 10 of 44  
 
Data Sheet  
ADP5062  
70  
65  
60  
55  
50  
45  
70  
65  
60  
55  
50  
45  
40  
40  
2.7  
0
0.5  
1.0  
1.5  
2.0  
3.2  
3.7  
4.2  
LOAD CURRENT (A)  
BATTERY VOLTAGE (V)  
Figure 10. Ideal Diode RON vs. Battery Voltage, IISO_Sx = 500 mA, VINx Open  
Figure 12. Ideal Diode RON vs. Load Current, VISO_Bx = 3.6 V  
4.0  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
0.7  
DEFAULT STARTUP  
DIS_LDO = HIGH  
DIS_IC1 = HIGH  
V
I
BAT_SNS  
ISO_Bx  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
2
4
6
8
0
50  
100  
150  
VINx VOLTAGE (V)  
CHARGE TIME (min)  
Figure 11. VINx Current vs. VINx Voltage, No Battery  
Figure 13. Charge Profile, ILIM[3:0] = 0110 (Binary) = 500 mA, Battery  
Capacity = 925 mAh  
Rev. B | Page 11 of 44  
 
 
ADP5062  
Data Sheet  
TEMPERATURE CHARACTERISTICS  
1.5  
0.5  
0.4  
V
V
V
= 3.6V  
= 4.2V  
= 5.5V  
ISO_Bx  
ISO_Bx  
ISO_Bx  
V
V
= 4.3V  
= 5.0V  
ISO_Sx  
ISO_Sx  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–40  
–15  
10  
35  
60  
85  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 14. Battery Leakage Current vs. Ambient Temperature  
Figure 17. System Voltage vs. Temperature, Trickle Charge Mode,  
ISO_Sx = 4.3 V and VINx = 5.0 V, or VISO_Sx = 5.0 V and VINx = 6.0 V  
V
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
V
V
= 4.0V  
= 5.0V  
= 5.5V  
V
V
V
= 4.0V  
= 5.0V  
= 6.7V  
IN  
IN  
IN  
IN  
IN  
IN  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 18. VINx Quiescent Current vs. Ambient Temperature, LDO Mode  
Figure 15. VINx Quiescent Current vs. Ambient Temperature, DIS_IC1 = High  
0.5  
0.5  
V
V
V
= 3.8V  
= 4.2V  
= 4.5V  
V
V
= 4.3V  
= 5.0V  
TRM  
TRM  
TRM  
ISO_Sx  
ISO_Sx  
0.4  
0.3  
0.4  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 19. Termination Voltage vs. Ambient Temperature  
Figure 16. LDO Mode Voltage vs. Ambient Temperature,  
Load = 100 mA, VVINx = 5.5 V  
Rev. B | Page 12 of 44  
 
Data Sheet  
ADP5062  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
I
= 1300mA  
CHG  
I
= 1500mA  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
LIM  
I
I
I
= 900mA  
= 500mA  
= 100mA  
LIM  
LIM  
LIM  
I
I
= 750mA  
CHG  
= 500mA  
–15  
CHG  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40  
10  
35  
60  
85  
110  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 20. Fast Charge CC Mode Current vs. Ambient Temperature  
Figure 22. Input Current Limit vs. Ambient Temperature  
7.00  
6.95  
6.90  
6.85  
6.80  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
AMBIENT TEMPERATURE (°C)  
Figure 21. VINx Overvoltage Threshold vs. Ambient Temperature  
Rev. B | Page 13 of 44  
ADP5062  
Data Sheet  
TYPICAL WAVEFORMS  
T
T
V
ISO_Sx  
VINx  
V
V
ISO_Sx  
V
VINx  
4
1
4
1
I
ISO_Bx  
I
ISO_Bx  
I
VINx  
2
2
I
VINx  
3
3
CH1 2.00V  
CH3 200mA CH4 2.00V  
CH2 200mA  
M200.0µs  
A
CH2  
216mA  
CH1 2.00V  
CH3 200mA CH4 2.00V  
CH2 200mA  
M1.00ms  
1.00ms  
A
CH2  
120mA  
T
0.00s  
T
Figure 26. USB VBUS Disconnect  
Figure 23. Charging Startup, VVINx = 5.0 V, ILIM[3:0] = 0110 (Binary) = 500 mA,  
ICHG[4:0] = 01110 (Binary) = 750 mA  
V
ISO_Sx  
T
T
V
ISO_Sx  
1
I
I
ISO_Bx  
1
2
I
ISO_Sx  
ISO_Sx  
2
CH1 1.00V  
CH3 500mA  
CH2 500mA  
M1.0ms  
3.00ms  
A
CH2  
–610mA  
CH1 100mV CH2 500mA  
M1.00ms  
3.00ms  
A
CH2  
820mA  
T
T
Figure 27. Load Transient, IISO_Sx Load = 300 mA to 1500 mA to 300 mA,  
EN_CHG = High, ILIM[3:0] = 0110 (Binary) = 500 mA  
Figure 24. Load Transient, IISO_Sx Load = 300 mA to 1500 mA to 300 mA  
T
T
V
ISO_Sx  
2
1
V
VINx  
V
ISO_Bx  
2
3
I
ISO_Bx  
I
ISO_Bx  
3
4
I
VINx  
CH2 2.00V  
M200ms  
0.00s  
A
CH3  
17.2mA  
CH1 200mV CH2 200mV  
CH3 500mA CH4 500mA  
M40.0µs  
0.00s  
A
CH3  
610mA  
CH3 10.0mA  
T
T
Figure 28. Battery Detection Waveform, VSYSTEM[2:0] = 000 (Binary) = 4.3 V,  
No Battery  
Figure 25. Input Current-Limit Transition from 100 mA to 900 mA,  
ISO_Sx Load = 66 Ω, Charging = 750 mA  
Rev. B | Page 14 of 44  
 
Data Sheet  
ADP5062  
THEORY OF OPERATION  
SUMMARY OF OPERATION MODES  
Table 7. Summary of the ADP5062 Operation Modes  
VINx  
Trickle  
Charge  
LDO FET Battery  
System Voltage  
ISO_Sx  
Mode Name  
Condition  
Battery Condition  
State  
Isolation FET  
Additional Conditions1  
IC Off, Standby  
0 V  
Any battery condition  
Off  
Off  
On/Off  
Battery voltage  
or 0 V  
Disable IC1  
IC Off, Suspend  
LDO Mode Off, Isolation  
FET On  
5 V  
5 V  
Any battery condition  
Any battery condition  
Off  
Off  
Off  
Off  
On  
On  
Battery voltage  
Battery voltage  
Disable IC1  
Disable LDO and enable  
isolation FET  
LDO Mode Off, Isolation  
FET Off (System Off)  
5 V  
Any battery condition  
Off  
Off  
Off  
0 V  
Enable battery charging  
LDO Mode, Charger Off  
Trickle Charge Mode  
Weak Charge Mode  
Fast Charge Mode  
Charge Mode, No Battery  
Charge Mode, Battery  
(ISO_Bx) Shorted  
5 V  
5 V  
5 V  
5 V  
5 V  
5 V  
Any battery condition  
Battery < VTRK_DEAD  
VTRK_DEAD ≤ battery < VWEAK  
Battery ≥ VWEAK  
Open  
Off  
On  
On  
Off  
Off  
On  
LDO  
LDO  
CHG  
CHG  
LDO  
LDO  
Off  
Off  
CHG  
CHG  
Off  
5.0 V  
5.0 V  
3.8 V  
3.8 V (minimum)  
5.0 V  
Enable battery charging  
Enable battery charging  
Enable battery charging  
Enable battery charging  
Enable battery charging  
Enable battery charging  
Shorted  
Off  
5.0 V  
1 See Table 8 for details.  
Table 8. Operation Mode Controls  
Equivalent I2C  
Address, Data Bit(s) Description  
Pin Configuration  
DIG_IOx  
Enable Battery Charging  
DIG_IO3  
0x07, D0  
Low = all charging modes disabled (fast, weak, trickle).  
High = all charging modes enabled (fast, weak, trickle).  
VINx1 Supply  
Disable IC1  
DIG_IO2  
0x07, D6  
Disable IC1  
Connected  
LDO_FET ISO_FET  
Low  
No  
Off  
On  
Yes  
No2  
Yes  
CHG  
Off  
Off  
CHG  
On  
On  
High  
Disable LDO and Enable Isolation FET  
0x07, D3, D0  
Low = LDO enabled.  
High = LDO disabled. In addition, when EN_CHG = low, the  
battery isolation FET is on; when EN_CHG = high, the battery  
isolation FET is off.  
1 When disable IC1 mode is active, the VINx supply must always be connected and the supply voltage level must fulfill the following condition: VISO_Bx < VINx < 5.5 V.  
2 When disable IC1 mode is active, the back gate of the LDO FET is not controlled. If the VINx pins are not connected to any voltage supply, the body diode of the LDO  
FET can become forward biased and the voltage at VINx is VISO_Bx – VF (VF is the forward voltage of the LDO FET body diode).  
Rev. B | Page 15 of 44  
 
 
 
 
 
ADP5062  
Data Sheet  
by an external USB detection device, the ADP5062 can be set to  
apply the correct current limit for optimal charging and USB  
compliance. The USB charger permits correct operation under  
all USB compliant sources such as wall chargers, host chargers,  
hub chargers, and standard host and hubs.  
A processor can control the USB charger using the I2C to  
program the charging current and numerous other parameters,  
including  
INTRODUCTION  
The ADP5062 is a fully-programmable I2C charger for single  
cell lithium-ion or lithium-polymer batteries suitable for a wide  
range of portable applications.  
The linear charger architecture enables up to 2.1 A output  
current at 4.3 V to 5.0 V (I2C programmable) on the system  
power supply, and up to 1.3 A charge current into the battery  
from a dedicated charger.  
Trickle charge current level  
The ADP5062 operates from an input voltage of 4 V up to 6.7 V  
but is tolerant of voltages of up to 20 V. The 20 V voltage tolerance  
alleviates the concerns of the USB bus spiking during discon-  
nection or connection scenarios.  
Trickle charge voltage threshold  
Weak charge (constant current) current level  
Fast charge (constant current) current level  
Fast charge (constant voltage) voltage level at 1% accuracy  
Fast charge safety timer period  
Watchdog safety timer parameters  
Weak battery threshold detection  
Charge complete threshold  
Recharge threshold  
Charge enable/disable  
Battery pack temperature detection and automatic charger  
shutdown  
The ADP5062 features an internal FET between the linear charger  
output and the battery. This feature permits battery isolation  
and, hence, system powering under a dead battery or no battery  
scenario, which allows for immediate system function upon  
connection to a USB power supply.  
The ADP5062 is fully compliant with USB 3.0 and the USB  
Battery Charging Specification 1.2. The ADP5062 is chargeable  
via the mini USB VBUS pin from a wall charger, car charger, or  
USB host port. Based on the type of USB source, which is detected  
Rev. B | Page 16 of 44  
 
Data Sheet  
ADP5062  
ISO_S1  
ISO_S2  
ISO_S3  
VIN1  
HIGH VOLTAGE  
BLOCKING  
LDO FET  
6
9
TO USB VBUS  
OR WALL  
TO SYSTEM  
LOAD  
ADAPTER  
VIN2  
VIN3  
10  
7
8
+
11  
+
LDO FET  
CONTROL  
VIN LIMIT  
6.85V  
VIN  
OVERVOLTAGE  
CBP  
BATTERY  
ISOLATION FET  
19  
TRICKLE  
CURRENT  
SOURCE  
+
3.9V  
3MHz OSC  
ISO_B1  
ISO_B2  
ISO_B3  
12  
13  
14  
+
VIN GOOD  
EOC  
SCL  
SDA  
1
CHARGE CONTROL  
+
17  
CV MODE  
RECHARGE  
2
I C INTERFACE  
DIG_IO1  
DIG_IO2  
DIG_IO3  
AND  
5
3
2
CONTROL LOGIC  
+
WEAK  
BATTERY  
DETECTION  
SINK  
+
TRICKLE  
BATTERY:  
OPEN  
BAT_SNS  
4
+
SHORT  
3.4V  
1.9V  
SYS_EN  
16  
BATTERY DETECTION  
+
SYS_EN OUTPUT  
LOGIC  
VIN – 150mV  
BATTERY OVERVOLTAGE  
COLD  
ILED  
15  
COOL  
ILED OUTPUT  
LOGIC  
NTC CURRENT  
CONTROL  
WARM  
HOT  
THR  
+
18  
0.5V  
THERMAL CONTROL  
AGND  
20  
SINGLE  
CELL  
Li-Ion  
Figure 29. Block Diagram  
Rev. B | Page 17 of 44  
ADP5062  
Data Sheet  
The ADP5062 includes a number of significant features to  
optimize charging and functionality including  
Table 9. DIG_IO1 Operation  
DIG_IO1  
Function  
0
100 mA input current limit or I2C programmed  
value  
Thermal regulation for maximum performance.  
USB host current limit.  
Termination voltage accuracy: 1%.  
Battery thermistor input with automatic charger shutdown  
in the event that the battery temperature exceeds limits  
(compliant with the JEITA Li-Ion battery charging  
temperature specification).  
1
500 mA input current limit or I2C programmed  
value (or reprogrammed I2C value from 100 mA  
default)  
USB Compatibility  
The ADP5062 features an I2C-programmable input current  
limit to ensure compatibility with the requirements listed in  
Table 10. The current limit defaults to 100 mA to allow com-  
patibility with a USB host or hub that is not configured.  
The I2C register default is 100 mA. An I2C write command to  
the ILIM register overrides the DIG_IOx pins and the I2C  
register default value can be reprogrammed for alternative  
requirements.  
Three external pins (DIG_IO1, DIG_IO2, and DIG_IO3)  
that directly control a number of parameters. These pins  
are factory programmable for maximum flexibility. They  
can be factory programmed for functions such as  
Enable/disable charging.  
Control of 100 mA or 500 mA input current limit.  
Control of 1500 mA input current limit.  
Control of the battery charge current.  
Interrupt output pin.  
When the input current-limit feature is used, the available input  
current may be too low for the charger to meet the programmed  
charging current, ICHG, thereby reducing the rate of charge and  
setting the VIN_ILIM flag.  
See the Digital Input and Output Options section for details.  
CHARGER MODES  
Input Current Limit  
The VINx input current limit is controlled via the internal I2C  
ILIM bits. The input current limit can also be controlled via the  
DIG_IO1 pin (if factory programmed to do so) as outlined in  
Table 9. Any change in the I2C default from 100 mA takes  
precedence over the pin setting.  
When connecting voltage to VINx without the proper voltage  
level on the battery side, the high voltage blocking mechanism  
is in a state wherein it draws only the current of <1 mA until  
VIN reaches the VIN_OK level.  
The ADP5062 charger provides support for the following con-  
nections through the single connector VINx pin, as shown in  
Table 10.  
Table 10. Input Current Compatibility with Standard USB Limits  
Mode  
Standard USB Limit  
ADP5062 Function  
USB (China Only)  
100 mA limit for standard USB host or hub  
300 mA limit for Chinese USB specification  
100 mA limit for standard USB host or hub  
500 mA limit for standard USB host or hub  
150 mA limit for superspeed USB 3.0 host or hub  
100 mA input current limit or I2C programmed value  
300 mA input current limit or I2C programmed value  
100 mA input current limit or I2C programmed value  
500 mA input current limit or I2C programmed value  
150 mA input current limit or I2C programmed value  
USB 2.0  
USB 3.0  
900 mA limit for superspeed, high speed USB host or hub  
charger  
900 mA input current limit or I2C programmed value  
Dedicated Charger 1500 mA limit for dedicated charger or low/full speed USB host  
or hub charger  
1500 mA input current limit or I2C programmed value  
Rev. B | Page 18 of 44  
 
 
 
Data Sheet  
ADP5062  
Trickle Charge Mode  
Fast Charge Mode (Constant Current)  
A deeply discharged Li-Ion cell can exhibit a very low cell voltage  
making it unsafe to charge the cell at high current rates. The  
ADP5062 charger uses a trickle charge mode to reset the battery  
pack protection circuit and lift the cell voltage to a safe level for  
fast charging. A cell with a voltage below VTRK_DEAD is charged  
with the trickle mode current, ITRK_DEAD. During trickle charging  
mode, the CHARGER_STATUS bits are set.  
When the battery voltage exceeds VTRK_DEAD and VWEAK, the  
charger switches to fast charge mode, charging the battery with  
the constant current, ICHG. During fast charge mode (constant  
current), the CHARGER_STATUS bits are set to 010.  
During constant current mode, other features may prevent the  
current, ICHG, from reaching its full programmed value. Isothermal  
charging mode or input current limiting for USB compatibility  
can affect the value of ICHG under certain operating conditions.  
The voltage on ISO_Sx is regulated to stay at VISO_SFC by the  
During trickle charging, the ISO_Sx node is regulated to VISO_STRK  
by the LDO and the battery isolation FET is off, which means  
that the battery is isolated from the system power supply.  
battery isolation FET when VISO_Bx < VISO_SFC  
.
Trickle Charge Mode Timer  
Fast Charge Mode (Constant Voltage)  
The duration of trickle charge mode is monitored to ensure that  
the battery is revived from its deeply discharged state. If trickle  
charge mode runs for longer than 60 minutes without the cell  
voltage reaching VTRK_DEAD, a fault condition is assumed and  
charging stops. The fault condition is asserted on the CHARGER_  
STATUS bits, allowing the user to initiate the fault recovery  
procedure specified in the Fault Recovery section.  
As the battery charges, its voltage rises and approaches the termi-  
nation voltage, VTRM. The ADP5062 charger monitors the voltage  
on the BAT_SNS pin to determine when charging should end.  
However, the internal ESR of the battery pack combined with  
the printed circuit board (PCB) and other parasitic series  
resistances creates a voltage drop between the sense point at the  
BAT_SNS pin and the cell terminal. To compensate for this and to  
ensure a fully charged cell, the ADP5062 enters a constant voltage  
charging mode when the termination voltage is detected on the  
BAT_SNS pin. The ADP5062 reduces charge current gradually as  
the cell continues to charge, maintaining a voltage of VTRM on the  
BAT_SNS pin. During fast charge mode (constant voltage), the  
CHARGER_ STATUS[2:0] bits are set to 011.  
Weak Charge Mode (Constant Current)  
When the battery voltage exceeds VTRK_DEAD but is less than  
V
WEAK, the charger switches to intermediate charge mode.  
During the weak charge mode, the battery voltage is too low to  
allow the full system to power-up. Because of the low battery  
level, the USB transceiver cannot be powered and, therefore,  
cannot enumerate for more current from a USB host. Conse-  
quently, the USB limit remains at 100 mA.  
Fast Charge Mode Timer  
The duration of fast charge mode is monitored to ensure that  
the battery is charging correctly. If the fast charge mode runs  
for longer than tCHG without the voltage at the BAT_SNS pin  
reaching VTRM, a fault condition is assumed and charging stops.  
The fault condition is asserted on the CHARGER_STATUS[2:0]  
bits, allowing the user to initiate the fault recovery procedure as  
specified in the Fault Recovery section.  
The system microcontroller may or may not be powered by the  
charger output voltage (VISO_SFC), depending upon the amount  
of current that the microcontroller and/or the system architecture  
requires. When the ISO_Sx pins power the microcontroller, the  
battery charge current (ICHG_WEAK) cannot be increased above  
20 mA to ensure microcontroller operation (if doing so), nor  
can ICHG_WEAK be increased above the 100 mA USB limit. There-  
fore, set the battery charging current as follows:  
If the fast charge mode runs for longer than tCHG, and VTRM has  
been reached on the BAT_SNS pin but the charge current has  
not yet fallen below IEND, charging stops. No fault condition is  
asserted in this circumstance and charging resumes as normal if  
the recharge threshold is breached.  
Set the default 20 mA via the linear trickle charger branch (to  
ensure that the microprocessor remains alive if powered by  
the main charger output, ISO_Sx). Any residual current on  
the main charger output, ISO_Sx, is used to charge the  
battery.  
Watchdog Timer  
The ADP5062 charger features a programmable watchdog timer  
function to ensure charging is under the control of the processor.  
The watchdog timer starts running when the ADP5062 charger  
determines that the processor should be operational, that is,  
when the processor sets the RESET_WD bit for the first time or  
when the battery voltage is greater than the weak battery threshold,  
During weak current mode, other features may prevent the  
weak charging current from reaching its full programmed  
value. Isothermal charging mode or input current limiting for  
USB compatibility can affect the programmed weak charging  
current value under certain operating conditions. During  
weak charging, the ISO_Sx node is regulated to VISO_SFC by  
the battery isolation FET.  
V
WEAK. When the watchdog timer has been triggered, it must be  
reset regularly within the watchdog timer period, tWD  
.
While in charger mode, if the watchdog timer expires without  
being reset, the ADP5062 charger assumes that there is a software  
problem and triggers the safety timer, tSAFE. For more infor-  
mation see the Safety Timer section.  
Rev. B | Page 19 of 44  
 
ADP5062  
Data Sheet  
Safety Timer  
Battery Voltage Limit to Prevent Charging  
While in charger mode, if the watchdog timer expires, the  
ADP5062 charger initiates the safety timer, tSAFE (see the  
Watchdog Timer section). If the processor has programmed  
charging parameters by the time the charger initiates the safety  
timer, the ILIM is set to the default value. Charging continues for  
a period of tSAFE, and then the charger switches off and sets the  
CHARGER_STATUS [2:0] bits.  
The battery monitor of the ADP5062 charger can be configured  
to monitor battery voltage and prevent charging when the battery  
voltage is higher than VCHG_VLIM (typically 3.7 V) during charging  
start-up (enabled by EN_CHG or DIG_IO3). This function can  
prevent unnecessary charging of a half discharged battery and,  
as such, can extend the lifetime of the Li-Ion battery cell. Charging  
starts automatically when the battery voltage drops below VCHG_VLIM  
and continues through full charge cycle until the battery voltage  
reaches VTRM (typically 4.2 V).  
Charge Complete  
The ADP5062 charger monitors the charging current while  
in constant voltage fast charge mode. If the current falls  
below IEND and remains below IEND for tEND, charging stops  
and the CHDONE flag is set. If the charging current falls below  
By default, the charging voltage limit is disabled and it can be  
enabled from I2C Register Address 0x08, Bit 5 (EN_CHG_VLIM).  
SYS_EN Output  
I
END for less than tEND and then rises above IEND again, the tEND  
The ADP5062 features a SYS_EN open-drain FET to enable the  
system until the battery is at the minimum required level for  
guaranteed system start-up. When there are minimum battery  
voltage and/or minimum battery charge level requirements, the  
operation of SYS_EN can be set by I2C programming. The SYS_EN  
operation can be factory programmed to four different operating  
conditions as described in Table 11.  
timer resets.  
Recharge  
After the detection of charge complete, and the cessation of  
charging, the ADP5062 charger monitors the BAT_SNS pin as  
the battery discharges through normal use. If the BAT_SNS pin  
voltage falls to VRCH, the charger reactivates charging. Under most  
circumstances, triggering the recharge threshold results in the  
charger starting directly into fast charge constant voltage mode.  
The recharge function can be disabled in the I2C, but a status bit  
(Register Address 0x0C, Bit 3) informs the system that a recharge  
cycle is required.  
Table 11. SYS_EN Mode Descriptions  
SYS_EN Mode  
Description  
Selection  
SYS_EN is activated when LDO is active and  
system voltage is available.  
00  
SYS_EN is activated by the ISO_Bx voltage, the  
battery charging mode.  
01  
10  
IC Enable/Disable  
The ADP5062 IC can be disabled by the DIG_IO2 digital input  
pin (if factory programmed to do so) or by the I2C registers. All  
internal control circuits are disabled when the IC is disabled. Dis-  
abling the IC1 option can also control the states of the LDO FET  
and the battery isolation FET.  
SYS_EN is activated and the isolation FET is  
disabled when the battery drops below VWEAK  
.
This option is active when VINx = 0 V and the  
battery monitor is activated from Register 0x07,  
Bit 5 (EN_BMON).  
SYS_EN is active in LDO mode when the charger is  
disabled.  
11  
It is critical to note that during the disable IC1 mode, a high  
voltage at VINx passes to the internal supply voltage because all  
of the internal control circuits are disabled. The VINx supply  
voltage must fulfill the following condition:  
SYS_EN is active in charging mode when VISO_Bx  
VWEAK  
.
VISO_Bx < VINx < 5.5 V  
Indicator LED Output (ILED)  
Battery Charging Enable/Disable  
The ILED is an open-drain output for an indicator LED connec-  
tion. Optionally, the ILED output can be used as a status output  
for a microcontroller. Indicator LED modes are listed in Table 12.  
The ADP5062 charging function can be disabled by setting the  
I2C EN_CHG bit to low. The LDO to the system still operates  
under this circumstance and can be set in I2C to the default or  
I2C programmed system voltage from 4.3 V to 5.0 V (see Table 26  
for details).  
Table 12. Indicator LED Operation Modes  
ADP5062 Mode  
ILED Mode  
On/Off Time  
IC Off  
Off  
The ADP5062 charging function can also be controlled via one  
of the external DIG_IOx pins (if factory programmed to do so).  
Any change in the I2C EN_CHG bit takes precedence over the pin  
setting.  
LDO Mode Off  
LDO Mode On  
Charge Mode  
Timer Error (tTRK, tCHG, tSAFE  
Overtemperature (TSD)  
Off  
Off  
Continuously on  
Blinking  
Blinking  
)
167 ms/833 ms  
1 sec/1 sec  
Rev. B | Page 20 of 44  
 
 
 
Data Sheet  
ADP5062  
THERMAL MANAGEMENT  
BATTERY ISOLATION FET  
Isothermal Charging  
The ADP5062 charger features an integrated battery isolation  
FET for power path control. The battery isolation FET isolates a  
deeply discharged Li-Ion cell from the system power supply in  
both trickle and fast charge modes, thereby allowing the system  
to be powered at all times.  
The ADP5062 includes a thermal feedback loop that limits the  
charge current when the die temperature exceeds TLIM (typically  
115°C). As the on-chip power dissipation and die temperature  
increase, the charge current is automatically reduced to maintain  
the die temperature within the recommended range. As the die  
temperature decreases due to lower on-chip power dissipation  
or ambient temperature, the charge current returns to the pro-  
grammed level. During isothermal charging, the THERM_LIM  
I2C flag is set to high.  
When VINx is below VVIN_OK_RISE, the battery isolation FET is in  
full conducting mode.  
The battery isolation FET is off during trickle charge mode.  
When the battery voltage exceeds VTRK_DEAD, the battery iso-  
lation FET switches to the system voltage regulation mode.  
During system voltage regulation mode, the battery isolation  
FET maintains the VISO_SFC voltage on the ISO_Sx pins. When  
the battery voltage exceeds VISO_SFC, the battery isolation FET is  
in full conducting mode.  
This thermal feedback control loop allows the user to set the  
programmed charge current based on typical rather than worst  
case conditions.  
The ADP5062 does not include a thermal feedback loop to limit  
ISO_Sx load current in LDO mode. If the power dissipated on  
chip during LDO mode causes the die temperature to exceed  
130°C, an interrupt is generated. If the die temperature continues  
to rise beyond 140°C, the device enters thermal shutdown.  
The battery isolation FET supplements the battery to support  
high current functions on the system power supply. When the  
voltage on ISO_Sx drops below VISO_Bx, the battery isolation FET  
enters into full conducting mode. When voltage on ISO_Sx  
rises above VISO_Bx, the isolation FET enters regulating mode or  
full conduction mode, depending on the Li-Ion cell voltage and  
the linear charger mode.  
Thermal Shutdown and Thermal Early Warning  
The ADP5062 charger features a thermal shutdown threshold  
detector. If the die temperature exceeds TSD, the ADP5062 charger  
is disabled, and the TSD 140°C bit is set. The ADP5062 charger  
can be reenabled when the die temperature drops below the TSD  
falling limit and the TSD 140°C bit is reset. To reset the TSD  
140°C bit, write to the I2C fault register, Register Address 0x0D  
(Bit 0) or cycle the power.  
BATTERY DETECTION  
Battery Voltage Level Detection  
The ADP5062 charger features a battery detection mechanism to  
detect an absent battery. The charger actively sinks and sources  
current into the ISO_Bx node, and voltage vs. time is detected.  
The sink phase is used to detect a charged battery, whereas the  
source phase is used to detect a discharged battery.  
Before the die temperature reaches TSD, the early warning bit is  
set if TSDL is exceeded. This allows the system to accommodate  
power consumption before thermal shutdown occurs.  
The sink phase (see Figure 30) sinks ISINK current from the ISO_Bx  
pins for a time period, tBATOK. If ISO_Bx is below VBATL when the  
Fault Recovery  
t
BATOK timer expires, the charger assumes no battery is present and  
Before performing the following operation, it is important to  
ensure that the cause of the fault has been rectified.  
starts the source phase. If the ISO_Bx pin exceeds the VBATL voltage  
when the tBATOK timer expires, the charger assumes the battery is  
present and begins a new charge cycle.  
To recover from a charger fault (when CHARGER_STATUS[2:0] =  
110), cycle power on VINx or write high to reset the I2C fault bits  
in the fault register (Register Address 0x0D).  
The source phase sources ISOURCE current to the ISO_Bx pins for  
a time period, tBATOK. If If ISO_Bx exceeds VBATH before the tBATOK  
timer expires, the charger assumes that no battery is present. If  
the ISO_Bx pin does not exceed the VBATH voltage when the tBATOK  
timer expires, the charger assumes that a battery is present and  
begins a new charge cycle.  
Rev. B | Page 21 of 44  
 
 
 
 
ADP5062  
Data Sheet  
SOURCE PHASE  
SINK PHASE  
VBATL  
V
BATH  
LOGIC  
STATUS  
LOGIC  
STATUS  
tBAT_OK  
tBAT_OK  
OPEN  
OR  
SHORT  
OPEN  
ISO_Bx  
ISO_Bx  
Figure 30. Sink Phase  
SINK PHASE  
TRICKLE CHARGE  
SOURCE PHASE  
V
V
V
BATL  
BATH  
BAT_SHR  
LOGIC  
STATUS  
LOGIC  
STATUS  
LOGIC  
STATUS  
tBAT_OK  
tBAT_OK  
tBAT_SHR  
SHORT  
OR  
OPEN  
OR  
SHORT  
SHORT  
LOW  
ISO_Bx  
BATTERY  
ISO_Bx  
ISO_Bx  
Figure 31. Trickle Charge  
Battery (ISO_Bx) Short Detection  
The battery pack temperature sensing can be controlled by  
I2C, using the conditions shown in Table 13. Note that the  
I2C register default setting for EN_THR (Register Address 0x07)  
is 0 = temperature sensing off.  
A battery short occurs under a damaged battery condition or  
when the battery protection circuitry is enabled.  
On commencing trickle charging, the ADP5062 charger moni-  
tors the battery voltage. If this battery voltage does not exceed  
Table 13. THR Input Function  
VBAT_SHR within the specified timeout period, tBAT_SHR, a fault is  
Conditions  
declared and the charger is stopped by turning the battery  
isolation FET off, but the system voltage is maintained at  
VINx  
VISO_Bx  
THR Function  
Off  
Off, controlled by I2C  
Open or VIN = 0 V to 4.0 V <2.5 V  
Open or VIN = 0 V to 4.0 V >2.5 V  
VISO_STRK by the linear regulator.  
4.0 V to 6.7 V  
Don't care Always on  
After source phase, if the ISO_Bx or BAT_SNS level remains  
below VBATH, either the battery voltage is low or the battery node  
is shorted. Because the battery voltage is low, trickle charging mode  
is initiated (see Figure 31). If the BAT_SNS level remains below  
If the battery pack thermistor is not connected directly to the  
THR pin, a 10 kΩ (tolerance 20%) dummy resistor must be  
connected between the THR input and GND. Leaving the THR  
pin open results in a false detection of the battery temperature  
being <0°C and charging is disabled.  
V
BAT_SHR after tBAT_SHR has elapsed, the ADP5062 assumes that the  
battery node is shorted.  
The trickle charge branch is active during the battery short  
scenario, and trickle charge current to the battery is main-  
tained until the 60-minute trickle charge mode timer expires.  
The ADP5062 charger monitors the voltage in the THR pin and  
suspends charging when the current is outside the range of less  
than 0°C or greater than 60°C.  
BATTERY PACK TEMPERATURE SENSING  
Battery Thermistor Input  
The ADP5062 charger is designed for use with an NTC thermistor  
in the battery pack with a nominal room temperature value of  
either 10 kΩ at 25°C or 100 kΩ at 25°C, which is selected by  
factory programming.  
The ADP5062 charger features battery pack temperature sensing  
that precludes charging when the battery pack temperature is  
outside the specified range. The THR pin provides an on and  
off switching current source that should be connected directly  
to the battery pack thermistor terminal. The activation interval  
of the THR current source is 167 ms.  
The ADP5062 charger is designed for use with an NTC thermistor  
in the battery pack with a temperature coefficient curve (beta).  
Factory programming supports eight beta values covering a  
range from 3150 to 4400 (see Table 43).  
Rev. B | Page 22 of 44  
 
 
 
 
Data Sheet  
ADP5062  
JEITA Li-Ion Battery Temperature Charging Specification  
Alternatively, the JEITA1 or JEITA2 can be set as enabled to  
default by factory programming.  
The ADP5062 is compliant with the JEITA1 and JEITA2 Li-Ion  
battery charging temperature specifications as outlined in Table 14  
and Table 16, respectively.  
When the ADP5062 identifies a hot or cold battery condition,  
the ADP5062 takes the following actions:  
JEITA function can be enabled via the I2C interface and, optionally,  
Stops charging the battery.  
Connects or enables the battery isolation FET such that the  
ADP5062 continues in LDO mode.  
the JEITA1 or JEITA2 function can be selected in I2C.  
Table 14. JEITA1 Specifications  
Parameter  
Symbol  
IJEITA_COLD  
IJEITA_COOL  
Conditions  
Min Max Unit  
JEITA1 Cold Temperature Limits  
JEITA1 Cool Temperature Limits  
No battery charging occurs.  
Battery charging occurs at approximately 50% of the programmed  
level. See Table 15 for specific charging current reduction levels.  
0
10  
°C  
°C  
0
JEITA1Typical Temperature Limits  
JEITA1 Warm Temperature Limits  
IJEITA_TYP  
Normal battery charging occurs at the default/programmed levels.  
10  
45  
45  
60  
°C  
°C  
IJEITA_WARM Battery termination voltage (VTRM) is reduced by 100 mV from the  
programmed value.  
JEITA1 Hot Temperature Limits  
IJEITA_HOT  
No battery charging occurs.  
60  
°C  
Table 15. JEITA1 Reduced Charge Current Levels, Battery Cool Temperature  
ICHG[4:0] (Default)  
00000 = 50 mA  
00001 = 100 mA  
00010 = 150 mA  
00011 = 200 mA  
00100 = 250 mA  
00101 = 300 mA  
00110 = 350 mA  
00111 = 400 mA  
01000 = 450 mA  
01001 = 500 mA  
01010 = 550 mA  
01011 = 600 mA  
ICHG JEITA1  
ICHG[4:0] (Default)  
01100 = 650 mA  
01101 = 700 mA  
01110 = 750 mA  
01111 = 800 mA  
10000 = 850 mA  
10001 = 900 mA  
10010 = 950 mA  
10011 = 1000 mA  
10100 = 1050 mA  
10101 = 1100 mA  
10110 = 1200 mA  
10111 = 1300 mA  
ICHG JEITA1  
50 mA  
50 mA  
50 mA  
300 mA  
350 mA  
350 mA  
400 mA  
400 mA  
450 mA  
450 mA  
500 mA  
500 mA  
550 mA  
600 mA  
650 mA  
100 mA  
100 mA  
150 mA  
150 mA  
200 mA  
200 mA  
250 mA  
250 mA  
300 mA  
Table 16. JEITA2 Specifications  
Parameter  
Symbol  
IJEITA_COLD  
IJEITA_COOL  
Conditions  
No battery charging occurs.  
Battery termination voltage (VTRM) is reduced by 100 mV from the  
programmed value.  
Min Max Unit  
JEITA2 Cold Temperature Limits  
JEITA2 Cool Temperature Limits  
0
10  
°C  
°C  
0
JEITA2 Typical Temperature Limits IJEITA_TYP  
Normal battery charging occurs at the default/programmed levels.  
10  
45  
45  
60  
°C  
°C  
JEITA2 Warm Temperature Limits  
IJEITA_WARM Battery termination voltage (VTRM) is reduced by 100 mV from the  
programmed value.  
JEITA2 Hot Temperature Limits  
IJEITA_HOT  
No battery charging occurs.  
60  
°C  
Rev. B | Page 23 of 44  
 
 
 
ADP5062  
Data Sheet  
POWER-ON RESET  
RESET ALL  
REGISTERS  
NO  
NO  
IC OFF  
VIN_OK =  
HIGH  
SYSTEM  
OFF  
YES  
YES  
NO  
ENABLE  
CHARGER  
ENABLE  
LDO  
YES  
LDO MODE  
ENABLE  
NO  
CHARGER  
YES  
LOW  
BATTERY  
CHG  
V
< V  
YES  
BAT_SNS  
NO  
CHG_VLIM  
NO  
YES  
TO  
CHARGING MODE  
Figure 32. Simplified Battery and VINx Connect Flowchart  
Rev. B | Page 24 of 44  
Data Sheet  
ADP5062  
TO CHARGING  
MODE  
TO IC OFF  
YES  
RUN  
BATTERY  
DETECTION  
tSTART  
EXPIRED  
NO  
YES  
NO  
V
BAT_SNS  
< V  
TRK  
POWER-DOWN  
TRICKLE  
CHARGE  
FAST CHARGE  
NO  
NO  
NO  
NO  
VIN_OK =  
HIGH  
VIN_OK =  
HIGH  
YES  
YES  
V
VIN_ILIM = HIGH  
= I  
BAT_SNS  
I
< I  
LIM  
VINx  
< V  
I
TRK  
VINx  
LIM  
YES  
YES  
WATCHDOG  
EXPIRED  
YES  
YES  
tWD EXPIRED  
NO  
NO  
START tSAFE  
THERM_LIM = HIGH  
TEMP < T  
LIM  
I
= 100mA  
TEMP = T  
BUS  
LIM  
YES  
TIMER FAULT  
OR  
BAD BATTERY  
tSAFE OR tTRK  
EXPIRED  
WATCHDOG  
EXPIRED  
YES  
tWD EXPIRED  
NO  
START tSAFE  
I
= 100 mA  
BUS  
NO  
TIMER FAULT OR  
BAD BATTERY  
SEE TIMER SPECS  
1
YES  
tSAFE OR tCHG  
EXPIRED  
1
NO  
RUN  
BATTERY  
DETECTION  
NO  
V
=
BAT_SNS  
CC MODE  
CHARGING  
V
YES  
TRM  
YES  
V
=
BAT_SNS  
V
RCH  
NO  
YES  
NO  
CHARGE  
COMPLETE  
CV MODE  
CHARGING  
I
< I  
END  
OUT  
Figure 33. Simplified Charging Mode Flowchart  
Rev. B | Page 25 of 44  
ADP5062  
Data Sheet  
I2C INTERFACE  
the master after the 8-bit data byte has been written (see Figure 34  
for an example of the I2C write sequence to a single register).  
The ADP5062 increments the subaddress automatically and  
starts receiving a data byte at the next register until the master  
sends an I2C stop as shown in Figure 35.  
Figure 36 shows the I2C read sequence of a single register.  
ADP5062 sends the data from the register denoted by the  
subaddress and increments the subaddress automatically,  
sending data from the next register until the master sends an  
I2C stop condition, as shown in Figure 37.  
The ADP5062 includes an I2C-compatible serial interface for  
control of the charging and LDO functions, as well as for a  
readback of the system status registers. The I2C chip address  
is 0x28 in write mode and 0x29 in read mode.  
Register values are reset to the default values when the VINx  
supply falls below the falling voltage threshold, VVIN_OK_FALL  
.
The I2C registers also reset when the battery is disconnected and  
VIN is 0 V.  
The subaddress content selects which of the ADP5062 registers  
is written to first. The ADP5062 sends an acknowledgement to  
MASTER STOP  
0 = WRITE  
ST  
0
0
1
0
1
0
0
0
0
0
0
SP  
CHIP ADDRESS  
SUBADDRESS  
ADP5062 RECEIVES  
DATA  
Figure 34. I2C Single Register Write Sequence  
0 = WRITE  
MASTER STOP  
ST  
0
0
1
0
1
0
0
0
0
0
0
0
SP  
0
CHIP ADDRESS  
SUBADDRESS  
REGISTER N  
ADP5062 RECEIVES  
DATA TO REGISTER N  
ADP5062 RECEIVES  
DATA TO REGISTER N + 1  
ADP5062 RECEIVES  
DATA TO LAST REGISTER  
Figure 35. I2C Multiple Register Write Sequence  
MASTER  
STOP  
0 = WRITE  
1 = READ  
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
1
SP  
ST  
ST  
CHIP ADDRESS  
CHIP ADDRESS  
ADP5062 SEND  
SDATA  
SUBADDRESS  
Figure 36. I2C Single Register Read Sequence  
MASTER  
STOP  
0 = WRITE  
1 = READ  
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
1
SP  
ST  
ST  
SUBADDRESS  
REGISTER N  
ADP5062 SENDS  
DATA OF REGISTER N  
ADP5062 SENDS  
DATA OF REGISTER  
N + 1  
CHIP ADDRESS  
CHIP ADDRESS  
ADP5062 SENDS  
DATA OF LAST  
REGISTER  
Figure 37. I2C Multiple Register Read Sequence  
Rev. B | Page 26 of 44  
 
 
 
 
 
Data Sheet  
ADP5062  
I2C REGISTER MAP  
See the Factory-Programmable Options section for programming option details. Note that a blank cell indicates a bit that is not used or is  
reserved for future use.  
Table 17. I2C Register Map  
Register  
Addr. Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Model[3:0]  
D0  
0x00 Manufac-  
turer and  
MANUF[3:0]  
model ID  
0x01 Silicon  
revision  
REV[3:0]  
0x02 VINx pin  
settings  
ILIM[3:0]1  
1 2  
,
VTRM[5:0]1  
CHG_VLIM[1:0]  
, 2  
0x03 Termination  
settings  
1 2  
,
ITRK_DEAD[1:0]1  
0x04 Charging  
current  
ICHG[4:0]  
settings  
1
, 3  
1 3  
,
0x05 Voltage  
thresholds  
DIS_RCH  
VRCH[1:0]1  
VTRK_DEAD[1:0]  
EN_CHG_TIMER1 CHG_TMR_PERIOD1  
VWEAK[2:0]1  
EN_TEND1  
EN_WD  
WD_PERIOD1  
1 3  
,
0x06 Timer  
settings  
RESET_WD  
EN_CHG1  
DIS_IC11  
EN_BMON1  
EN_THR1  
DIS_LDO1  
EN_EOC1  
0x07 Functional  
Settings 1  
EN_JEITA1, 3  
IDEAL_DIODE[1:0]1, 3  
VSYSTEM[2:0]1, 3  
1 3  
,
1 3  
,
0x08 Functional  
Settings 2  
JEITA_SELECT  
EN_CHG_VLIM  
0x09 Interrupt  
enable  
EN_THERM_LIM_INT EN_WD_INT  
EN_TSD_INT  
TSD_INT  
EN_THR_INT  
THR_INT  
EN_BAT_INT EN_CHG_INT EN_VIN_INT  
BAT_INT CHG_INT VIN_INT  
0x0A Interrupt  
active  
THERM_LIM_INT  
VIN_OK  
WD_INT  
VIN_ILIM  
0x0B Charger  
Status 1  
VIN_OV  
THERM_LIM  
CHDONE  
CHARGER_STATUS[2:0]  
BATTERY_STATUS[2:0]  
0x0C Charger  
Status 2  
THR_STATUS[2:0]  
RCH_LIM_INFO  
BAT_SHR1  
TSD 130°C1  
TSD 140°C1  
0x0D Fault  
TBAT_SHR[2:0]1  
VBAT_SHR[2:0]1  
0x10 Battery  
short  
1 3  
,
1 3  
,
C/20 EOC1  
C/10 EOC1  
C/5 EOC1  
SYS_EN_SET[1:0]  
0x11 IEND  
IEND[2:0]  
1 These bits reset to default I2C values when VINx is connected or disconnected.  
2 The default I2C values of these bits are partially factory programmable.  
3 The default I2C values of these bits are fully factory programmable.  
Rev. B | Page 27 of 44  
 
 
ADP5062  
Data Sheet  
REGISTER BIT DESCRIPTIONS  
In Table 18 through Table 33, the following abbreviations are used: R is read only, W is write only, R/W is read/write, and N/A means not  
applicable.  
Table 18. Manufacturer and Model ID, Register Address 0x00  
Bit No.  
Bit Name  
Access  
Default  
Description  
[7:4]  
MANUF[3:0]  
MODEL[3:0]  
R
R
0001  
The 4-bit manufacturer identification bus  
The 4-bit model identification bus  
[3:0]  
1001  
Table 19. Silicon Revision, Register Address 0x01  
Bit No.  
Bit Name  
Not used  
REV[3:0]  
Access  
Default  
Description  
[7:4]  
R
R
[3:0]  
0100/ADP5062ACPZ-1-R7  
0111/ADP5062ACPZ-2-R7  
The 4-bit silicon revision identification bus  
Table 20. VINx Pin Settings, Register Address 0x02  
Bit No.  
[7:5]  
4
Bit Name  
Not used  
RFU  
Access  
Default  
Description  
R
R/W  
R/W  
0
Reserved for future use.  
[3:0]  
ILIM[3:0]  
0000 = 100 mA  
VINx input current-limit programming bus. The current into VINx can  
be limited to the following programmed values:  
0000 = 100 mA.  
0001 = 150 mA.  
0010 = 200 mA.  
0011 = 250 mA.  
0100 = 300 mA.  
0101 = 400 mA.  
0110 = 500 mA.  
0111 = 600 mA.  
1000 = 700 mA.  
1001 = 800 mA.  
1010 = 900 mA.  
1011 = 1000 mA.  
1100 = 1200 mA.  
1101 = 1500 mA.  
1110 = 1800 mA.  
1111 = 2100 mA.  
Rev. B | Page 28 of 44  
 
 
Data Sheet  
ADP5062  
Table 21. Termination Settings, Register Address 0x03  
Bit No. Bit Name  
Access  
Default  
Description  
[7:2] VTRM[5:0]  
R/W  
100011 = 4.20 V Termination voltage programming bus. The values of the floating voltage can  
be programmed to the following values:  
000101 = 3.60 V.  
000110 = 3.62 V.  
000111 = 3.64 V.  
001000 = 3.66 V.  
001001 = 3.68 V.  
001010 = 3.70 V.  
001011 = 3.72 V.  
001100 = 3.74 V.  
001101 = 3.76 V.  
001110 = 3.78 V.  
001111 = 3.80 V.  
010000 = 3.82 V.  
010001 = 3.84 V.  
010010 = 3.86 V.  
010011 = 3.88 V.  
010100 = 3.90 V.  
010101 = 3.92 V.  
010110 = 3.94 V.  
010111 = 3.96 V.  
011000 = 3.98 V.  
011001 = 4.00 V.  
011010 = 4.02 V.  
011011 = 4.04 V.  
011100 = 4.06 V.  
011101 = 4.08 V.  
011110 = 4.10 V.  
011111 = 4.12 V.  
100000 = 4.14 V.  
100001 = 4.16 V.  
100010 = 4.18 V.  
100011 = 4.20 V.  
100100 = 4.22 V.  
100101 = 4.24 V.  
100110 = 4.26 V.  
100111 = 4.28 V.  
101000 = 4.30 V.  
101001 = 4.32 V.  
101010 = 4.34 V.  
101011 = 4.36 V.  
101100 = 4.38 V.  
101101 = 4.40 V.  
101110 = 4.42 V.  
101111 = 4.44 V.  
110000 = 4.44 V.  
110001 = 4.46 V.  
110010 = 4.48 V.  
110011 to 111111 = 4.50 V.  
[1:0]  
CHG_VLIM[1:0] R/W  
00 = 3.2 V  
Charging voltage limit programming bus. The values of the charging voltage  
limit can be programmed to the following values:  
00 = 3.2 V.  
01 = 3.4 V.  
10 = 3.7 V.  
11 = 3.8 V.  
Rev. B | Page 29 of 44  
ADP5062  
Data Sheet  
Table 22. Charging Current Settings, Register Address 0x04  
Bit No.  
Bit Name  
Not used  
ICHG[4:0]  
Access  
Default  
Description  
7
R
[6:2]  
R/W  
01110 = 750 mA  
Fast charge current programming bus. The values of the constant  
current charge can be programmed to the the following values:  
00000 = 50 mA.  
00001 = 100 mA.  
00010 = 150 mA.  
00011 = 200 mA.  
00100 = 250 mA.  
00101 = 300 mA.  
00110 = 350 mA.  
00111 = 400 mA.  
01000 = 450 mA.  
01001 = 500 mA.  
01010 = 550 mA.  
01011 = 600 mA.  
01100 = 650 mA.  
01101 = 700 mA.  
01110 = 750 mA.  
01111 = 800 mA.  
10000 = 850 mA.  
10001 = 900 mA.  
10010 = 950 mA.  
10011 = 1000 mA.  
10100 = 1050 mA.  
10101 = 1100 mA.  
10110 = 1200 mA.  
10111 to 11111 = 1300 mA.  
[1:0]  
ITRK_DEAD[1:0]  
R/W  
10 = 20 mA  
Trickle and weak charge current programming bus. The values of  
the trickle and weak charge currents can be programmed to the  
following values:  
00 = 5 mA.  
01 = 10 mA.  
10 = 20 mA.  
11 = 80 mA.  
Table 23. Voltage Thresholds, Register Address 0x05  
Bit No.  
Bit Name  
Access  
Default  
Description  
7
DIS_RCH  
R/W  
0 = recharge  
enabled  
0 = recharge enabled.  
1 = recharge disabled.  
[6:5]  
VRCH[1:0]  
R/W  
11 = 260 mV  
Recharge voltage programming bus. The values of the recharge  
threshold can be programmed to the following values (note that  
the recharge cycle can be disabled in I2C by using the DIS_RCH bit):  
00 = 80 mV.  
01 = 140 mV.  
10 = 200 mV.  
11 = 260 mV.  
Rev. B | Page 30 of 44  
Data Sheet  
ADP5062  
Bit No.  
Bit Name  
VTRK_DEAD[1:0]  
Access  
Default  
Description  
[4:3]  
R/W  
01 = 2.5 V  
Trickle to fast charge dead battery voltage programming bus. The  
values of the trickle to fast charge threshold can be programmed to  
the following values:  
00 = 2.0 V.  
01 = 2.5 V.  
10 = 2.6 V.  
11 = 2.9 V.  
[2:0]  
VWEAK[2:0]  
R/W  
011 = 3.0 V  
Weak battery voltage rising threshold.  
000 = 2.7 V.  
001 = 2.8 V.  
010 = 2.9 V.  
011 = 3.0 V.  
100 = 3.1 V.  
101 = 3.2 V.  
110 = 3.3 V.  
111 = 3.4 V.  
Table 24. Timer Settings, Register Address 0x06  
Bit No.  
[7:6]  
5
Bit Name  
Not used  
EN_TEND  
Access  
Default  
Description  
R/W  
1
0 = charge complete timer, tEND, disabled. A 31 ms deglitch timer  
remains on.  
1 = charge complete timer enabled.  
4
3
EN_CHG_TIMER  
R/W  
R/W  
1
1
0 = trickle/fast charge timer disabled.  
1 = trickle/fast charge timer enabled.  
CHG_TMR_PERIOD  
Trickle and fast charge timer period.  
0 = 30 sec trickle charge timer and 300 minute fast charge timer.  
1 = 60 sec trickle charge timer and 600 minute fast charge timer.  
2
1
EN_WD  
R/W  
R/W  
0
0
0 = watchdog timer is disabled even when BAT_SNS exceeds VWEAK  
1 = watchdog timer safety timer is enabled.  
.
WD_PERIOD  
Watchdog safety timer period.  
0 = 32 sec watchdog timer and 40 minute safety timer.  
1 = 64 sec watchdog timer and 40 minute safety timer.  
0
RESET_WD  
W
0
When RESET_WD is set to logic high by I2C, the watchdog safety  
timer is reset.  
Table 25. Functional Settings 1, Register Address 0x07  
Bit No.  
Bit Name  
Not used  
DIS_IC1  
Access  
Default  
Description  
7
6
R/W  
0
0
0 = normal operation.  
1 = the ADP5062 is disabled; VVINx must be VISO_Bx < VVINx < 5.5 V.  
5
4
3
EN_BMON  
R/W  
0 = when VVINx < VVIN_OK_RISE or VVIN_OK_FALL, the battery monitor is  
disabled. When VVINx = 4.0 V to 6.7 V, the battery monitor is enabled  
regardless of the EN_BMON state.  
1 = the battery monitor is enabled even when the voltage at the  
VINx pins is below VVIN_OK  
.
EN_THR  
R/W  
R/W  
0
0
0 = when VVINx < VVIN_OK_RISE or VVIN_OK_FALL, the THR current source is  
disabled. When VVINx = 4.0 V to 6.7 V, the THR current source is  
enabled regardless of the EN_THR state.  
1 = THR current source is enabled even when the voltage at the  
VINx pins is below VVIN_OK_RISE or VVIN_OK_FALL  
.
DIS_LDO  
0 = LDO is enabled.  
1 = LDO is off. In addition, if EN_CHG = low, the battery isolation  
FET is on. If EN_CHG = high, the battery isolation FET is off.  
Rev. B | Page 31 of 44  
ADP5062  
Data Sheet  
Bit No.  
Bit Name  
Access  
Default  
Description  
2
EN_EOC  
R/W  
1
0 = end of charge not allowed.  
1 = end of charge allowed.  
1
0
Not used  
EN_CHG  
R/W  
0
0 = battery charging is disabled.  
1 = battery charging is enabled.  
Table 26. Functional Settings 2, Register Address 0x08  
Bit No.  
Bit Name  
Access  
Default  
Description  
7
EN_JEITA  
R/W  
0 = JEITA disabled  
0 = JEITA compliance of the Li-Ion temperature battery charging  
specifications is disabled.  
1 = JEITA compliance enabled.  
0 = JEITA1 is selected.  
1 = JEITA2 is selected.  
6
5
JEITA_SELECT  
EN_CHG_VLIM  
R/W  
R/W  
0 = JEITA1  
0
0 = charging voltage limit disabled.  
1 = voltage limit activated. The charger prevents charging until the  
battery voltage drops below the VCHG_VLIM threshold.  
[4:3]  
[2:0]  
IDEAL_DIODE[1:0]  
VSYSTEM[2:0]  
R/W  
R/W  
00  
00 = ideal diode operates constantly when VISO_Sx < VISO_Bx.  
01 = ideal diode operates when VISO_Sx < VISO_Bx and VBAT_SNS > VWEAK  
10 = ideal diode is disabled.  
.
11 = ideal diode is disabled.  
See Table 41 for  
model specific  
default value.  
System voltage programming bus. The values of the system voltage  
can be programmed to the following values:  
000 = 4.3 V.  
001 = 4.4 V.  
010 = 4.5 V.  
011 = 4.6 V.  
100 = 4.7 V.  
101 = 4.8 V.  
110 = 4.9 V.  
111 = 5.0 V.  
Table 27. Interrupt Enable, Register Address 0x09  
Bit No.  
Bit Name  
Access  
Default  
Description  
7
6
Not used  
EN_THERM_LIM_INT R/W  
0
0
0
0
0
0
0
0 = isothermal charging interrupt is disabled.  
1 = isothermal charging interrupt is enabled.  
0 = watchdog alarm interrupt is disabled.  
5
4
3
2
1
0
EN_WD_INT  
EN_TSD_INT  
EN_THR_INT  
EN_BAT_INT  
EN_CHG_INT  
EN_VIN_INT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1 = watchdog alarm interrupt is enabled.  
0 = overtemperature interrupt is disabled.  
1 = overtemperature interrupt is enabled.  
0 = THR temperature thresholds interrupt is disabled.  
1 = THR temperature thresholds interrupt is enabled.  
0 = battery voltage thresholds interrupt is disabled.  
1 = battery voltage thresholds interrupt is enabled.  
0 = charger mode change interrupt is disabled.  
1 = charger mode change interrupt is enabled.  
0 = VINx pin voltage thresholds interrupt is disabled.  
1 = VINx pin voltage thresholds interrupt is enabled.  
Rev. B | Page 32 of 44  
 
Data Sheet  
ADP5062  
Table 28. Interrupt Active, Register Address 0x0A  
Bit No.  
Bit Name  
Access Default  
Description  
7
6
5
Not used  
THERM_LIM_INT  
WD_INT  
R
R
0
0
1 = indicates an interrupt caused by isothermal charging.  
1 = indicates an interrupt caused by the watchdog alarm. The  
watchdog timer expires within 2 sec or 4 sec, depending on the  
watch dog period setting of 32 sec or 64 sec, respectively.  
4
3
2
1
0
TSD_INT  
THR_INT  
BAT_INT  
CHG_INT  
VIN_INT  
R
R
R
R
R
0
0
0
0
0
1 = indicates an interrupt caused by an overtemperature fault.  
1 = indicates an interrupt caused by THR temperature thresholds.  
1 = indicates an interrupt caused by battery voltage thresholds.  
1 = indicates an interrupt caused by a charger mode change.  
1 = indicates an interrupt caused by VINx voltage thresholds.  
Table 29. Charger Status 1, Register Address 0x0B  
Bit No.  
Bit Name  
Access Default  
Description  
7
6
5
VIN_OV  
R
R
R
N/A  
N/A  
N/A  
1 = the voltage at the VINx pins exceeds VVIN_OV  
1 = the voltage at the VINx pins exceeds VVIN_OK_RISE, VVIN_OK_FALL  
1 = the current into a VINx pin is limited by the high voltage blocking  
FET and the charger is not running at the full programmed ICHG  
.
VIN_OK  
.
VIN_ILIM  
.
4
THERM_LIM  
R
R
R
N/A  
N/A  
N/A  
1 = the charger is not running at the full programmed ICHG but is  
limited by the die temperature.  
3
CHDONE  
1 = the end of a charge cycle has been reached. This bit latches on,  
in that it does not reset to low when the VRCH threshold is breached.  
[2:0]  
CHARGER_STATUS[2:0]  
Charger status bus.  
000 = off.  
001 = trickle charge.  
010 = fast charge (CC mode).  
011 = fast charge (CV mode).  
100 = charge complete.  
101 = LDO mode.  
110 = trickle or fast charge timer expired.  
111 = battery detection.  
Rev. B | Page 33 of 44  
ADP5062  
Data Sheet  
Table 30. Charger Status 2, Register Address 0x0C  
Bit No.  
Mnemonic  
Access Default  
Description  
[7:5]  
THR_STATUS[2:0]  
R
N/A  
THR pin status.  
000 = off.  
001 = battery cold.  
010 = battery cool.  
011 = battery warm.  
100 = battery hot.  
111 = thermistor OK.  
4
3
Not used  
RCH_LIM_INFO  
R
R
N/A  
The recharge limit information function is activated when DIS_RCH  
is logic high and the CHARGER_STATUS[2:0] = 100 (binary). The  
status bit informs the system that a recharge cycle is required.  
0 = VBAT_SNS > VRCH  
1 = VBAT_SNS < VRCH  
[2:0]  
BATTERY_STATUS[2:0]  
Battery status bus.  
000 = battery monitor off.  
001 = no battery.  
010 = VBAT_SNS < VTRK_DEAD  
.
011 = VTRK_DEAD ≤ VBAT_SNS < VWEAK  
.
100 = VBAT_SNS ≥ VWEAK  
.
Table 31. Fault,1 Register Address 0x0D  
Bit No.  
Bit Name  
Not used  
BAT_SHR  
Not used  
TSD 130°C  
TSD 140°C  
Access Default  
Description  
[7:4]  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
0
1 = indicates detection of a battery short.  
0
0
1 = indicates an overtemperature (lower) fault.  
1 = indicates an overtemperature fault.  
1 To reset the fault bits in the fault register, cycle power on VINx or write high to the corresponding I2C bit.  
Table 32. Battery Short, Register Address 0x10  
Bit No.  
Bit Name  
Access Default  
Description  
[7:5]  
TBAT_SHR[2:0]  
R/W 100 = 30 sec  
Battery short timeout timer.  
000 = 1 sec.  
001 = 2 sec.  
010 = 4 sec.  
011 = 10 sec.  
100 = 30 sec.  
101 = 60 sec.  
110 = 120 sec.  
111 = 180 sec.  
[4:3]  
[2:0]  
Not used  
VBAT_SHR[2:0]  
R/W  
100 = 2.4 V  
Battery short voltage threshold level.  
000 = 2.0 V.  
001 = 2.1 V.  
010 = 2.2 V.  
011 = 2.3 V.  
100 = 2.4 V.  
101 = 2.5 V.  
110 = 2.6 V.  
111 = 2.7 V.  
Rev. B | Page 34 of 44  
Data Sheet  
ADP5062  
Table 33. IEND, Register Address 0x11  
Bit No. Bit Name  
Access Default  
Description  
[7:5]  
IEND[2:0]  
R/W  
010 = 52.5 mA  
Termination current programming bus. The values of the termination current can  
be programmed to the following values:  
000 = 12.5 mA.  
001 = 32.5 mA.  
010 = 52.5 mA.  
011 = 72.5 mA.  
100 = 92.5 mA.  
101 = 117.5 mA.  
110 = 142.5 mA.  
111 = 170.0 mA.  
4
3
C/20 EOC  
C/10 EOC  
R/W  
R/W  
0
0
The C/20 EOC bit has priority over the other settings (C/5 EOC, C/10 EOC, and  
IEND[2:0]).  
1 = the termination current is ICHG[4:0] ÷ 20 with the following limitations:  
Minimum value = 12.5 mA.  
Maximum value = 170 mA.  
The C/10 EOC bit has priority over the other termination current settings (C/5 EOC  
and IEND[2:0]), but does not have priority over the C/20 EOC setting.  
1 = the termination current is ICHG[4:0] ÷ 10, unless C/20 EOC is high. The  
termination current is limited to the following values:  
Minimum value = 12.5 mA.  
Maximum value = 170 mA.  
2
C/5 EOC  
R/W  
0
The C/5 EOC bit has priority over the other termination current settings (IEND[2:0])  
but does not have priority over the C/20 EOC setting or the C/10 EOC setting.  
1 = the termination current is ICHG[4:0] ÷ 5, unless the C/20 EOC or the C/10 EOC  
bit is high. The termination current is limited to the following values:  
Minimum value = 12.5 mA.  
Maximum value = 170 mA.  
1:0  
SYS_EN_SET[1:0] R/W  
00  
Selects the operation of the system enable pin (SYS_EN).  
00 = SYS_EN is activated when LDO is active and the system voltage is available.  
01 = SYS_EN is activated by the ISO_Bx voltage, the battery charging mode.  
10 = SYS_EN is activated and the isolation FET is disabled when the battery drops  
1
below VWEAK  
.
11 = SYS_EN is active in LDO mode when the charger is disabled. SYS_EN is active  
in the charging mode when VISO_Bx ≥ VWEAK  
.
1 This option is active when VINx = 0 V and the battery monitor is activated from Register 0x07, Bit 5 (EN_BMON).  
Rev. B | Page 35 of 44  
 
 
ADP5062  
Data Sheet  
APPLICATIONS INFORMATION  
Substituting these values in the equation yields  
EFF = 16 μF × (1 − 0.15) × (1 − 0.1) ≈ 12.24 μF  
EXTERNAL COMPONENTS  
C
ISO_Sx (VOUT) Capacitor Selection  
To guarantee the performance of the charger in various operating  
modes, including trickle charge, constant current charge, and  
constant voltage charge, it is imperative that the effects of dc  
bias, temperature, and tolerances on the behavior of the capaci-  
tors be evaluated for each application.  
To obtain stable operation of the ADP5062 in a safe way, the  
combined effective capacitance of the ISO_Sx capacitor and the  
system capacitance must not be less than 10 µF and must not  
exceed 100 µF at any point during operation.  
When choosing the capacitor value, it is also important to account  
for the loss of capacitance caused by the output voltage dc bias.  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric that is adequate to ensure  
the minimum capacitance over the necessary temperature range  
and dc bias conditions. X5R or X7R dielectrics with a voltage rating  
of 6.3 V or higher are recommended for best performance. Y5V  
and Z5U dielectrics are not recommended for use with any dc-  
to-dc converter because of their poor temperature and dc bias  
characteristics.  
Splitting ISO_Sx Capacitance  
In many applications, the total ISO_Sx capacitance consists of a  
number of capacitors. The system voltage node (ISO_Sx) usually  
supplies a single regulator or a number of ICs and regulators,  
each of which requires a capacitor close to its power supply  
input (see Figure 39).  
The capacitance close to the ADP5062 ISO_Sx output should be  
at least 5 µF, as long as the total effective capacitance is at least  
10 µF at any point during operation.  
The worst case capacitance accounting for capacitor variation  
over temperature, component tolerance, and voltage is calcu-  
lated using the following equation:  
ISO_Sx  
VIN1  
C
> 5µF  
ISO_Sx  
C
IN1  
IC1  
ADP5062  
C
EFF = COUT × (1 − TEMPCO) × (1 − TOL)  
where:  
EFF is the effective capacitance at the operating voltage.  
SUM OF EFFECTIVE  
CAPACITANCES  
ON ISO_Sx NODE > 10µF  
C
+
C
ISO_Bx  
≥10µF  
TEMPCO is the worst case capacitor temperature coefficient.  
TOL is the worst case component tolerance.  
VIN2  
IC2  
C
IN2  
In this example, the worst case temperature coefficient (TEMPCO)  
over the range of −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and COUT is 16 μF at 4.2 V, as shown in Figure 38.  
60  
Figure 39. Splitting ISO_Sx Capacitance  
ISO_Bx and ISO_Sx Capacitor Selection  
The ISO_Bx and the ISO_Sx effective capacitance (including  
temperature and dc bias effects) must not be less than 10 µF at  
any point during operation. Typically, a nominal capacitance of  
22 µF is required to fullfill the condition at all points of  
operation. Suggestions for ISO_Bx and ISO_Sx capacitors are  
listed in Table 34.  
55  
50  
45  
40  
35  
30  
25  
20  
CBP Capacitor Selection  
The internal supply voltage of the ADP5062 is equipped with a  
noise suppressing capacitor at the CBP terminal. Do not allow CBP  
capacitance to exceed 14 nF at any point during operation. Do  
not connect any external voltage source, any resistive load, or  
any other current load to the CBP terminal. Suggestions for a  
CBP capacitor are listed in Table 35.  
0
1
2
3
4
5
DC BIAS VOLTAGE (V)  
Figure 38. Murata GRM31CR61A226KE19 Capacitance vs. Bias Voltage  
Rev. B | Page 36 of 44  
 
 
 
 
Data Sheet  
ADP5062  
VINx Capacitor Selection  
Table 34. ISO_Bx and ISO_Sx Capacitor Suggestions  
According to the USB 2.0 specification, USB peripherals have a  
detectable change in capacitance on VBUS when they are attached  
to a USB port. The peripheral device VBUS bypass capacitance  
must be at least 1 µF but not larger than 10 µF.  
Vendor Part Number  
Value  
22 μF  
22 μF  
22 µF  
22 µF  
Voltage Size  
Murata  
Murata  
TDK  
GRM31CR61A226KE19  
10 V  
6.3 V  
6.3 V  
6.3 V  
1206  
1206  
1206  
1206  
GRM31CR60J226ME19  
C3216X5R0J226M  
JMK316ABJ226KL  
The VINx input of the ADP5062 is tolerant of voltages as high  
as 20 V; however, if an application requires exposing the VINx  
input to voltages of up to 20 V, the voltage range of the capacitor  
must also be above 20 V. Suggestions for a VINx capacitor are  
given in Table 36.  
Taiyo-  
Yuden  
Table 35. CBP Capacitor Suggestions  
Vendor Part Number Value Voltage Size  
Murata  
TDK  
GRM15XR71C103KA86  
C1005X7R1C103K  
10 nF  
10 nF  
16 V  
16 V  
0402  
0402  
When using ceramic capacitors, a higher voltage range is usually  
achieved by selecting a component with larger physical dimensions.  
In applications where lower than 20 V at VINx input voltages can  
be guaranteed, smaller output capacitors can be used accordingly.  
Table 36. VINx Capacitor Suggestions  
Vendor Part Number Value Voltage Size  
Murata  
TDK  
GRM21BR61E106MA73 10 µF  
C2012X5R1E106K 10 µF  
25 V  
25 V  
0805  
0805  
Rev. B | Page 37 of 44  
 
 
 
ADP5062  
Data Sheet  
PCB LAYOUT GUIDELINES  
VIN = 4V TO 7V  
C4  
10µF  
GRM21BR6E106MA73  
8
6
7
VIN1 TO VIN3  
ADP5062  
20-LEAD LFCSP  
ISO_S1 TO ISO_S3  
19  
CBP  
9
C1  
10nF  
GRM15XR71C103KA8  
10  
11  
C3  
22µF  
GRM31CR60J226ME19  
VDDIO  
R1  
1.5kΩ  
R2  
1.5kΩ  
CHARGER  
CONTROL  
BLOCK  
1
TO MCU  
TO MCU  
SCL  
SDA  
17  
12  
5
3
2
13  
14  
TO MCU/NC  
DIG_IO1  
DIG_IO2  
DIG_IO3  
TO MCU/NC  
TO MCU/NC  
CONNECT  
CLOSE TO  
BATTERY +  
ISO_B1 TO ISO_B3  
4
BAT_SNS  
THR  
VDDIO  
18  
R4  
10kΩ  
C2  
22µF  
GRM31CR60J22ME19  
R5 NTC 10kΩ  
(OPTIONAL)  
SYS_EN  
ILED  
16  
15  
TO MCU  
VLED  
AGND  
20  
Figure 40. Reference Circuit Diagram  
C1 – 10nF  
16V/X7R  
0402  
ISO_Bx  
PGND  
C2 – 22µF  
16V/X5R  
1206  
ISO_Sx  
PGND  
VINx  
PGND  
C4 – 10µF  
25V/X5R  
0805  
C3 – 22µF  
16V/X5R  
1206  
Figure 41. Reference PCB Floor Plan  
Rev. B | Page 38 of 44  
 
Data Sheet  
ADP5062  
POWER DISSIPATION AND THERMAL CONSIDERATIONS  
is higher and the power dissipation must be calculated using  
Equation 3. When the battery voltage level reaches VISO_SFC, the  
power dissipation can be calculated using Equation 4.  
CHARGER POWER DISSIPATION  
When the ADP5062 charger operates at high ambient tempera-  
tures and at maximum current charging and loading conditions,  
the junction temperature can reach the maximum allowable  
operating limit of 125°C.  
P
ISOFET = RDSON  
where:  
DSON_ISO is the on resistance of the battery isolation FET  
(typically 110 mΩ during charging).  
CHG is the battery charge current.  
_
ISO × ICHG  
(4)  
R
When the junction temperature exceeds 140°C, the ADP5062  
turns off, allowing the device to cool down. When the die  
temperature falls below 110°C and the TSD 140°C fault bit in  
Register 0x0D is cleared by an I2C write, the ADP5062 resumes  
normal operation.  
I
The thermal control loop of the ADP5062 automatically limits  
the charge current to maintain a die temperature below TLIM  
(typically 115°C).  
This section provides guidelines to calculate the power dissi-  
pated in the device to ensure that the ADP5062 operates below  
the maximum allowable junction temperature.  
The most intuitive and practical way to calculate the power  
dissipation in the ADP5062 device is to measure the power  
dissipated at the input and all of the outputs. Perform the  
measurements at the worst case conditions (voltages, currents,  
and temperature). The difference between input and output  
power is the power that is dissipated in the device.  
To determine the available output current in different operating  
modes under various operating conditions, use the following  
equations:  
PD = PLDOFET + PISOFET  
(1)  
JUNCTION TEMPERATURE  
where:  
In cases where the board temperature, TA, is known, the  
thermal resistance parameter, θJA, can be used to estimate the  
junction temperature rise. TJ is calculated from TA and PD using  
the formula  
P
P
LDOFET is the power dissipated in the input LDO FET.  
ISOFET is the power dissipated in the battery isolation FET.  
Calculate the power dissipation in the LDO FET and the battery  
isolation FET using Equation 2 and Equation 3.  
TJ = TA + (PD × θJA)  
(5)  
P
P
LDOFET = (VIN VISO_Sx) × (ICHG + ILOAD  
ISOFET = (VISO_Sx VISO_Bx) × ICHG  
)
(2)  
(3)  
The typical θJA value for the 20-lead LFCSP is 35.6°C/W (see  
Table 5). A very important factor to consider is that θJA is based  
on a 4-layer, 4 in × 3 in, 2.5 oz. copper board as per JEDEC  
standard, and real-world applications may use different sizes  
and layers. It is important to maximize the copper to remove the  
heat from the device. Copper exposed to air dissipates heat  
better than copper used in the inner layers.  
where:  
VIN is the input voltage at the VINx pins.  
VISO_Sx is the system voltage at the ISO_Sx pins.  
ISO_Bx is the battery voltage at the ISO_Bx pins.  
V
I
I
CHG is the battery charge current.  
LOAD is the system load current from the ISO_Sx pins.  
If the case temperature can be measured, the junction  
temperature is calculated by  
LDO Mode  
The system regulation voltage is user-programmable from 4.3 V  
to 5.0 V. In LDO mode (charging disabled, EN_CHG = low),  
calculation of the total power dissipation is simplified, assuming  
that all current is drawn from the VINx pins and the battery is  
not shared with ISO_Sx.  
TJ = TC + (PD × θJC)  
(6)  
where TC is the case temperature and θJC is the junction-to-case  
thermal resistance provided in Table 5.  
The reliable operation of the charger can be achieved only if the  
estimated die junction temperature of the ADP5062 (Equation 5)  
is less than 125°C. Reliability and mean time between failures  
(MTBF) are greatly affected by increasing the junction temperature.  
Additional information about product reliability can be found in  
the ADI Reliability Handbook located at the following URL:  
www.analog.com/reliability_handbook.  
PD = (VIN VISO_Sx) × ILOAD  
Charging Mode  
In charging mode, the voltage at the ISO_Sx pins depends on  
the battery level. When the battery voltage is lower than VISO_SFC  
(typically 3.8 V), the voltage drop over the battery isolation FET  
Rev. B | Page 39 of 44  
 
 
 
ADP5062  
Data Sheet  
FACTORY-PROGRAMMABLE OPTIONS  
CHARGER OPTIONS  
Table 37 to Table 49 list the factory-programmable options of the ADP5062. In each of these tables, the selection column represents the  
default setting of Model ADP5062ACPZ-1-R7 and Model ADP5062ACPZ-2-R7.  
Table 37. Default Termination Voltage  
Table 41. Default System Voltage  
Option  
Selection  
Option  
Selection  
000 = 4.20 V  
010 = 3.70 V  
011 = 3.80 V  
100 = 3.90 V  
101 = 4.00 V  
110 = 4.10 V  
111 = 4.40 V  
000 = 4.20 V  
000 = 4.3 V  
001 = 4.4 V  
010 = 4.5 V  
011 = 4.6 V  
100 = 4.7 V  
101 = 4.8 V  
110 = 4.9 V  
111 = 5.0 V  
000 = 4.3 V/ADP5062ACPZ-2-R7  
111 = 5.0 V/ADP5062ACPZ-1-R7  
Table 38. Default Fast Charge Current  
Option  
Selection  
Table 42. Thermistor Resistance  
000 = 500 mA  
001 = 300 mA  
010 = 550 mA  
011 = 600 mA  
100 = 750 mA  
101 = 900 mA  
110 = 1300 mA  
111 = 1300 mA  
Option  
Selection  
0 = 10 kΩ  
1 = 100 kΩ  
0 = 10 kΩ  
Table 43. Thermistor Beta Value  
Option  
0100 = 3150  
100 = 750 mA  
Selection  
0100 = 3150  
0101 = 3350  
0110 = 3500  
0111 = 3650  
1000 = 3850  
Table 39. Default End of Charge Current  
Option  
Selection  
000 = 52.5 mA  
001 = 72.5 mA  
010 = 12.5 mA  
011 = 32.5 mA  
100 = 142.5 mA  
101 = 167.5 mA  
110 = 92.5 mA  
111 = 117.5 mA  
000 = 52.5 mA  
1001 = 4000  
1010 = 4200  
1011 = 4400  
Table 44. DIS_IC1 Mode Select  
Option  
Selection  
0 = DIC_IC1 mode select, VINx current = 280 µA,  
ISO_Bx can float, no leak to ISO_Bx  
1 = DIC_IC1 mode select, VINx current = 110 µA,  
supply switch leaks from VINx to ISO_Bx  
0
Table 40. Default Trickle to Fast Charge Threshold  
Option  
Selection  
Table 45. Trickle or Fast Charge Timer Fault Operation  
00 = 2.5 V  
01 = 2.0 V  
10 = 2.9 V  
11 = 2.6 V  
00 = 2.5 V  
Option  
Selection  
0 = after timeout LDO off, charging off  
1 = after timeout LDO mode active, charging off  
1 = LDO  
mode  
active  
Rev. B | Page 40 of 44  
 
 
 
 
 
 
Data Sheet  
ADP5062  
I2C REGISTER DEFAULTS  
Table 46. I2C Register Default Settings  
Bit Name  
I2C Register Address, Bit Location  
Option  
Selection  
CHG_VLIM[1:0]  
Address 0x03, Bits[1:0]  
Address 0x05, Bit 7  
Address 0x06, Bit 2  
Address 0x07, Bit 6  
Address 0x07, Bit 0  
Address 0x08, Bit 7  
Address 0x08, Bit 6  
Address 0x08, Bit 5  
0 = limit 3.2 V  
1 = limit 3.7 V  
0 = limit 3.2 V  
DIS_RCH  
0 = recharge enabled  
1 = recharge disabled  
0 = watchdog disabled  
1 = watchdog enabled  
0 = not activated  
0 = recharge enabled  
0 = disabled  
EN_WD  
DIS_IC1  
0 = not activated  
0 = charging disabled  
0 = JEITA disabled  
0 = JEITA1 charging  
0 = limit disabled  
00 = VISO_Sx < VISO_Bx  
1 = activated  
EN_CHG  
0 = charging disabled  
1 = charging enabled  
0 = JEITA disabled  
1 = JEITA enabled  
0 = JEITA1 charging  
1= JEITA2 charging  
0 = limit disabled  
EN_JEITA  
JEITA_SELECT  
EN_CHG_VLIM  
1 = limit enabled  
IDEAL_DIODE[1:0] Address 0x08, Bits[4:3]  
00 = ideal diode operates when VISO_Sx < VISO_Bx  
01 = ideal diode operates when VISO_Sx < VISO_Bx  
and VBAT_SNS > VWEAK  
10 = ideal diode is disabled  
11 = ideal diode is disabled  
DIGITAL INPUT AND OUTPUT OPTIONS  
Table 47. I2C Address 0x11, Bits[1:0] SYS_EN Output Default  
Option  
Selection (Default)  
00 = SYS_EN is activated when LDO is active and system voltage is available  
01 = SYS_EN is activated by ISO_Bx voltage; battery charging mode  
10 = SYS_EN is activated and the isolation FET is disabled when the battery drops below VWEAK  
00  
1
11 = SYS_EN is active in LDO mode when the charger is disabled. SYS_EN is active in charging mode when VISO_Bx ≥ VWEAK  
1 This option is active when VINx = 0 V and the battery monitor is activated from Register 0x07, Bit D5 (EN_BMON).  
Rev. B | Page 41 of 44  
 
 
 
ADP5062  
Data Sheet  
DIG_IO1, DIG_IO2, and DIG_IO3 Options  
Table 48. DIG_IO1 Polarity  
Option  
Selection  
0 = DIG_IO1 polarity, high active operation  
1 = DIG_IO1 polarity, low active operation  
0 = high active  
Table 49. DIG_IOx Options  
Option DIG_IO1 Function  
DIG_IO2 Function  
DIG_IO3 Function  
Charging disable/enable  
Low = charging disable  
High = charging enabled  
Disable IC1  
Low = not activated  
High = activated  
Fast charge current  
Low = ICHG[4:0]  
High = ICHG[4:0] ÷ 2  
LDO  
Low = LDO active  
High = LDO disabled  
Charging  
Low = charging disabled  
High = charging enabled  
Charging  
Selection  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
IVINx limit  
Disable IC1  
0000  
Low = 100 mA  
High = 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
Charging  
Low = charging disabled  
High = charging enabled  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = 100 mA  
High= 500 mA  
IVINx limit  
Low = not activated  
High = activated  
IVINx limit  
N/A  
High = IVINx limit 1500 mA  
IVINx limit  
N/A  
High = IVINx limit 1500 mA  
IVINx limit  
N/A  
High = IVIN limit 1500 mA  
IVINx limit  
N/A  
High = IVINx limit 1500 mA  
Recharge  
N/A  
High = disable recharge  
Disable IC1  
Low = not activated  
High = activated  
IVINx limit  
Low = charging disabled  
High = charging enabled  
Recharge  
N/A  
High = disable recharge  
Interrupt output  
N/A  
N/A  
High = IVINx limit 1500 mA  
Charging  
Low = charging disabled  
High = charging enabled  
Disable IC1  
Low = not activated  
High = activated  
Recharge  
N/A  
Interrupt output  
N/A  
N/A  
Interrupt output  
N/A  
N/A  
Interrupt output  
N/A  
N/A  
Interrupt output  
N/A  
N/A  
Interrupt output  
N/A  
N/A  
Interrupt output  
N/A  
N/A  
Interrupt output  
N/A  
N/A  
N/A  
High = disable recharge  
Fast charge current  
Low = ICHG  
High = ICHG[4:0] ÷ 2  
LDO  
Low = LDO active  
High = LDO disabled  
Charging  
Low = charging disabled  
High = charging enabled  
Charging  
Low = 100 mA  
High= 500 mA  
IVINx limit  
N/A  
High = IVINx limit 1500 mA  
Disable IC1  
Low = not activated  
High = activated  
Low = charging disabled  
High = charging enabled  
Rev. B | Page 42 of 44  
 
Data Sheet  
ADP5062  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.75  
2.60 SQ  
2.35  
11  
5
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 42. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
ADP5062ACPZ-1-R7  
ADP5062ACPZ-2-R7  
ADP5062CP-EVALZ  
Temperature Range (Junction) Package Description  
Package Option  
CP-20-8  
CP-20-8  
–40°C to +125°C  
–40°C to +125°C  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
ADP5062 Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For additional factory-programmable options, contact an Analog Devices local sales or distribution representative.  
Rev. B | Page 43 of 44  
 
 
 
 
ADP5062  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10806-0-10/13(B)  
Rev. B | Page 44 of 44  

相关型号:

ADP5062ACPZ-2-R7

Linear Li-Ion Battery Charger with Power Path and USB Compatibility in LFCSP
ADI

ADP5062CP-EVALZ

Linear Li-Ion Battery Charger with Power Path and USB Compatibility in LFCSP
ADI

ADP5063

Linear LiFePO4 Battery Charger with Power Path and USB Compatibility in LFCSP
ADI

ADP5063ACPZ-1-R7

Linear LiFePO4 Battery Charger with Power Path and USB Compatibility in LFCSP
ADI

ADP5063CP-EVALZ

Linear LiFePO4 Battery Charger with Power Path and USB Compatibility in LFCSP
ADI

ADP5065

Fast Charge Battery Manager with Power Path and USB Compatibility
ADI

ADP5065ACBZ-1-R7

Fast Charge Battery Management with Power Path and USB Compatibility
ADI

ADP5065ACBZ-1-R7

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PBGA20, 2.75 X 2.08 MM, 0.50 MM PITCH, WLCSP-20
ROCHESTER

ADP5065CB-EVALZ

Fast Charge Battery Manager with Power Path and USB Compatibility
ADI

ADP5070

Independent Positive and Negative Outputs
ADI

ADP5070ACPZ

Independent Positive and Negative Outputs
ADI

ADP5070ACPZ-R7

Independent Positive and Negative Outputs
ADI