ADP5073 [ADI]

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs;
ADP5073
型号: ADP5073
厂家: ADI    ADI
描述:

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs

文件: 总23页 (文件大小:715K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 A/1.2 A DC-to-DC Switching Regulator with  
Independent Positive and Negative Outputs  
Data Sheet  
ADP5076  
The ADP5076 includes a fixed internal or resistor programmable  
soft start timer to prevent inrush current at power-up.  
FEATURES  
Input supply voltage range: 2.85 V to 5.5 V  
Generates well regulated, independently resistor  
programmable VPOS and VNEG outputs  
Boost regulator to generate VPOS output  
Adjustable positive output to 35 V  
Other key safety features in the ADP5076 include overcurrent  
protection (OCP), overvoltage protection (OVP), thermal  
shutdown (TSD), and input undervoltage lockout (UVLO).  
The ADP5076 is available in a 20-ball wafer level chip scale  
package (WLCSP) and is rated for a −40°C to +125°C junction  
temperature range.  
Integrated 2.0 A main switch  
Inverting regulator to generate VNEG output  
Adjustable negative output to −30 V  
Integrated 1.20 A main switch  
Table 1. Family Models  
Boost  
Inverter  
1.2 MHz or 2.4 MHz switching frequency with optional  
external frequency synchronization from 1.0 MHz to  
2.6 MHz  
Resistor programmable soft start timer  
Slew rate control for lower system noise  
Individual precision enable and flexible start-up sequence  
control for symmetric start, VPOS first, or VNEG first  
Out of phase operation  
Model  
Switch (A) Switch (A) Package  
ADP5070 1.0  
0.6  
1.2  
0.6  
1.2  
2.4  
0.8  
1.2  
20-lead LFCSP (4 mm ×  
4 mm) and 20-lead TSSOP  
20-lead LFCSP (4 mm ×  
4 mm) and 20-lead TSSOP  
20-ball WLCSP  
(1.61 mm × 2.18 mm)  
16-lead LFCSP (3 mm ×  
3 mm)  
16-lead LFCSP (3 mm ×  
3 mm)  
12-ball WLCSP  
(1.61 mm × 2.18 mm)  
ADP5071 2.0  
ADP5072 1.0  
ADP5073 N/A1  
ADP5074 N/A1  
ADP5075 N/A1  
ADP5076 2.0  
UVLO, OCP, OVP, and TSD protection  
1.61 mm × 2.18 mm, 20-ball WLCSP  
−40°C to +125°C junction temperature range  
APPLICATIONS  
Bipolar amplifiers, ADCs, DACs, and multiplexers  
Charge coupled device (CCD) bias supply  
Optical module supply  
20-ball WLCSP  
(1.61 mm × 2.18 mm)  
1 N/A means not applicable.  
RF power amplifier bias  
Time of flight module supply  
FUNCTIONAL BLOCK DIAGRAM  
V
IN  
GENERAL DESCRIPTION  
ADP5076  
L1  
D1  
SS  
The ADP5076 is a dual, high performance, dc-to-dc regulator that  
generates independently regulated positive and negative rails. The  
input voltage range of 2.85 V to 5.5 V supports a wide variety of  
applications. The integrated main switch in both regulators enables  
generation of an adjustable positive output voltage up to +35 V and  
a negative output voltage down to −30 V.  
V
POS  
R
C1  
SW1  
SW1  
COMP1  
EN1  
C
C1  
R
FT1  
FB1  
R
FB1  
C
OUT1  
OUT2  
PVIN  
PVIN  
AVIN  
V
IN  
PGND  
PGND  
VREF  
C
IN  
C
VREF  
The ADP5076 operates at a pin selected 1.2 MHz or 2.4 MHz  
switching frequency. The ADP5076 can synchronize with an  
external oscillator from 1.0 MHz to 2.6 MHz to ease noise  
filtering in sensitive applications. Both regulators implement  
programmable slew rate control circuitry for the metal-oxide  
semiconductor field effect transistor (MOSFET) driver stage to  
reduce electromagnetic interference (EMI). Flexible start-up  
sequencing is provided with the options of manual enable,  
simultaneous mode, positive supply first, and negative supply first.  
EN2  
C
R
FB2  
R
C2  
FB2  
COMP2  
R
FT2  
C
C2  
SYNC  
SLEW  
SEQ  
SW2  
V
NEG  
D2  
AGND  
L2  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2019 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP5076  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Precision Enabling ..................................................................... 14  
Soft Start ...................................................................................... 14  
Slew Rate Control....................................................................... 14  
Current-Limit Protection.......................................................... 14  
Overvoltage Protection.............................................................. 14  
Thermal Shutdown .................................................................... 14  
Startup Sequence ........................................................................ 14  
Applications Information.............................................................. 16  
Component Selection ................................................................ 16  
Output Capacitors...................................................................... 17  
Loop Compensation .................................................................. 18  
Common Applications .............................................................. 20  
Layout Considerations............................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 13  
Pulse Width Modulation (PWM) Mode ................................. 13  
Pulse Skip Modulation Mode ................................................... 13  
UVLO........................................................................................... 13  
Oscillator and Synchronization................................................ 13  
Internal Regulator ...................................................................... 13  
REVISION HISTORY  
12/2019—Rev. 0 to Rev. A  
Replaced Figure 1 ............................................................................. 1  
Replaced Figure 39 ......................................................................... 13  
8/2019—Revision 0: Initial Version  
Rev. A | Page 2 of 23  
 
Data Sheet  
ADP5076  
SPECIFICATIONS  
PVIN = AVIN = +2.85 V to +5.5 V, adjustable positive output voltage (VPOS) = +15 V, adjustable negative output voltage (VNEG) = −15 V,  
switching frequency (fSW) = 1200 kHz, junction temperature (TJ) = −40°C to +125°C for minimum and maximum specifications, and  
ambient temperature (TA) = +25°C for typical specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT SUPPLY VOLTAGE  
QUIESCENT CURRENT  
Operating Quiescent Current  
Sum of PVIN and AVIN  
VIN  
2.85  
5.5  
V
PVIN pin, AVIN pin  
IQ  
3.5  
4.0  
2.2  
mA  
mA  
No switching, EN1 pin =  
EN2 pin = high  
No switching, EN1 pin =  
EN2 pin = low  
Standby Current  
ISTNDBY  
2.05  
UVLO  
System UVLO Threshold  
Rising  
Falling  
AVIN pin  
VUVLO_RISING  
VUVLO_FALLING  
VHYS_1  
2.8  
2.55  
0.25  
2.85  
V
V
V
2.5  
Hysteresis  
OSCILLATOR CIRCUIT  
Switching Frequency  
fSW  
1.130  
2.240  
1.200  
2.400  
1.270  
2.560  
MHz  
MHz  
SYNC pin = low  
SYNC pin = high (connect to  
AVIN pin)  
SYNC Input  
Input Clock Range  
Input Clock Minimum On Pulse Width  
Input Clock Minimum Off Pulse Width tSYNC_MIN_OFF  
fSYNC  
tSYNC_MIN_ON  
1.000  
100  
100  
2.600  
1.3  
MHz  
ns  
ns  
V
Input Clock High Logic  
Input Clock Low Logic  
PRECISION ENABLING (EN1, EN2)  
High Level Threshold  
Low Level Threshold  
Shutdown Mode  
VH (SYNC)  
VL (SYNC)  
0.4  
V
VTH_H  
VTH_L  
VTH_S  
1.125  
1.025  
0.4  
1.15  
1.05  
1.175  
1.075  
V
V
V
Internal circuitry disabled to  
achieve ISTNDBY  
Pull-Down Resistance  
BOOST REGULATOR  
Adjustable Positive Output Voltage  
Feedback Voltage  
REN  
1.48  
0.8  
MΩ  
VPOS  
VFB1  
35  
V
V
Feedback Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
0.1  
%
%
μA  
V
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Bias Current  
Overvoltage Protection Threshold  
Load Regulation  
Line Regulation  
Error Amplifier (EA) Transconductance  
Power Field Effect Transistor (FET) On  
Resistance  
Power FET Maximum Drain Source  
Voltage  
Current-Limit Threshold, Main Switch  
Minimum On Time  
Minimum Off Time  
IFB1  
VOV1  
0.86  
At FB1 pin  
%/mA ILOAD11 = 5 mA to 150 mA  
(∆VFB1/VFB1)/ΔILOAD1  
(∆VFB1/VFB1)/ΔVPVIN  
GM1  
0.0003  
0.002  
300  
%/V  
μA/V  
mΩ  
ILOAD1 = 50 mA  
260  
2.0  
340  
2.4  
RDS (ON) BOOST  
175  
VDS (MAX) BOOST  
ILIM (BOOST)  
39  
V
2.2  
50  
25  
A
ns  
ns  
Rev. A | Page 3 of 23  
 
ADP5076  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
1.60  
0.8  
Max  
Unit  
Test Conditions/Comments  
INVERTING REGULATOR  
Adjustable Negative Output Voltage  
Reference Voltage  
VNEG  
VREF  
−30  
V
V
%
%
V
Reference Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
TJ = 25°C  
TJ = −40°C to +125°C  
VFB2 is the FB2 reference  
Feedback Voltage  
VREF − VFB2  
voltage  
Feedback Voltage Accuracy  
−0.5  
−1.5  
+0.5  
+1.5  
0.1  
%
%
μA  
V
TJ = 25°C  
TJ = −40°C to +125°C  
Feedback Bias Current  
Overvoltage Protection Threshold  
IFB2  
VOV2  
0.74  
At FB2 pin after soft start has  
completed  
Load Regulation  
Line Regulation  
(∆(VREF − VFB2)/(VREF  
0.0004  
0.003  
%/mA  
%/V  
I
LOAD2 = 5 mA to 75 mA  
V
FB2))/∆ILOAD2  
(∆(VREF − VFB2)/(VREF  
FB2))/ΔVPVIN  
I
LOAD2 = 25 mA  
V
EA Transconductance  
Power FET On Resistance  
Power FET Maximum Drain Source  
Voltage  
GM2  
RDS (ON) INVERTER  
VDS (MAX) INVERTER  
260  
300  
350  
39  
340  
μA/V  
mΩ  
V
Current-Limit Threshold, Main Switch  
Minimum On Time  
Minimum Off Time  
ILIM (INVERTER)  
1.20  
1.32  
60  
50  
1.44  
A
ns  
ns  
SOFT START  
Soft Start Timer for DC-DC Regulators  
tSS  
4
32  
8 × tSS  
ms  
ms  
ms  
SS pin = open  
SS resistor = 50 kΩ to GND  
Hiccup Time  
THERMAL SHUTDOWN  
Threshold  
tHICCUP  
TSHDN  
THYS  
150  
15  
°C  
°C  
Hysteresis  
1 ILOADx is the current through a resistive load connected across the output capacitor (where x is 1 for the boost regulator load and 2 for the inverting regulator load).  
Rev. A | Page 4 of 23  
Data Sheet  
ADP5076  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
PVIN, AVIN  
SW1  
Rating  
−0.3 V to +6 V  
−0.3 V to +40 V  
PVIN − 40 V to PVIN + 0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +6 V  
SW2  
θJA is the natural convection junction-to-ambient thermal  
PGND, AGND  
EN1, EN2, FB1, FB2, SYNC  
COMP1, COMP2, SLEW, SS,  
SEQ, VREF  
Operating Junction  
Temperature Range  
Storage Temperature Range  
Soldering Conditions  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction-to-case thermal resistance. ΨJT is the junction-to-  
top of package thermal characterization parameter.  
−0.3 V to AVIN + 0.3 V  
θJA and ΨJT are based on a 4-layer PCB (two signal and two  
−40°C to +125°C  
power planes). θJC is measured at the top of the package and is  
independent of the PCB. The ΨJT value is more appropriate for  
calculating junction to case temperature in the application.  
−65°C to +150°C  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
ΨJT  
Unit  
CB-20-14  
50  
0.54  
0.13  
C/W  
ESD CAUTION  
Rev. A | Page 5 of 23  
 
 
 
ADP5076  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
A
B
C
D
E
PVIN  
SW2  
SW1  
PGND  
AVIN  
EN2  
PVIN  
SW1  
SEQ  
SS  
PGND  
EN1  
SYNC  
AGND SLEW  
COMP2 FB2  
FB1  
VREF COMP1  
Figure 2. Pin Configuration (Top View)  
Table 5. Pin Function Descriptions  
Pin No.  
A1, B2  
A2  
A3, B3  
A4, B4  
B1  
Mnemonic  
Description  
PVIN  
SW2  
SW1  
PGND  
AVIN  
Power Input for the Inverter Regulator.  
Switching Node for the Inverting Regulator.  
Switching Node for the Boost Regulator.  
Power Ground for the Boost Regulator.  
System Power Supply for the ADP5076.  
C1  
EN2  
Inverting Regulator Precision Enable. The EN2 pin is compared to an internal precision reference to enable  
the inverting regulator output.  
C2  
C3  
SYNC  
SEQ  
Frequency Setting and Synchronization Input. To set the switching frequency to 2.4 MHz, pull the SYNC pin  
high. To set the switching frequency to 1.2 MHz, pull the SYNC pin low. To synchronize the switching frequency,  
connect the SYNC pin to an external clock.  
Start-Up Sequence Control. For manual VPOS/VNEG startup using an individual precision enabling pin, leave the  
SEQ pin open. For simultaneous VPOS/VNEG startup when the EN2 pin rises, connect the SEQ pin to the AVIN pin.  
(The EN1 pin can be used to enable the internal references early, if required.) For a sequenced startup, pull  
the SEQ pin low. Either EN1 or EN2 can be used, and the corresponding supply is the first in sequence. Hold  
the other enable pin low.  
C4  
EN1  
Boost Regulator Precision Enable. The EN1 pin is compared to an internal precision reference to enable the  
boost regulator output.  
D1  
D2  
AGND  
SLEW  
Analog Ground.  
Driver Stage Slew Rate Control. The SLEW pin sets the slew rate for the SW1 and SW2 drivers. For the fastest  
slew rate (best efficiency), leave the SLEW pin open. For normal slew rate, connect the SLEW pin to the AVIN pin. For  
the slowest slew rate (best noise performance), connect the SLEW pin to the AGND pin.  
D3  
D4  
E1  
E2  
E3  
E4  
SS  
Soft Start Programming. Leave the SS pin open to obtain the fastest soft start time. To program a slower soft  
start time, connect a resistor between the SS pin and the AGND pin.  
Feedback Input for the Boost Regulator. Connect a resistor divider between the positive side of the boost  
regulator output capacitor and the AGND pin to program the output voltage.  
Error Amplifier Compensation for the Inverting Regulator. Connect the compensation network between this  
pin and the AGND pin.  
Feedback Input for the Inverting Regulator. Connect a resistor divider between the negative side of the  
inverting regulator output capacitor and the VREF pin to program the output voltage.  
Inverting Regulator Reference Output. Connect a 1.0 μF ceramic filter capacitor between the VREF pin and  
the AGND pin.  
Error Amplifier Compensation for the Boost Regulator. Connect the compensation network between this pin  
and the AGND pin.  
FB1  
COMP2  
FB2  
VREF  
COMP1  
Rev. A | Page 6 of 23  
 
Data Sheet  
ADP5076  
TYPICAL PERFORMANCE CHARACTERISTICS  
1200  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
V
V
= 3.3V, L1 = 3.3µH  
= 3.3V, L1 = 4.7µH  
= 5.0V, L1 = 3.3µH  
= 5.0V, L1 = 4.7µH  
V
V
V
V
= 3.3V, L2 = 4.7µH  
= 3.3V, L2 = 6.8µH  
= 5V, L2 = 10µH  
= 5V, L2 = 6.8µH  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1000  
800  
600  
400  
200  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
–35  
–30  
–25  
–20  
–15  
(V)  
–10  
–5  
0
V
(V)  
POS  
V
NEG  
Figure 3. Boost Regulator Maximum Output Current, fSW = 1.2 MHz,  
TA = 25°C, Based on Target of 70% ILIM (BOOST)  
Figure 6. Inverting Regulator Maximum Output Current, fSW = 1.2 MHz,  
TA = 25°C, Based on Target of 70% ILIM (INVERTER)  
900  
700  
V
V
V
V
= 3.3V, L1 = 3.3µH  
= 3.3V, L1 = 4.7µH  
= 5V, L1 = 2.2µH  
= 5V, L1 = 4.7µH  
IN  
IN  
IN  
IN  
V
V
V
= 3.3V, L2 = 2.2µH  
= 5V, L2 = 3.3µH  
= 5V, L2 = 4.7µH  
IN  
IN  
IN  
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
0
5
10  
15  
20  
25  
30  
35  
40  
–35  
–30  
–25  
–20  
V
–15  
(V)  
–10  
–5  
0
V
(V)  
POS  
NEG  
Figure 7. Inverting Regulator Maximum Output Current, fSW = 2.4 MHz,  
TA = 25°C, Based on Target of 70% ILIM (INVERTER)  
Figure 4. Boost Regulator Maximum Output Current, fSW = 2.4 MHz,  
TA = 25°C, Based on Target of 70% ILIM (BOOST)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
V
V
= 3.3V, fSW = 2.4MHz  
= 3.3V, fSW = 1.2MHz  
IN  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
V
V
= 3.3V, fSW = 2.4MHz  
= 3.3V, fSW = 1.2MHz  
IN  
IN  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
CURRENT LOAD (A)  
CURRENT LOAD (A)  
Figure 8. Inverting Regulator Efficiency vs. Current Load, VIN = +3.3 V,  
VNEG = −5 V, TA = 25°C  
Figure 5. Boost Regulator Efficiency vs. Current Load,  
VIN = 3.3 V, VPOS = 5 V, TA = 25°C  
Rev. A | Page 7 of 23  
 
ADP5076  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 3.3V, fSW = 1.2MHz  
V
V
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.3V, fSW = 2.4MHz  
= 5.0V, fSW = 1.2MHz  
= 5.0V, fSW = 2.4MHz  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
CURRENT LOAD (A)  
CURRENT LOAD (A)  
Figure 9. Boost Regulator Efficiency vs. Current Load, VPOS = 9 V, TA = 25°C  
Figure 12. Inverting Regulator Efficiency vs. Current Load, VNEG = −9 V,  
TA = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
20  
10  
0
V
V
V
V
= 3.3V, fSW = 1.2MHz  
= 3.3V, fSW = 2.4MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
10  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
CURRENT LOAD (A)  
CURRENT LOAD (A)  
Figure 10. Boost Regulator Efficiency vs. Current Load, VPOS = 15 V, TA = 25°C  
Figure 13. Inverting Regulator Efficiency vs. Current Load, VNEG = −15 V,  
TA = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
V
V
= 3.3V, fSW = 1.2MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
V
V
V
= 3.3V, fSW = 1.2MHz  
= 5V, fSW = 1.2MHz  
= 5V, fSW = 2.4MHz  
IN  
IN  
IN  
IN  
IN  
IN  
10  
10  
0
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
CURRENT LOAD (A)  
CURRENT LOAD (A)  
Figure 14. Inverting Regulator Efficiency vs. Current Load, VNEG = −30 V,  
TA = 25°C  
Figure 11. Boost Regulator Efficiency vs. Current Load, VPOS = 35 V,  
TA = 25°C  
Rev. A | Page 8 of 23  
Data Sheet  
ADP5076  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 15. Boost Regulator Efficiency over Temperature,  
VIN = 5 V, VPOS = 15 V, fSW = 1.2 MHz  
Figure 18. Inverting Regulator Efficiency over Temperature,  
VIN = 5 V, VNEG = −15 V, fSW = 1.2 MHz  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
V
V
ACCURACY  
ACCURACY  
ACCURACY  
NEG  
REF  
FB2  
V
V
ACCURACY  
ACCURACY  
POS  
FB1  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
IN  
V
IN  
Figure 16. Boost Regulator Line Regulation, VPOS = 15 V,  
fSW = 1.2 MHz, 15 mA Load, TA = 25°C  
Figure 19. Inverting Regulator Line Regulation, VNEG = −15 V,  
fSW = 1.2 MHz, 15 mA Load, TA = 25°C  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2MHz  
2.4MHz  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1.2MHz  
2.4MHz  
0
0.05  
0.10  
0.15  
0.20  
0
0.05  
0.10  
0.15  
0.20  
0.25  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 17. Boost Regulator Load Regulation, VIN = 5 V, VPOS = 15 V  
Figure 20. Inverting Regulator Load Regulation, VIN = +5 V, VNEG = −15 V  
Rev. A | Page 9 of 23  
ADP5076  
Data Sheet  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12  
BOOST REGULATOR LOAD (A)  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12  
INVERTING REGULATOR LOAD (A)  
Figure 24. Cross Regulation, Inverting Regulator VFB2 Regulation over Boost  
Regulator Current Load, VIN = +5 V, VPOS = +15 V, VNEG = −15 V, fSW = 2.4 MHz,  
TA = 25°C, Inverting Regulator Run in Continuous Conduction Mode with  
Fixed Load for Test  
Figure 21. Cross Regulation, Boost Regulator VFB1 Regulation over Inverting  
Regulator Current Load, VIN = +5 V, VPOS = +15 V, VNEG = −15 V, fSW = 2.4 MHz,  
TA = 25°C, Boost Regulator Run in Continuous Conduction Mode with Fixed  
Load for Test  
1.44  
2.40  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.40  
1.36  
1.32  
1.28  
1.24  
1.20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
V
(V)  
IN  
IN  
Figure 25. Inverting Regulator Current Limit (ILIMIT2) vs. VIN over Temperature  
Figure 22. Boost Regulator Current Limit (ILIMIT1) vs. VIN over Temperature  
2.54  
1.27  
T
T
T
= +125°C  
= +25°C  
= –40°C  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
1.13  
2.49  
2.44  
2.39  
2.34  
2.29  
2.24  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 26. Oscillator Frequency vs. VIN over Temperature, SYNC Pin = Low  
Figure 23. Oscillator Frequency vs. VIN over Temperature, SYNC Pin = High  
Rev. A | Page 10 of 23  
Data Sheet  
ADP5076  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
T
T
T
= +125°C  
= +25°C  
= –40°C  
A
A
A
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
5.7  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
5.7  
V
IN  
V
IN  
Figure 30. Operating Quiescent Current vs. VIN over Temperature,  
ENx Pins On  
Figure 27. Standby Current vs. VIN over Temperature, ENx Pins Below  
Shutdown Threshold  
V
V
IN  
IN  
V
POS  
2
1
3
V
V
NEG  
2
1
V
FB2  
FB1  
3
CH1 1.00V  
CH3 20.0mV  
CH2 200mV  
M2.00ms A CH1  
5.772000ms  
5.16V  
CH2 50.0mV  
CH1 1.00V  
CH3 10.0mV  
M1.00ms A CH1  
1.906000ms  
4.96V  
T
T
Figure 28. Boost Regulator Line Transient, VIN = 4.5 V to 5.5 V Step, VPOS = 15 V,  
Resistor Load for Boost Regulator (RLOAD1) = 300 Ω, fSW = 2.4 MHz, TA = 25°C  
Figure 31. Inverting Regulator Line Transient, VIN = +4.5 V to +5.5 V Step,  
VNEG = −15 V, Resistor Load for Inverting Regulator (RLOAD2) = 300 Ω,  
fSW = 2.4 MHz, TA = 25°C  
I
LOAD1  
I
LOAD2  
4
1
4
1
V
V
V
NEG  
POS  
V
FB2  
FB1  
3
3
CH1 100mV  
CH3 10.0mV  
M1.00ms A CH4  
20.30%  
48.0mA  
CH1 50.0mV  
CH3 10.0mV  
M100µs A CH4  
20.30%  
140mA  
CH4 20.0mA  
T
CH4 50.0mA  
T
Figure 32. Inverting Regulator Load Transient, VIN = +5 V Step, VNEG = −15 V,  
ILOAD2 = 35 mA to 45 mA Step, fSW = 2.4 MHz, TA = 25°C  
Figure 29. Boost Regulator Load Transient, VIN = 5 V Step, VPOS = 15 V,  
ILOAD1 = 120 mA to 150 mA Step, fSW = 2.4 MHz, TA = 25°C  
Rev. A | Page 11 of 23  
ADP5076  
Data Sheet  
I
INDUCTOR  
3
I
INDUCTOR  
SW2  
3
2
SW1  
2
1
V
NEG  
V
POS  
1
B
B
CH1 50.0mV  
CH2 5.00V  
M4.00µs A CH3  
12.00000µs  
35.0mA  
W
W
CH1 500mV  
CH2 10.0V  
M2.00µs A CH3  
7.960000µs  
82.0mA  
B
CH3 50.0mA  
T
W
CH3 100mA  
T
Figure 33. Boost Regulator Skip Mode Operation Showing Inductor Current  
(IINDUCTOR), Switch Node Voltage, and Output Ripple, VIN = 5 V, VPOS = 15 V,  
ILOAD1 = 4 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 36. Inverting Regulator Skip Mode Operation Showing IINDUCTOR, Switch  
Node Voltage, and Output Ripple, VIN = +5 V,  
VNEG = −5 V, ILOAD2 = 0 mA, fSW = 2.4 MHz, TA = 25°C  
I
I
INDUCTOR  
INDUCTOR  
3
3
SW1  
SW2  
2
2
V
V
NEG  
POS  
1
1
CH1 500mV  
CH2 5.00V  
M200ns A CH3  
24.46000µs  
42.0mA  
CH1 500mV  
CH2 10.0V  
M200ns A CH3  
7.960000µs  
100mA  
CH3 50mA  
CH3 200mA  
T
T
Figure 34. Boost Regulator Discontinuous Conduction Mode Operation  
Showing IINDUCTOR, Switch Node Voltage, and Output Ripple, VIN = 5 V,  
VPOS = 15 V, ILOAD1 = 6 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 37. Inverting Regulator Discontinuous Conduction Mode Operation  
Showing IINDUCTOR, Switch Node Voltage, and Output Ripple, VIN = +5 V,  
VNEG = −5 V, ILOAD2 = 6 mA, fSW = 2.4 MHz, TA = 25°C  
I
INDUCTOR  
I
INDUCTOR  
3
3
SW1  
SW2  
2
1
2
1
V
V
NEG  
POS  
B
B
CH1 50.0mV  
CH2 5.00V  
M100ns A CH3  
24.46000µs  
84.0mA  
CH1 500mV  
CH2 10.0V  
M200ns A CH4  
7.960000µs  
310mA  
W
W
B
CH3 50mA  
T
CH3 500mA  
W
T
Figure 35. Boost Regulator Continuous Conduction Mode Operation  
Showing IINDUCTOR, Switch Node Voltage, and Output Ripple, VIN = 5 V,  
VPOS = 15 V, ILOAD1 = 90 mA, fSW = 2.4 MHz, TA = 25°C  
Figure 38. Inverting Regulator Continuous Conduction Mode Operation  
Showing IINDUCTOR, Switch Node Voltage, and Output Ripple, VIN = +5 V,  
VNEG = −5 V, ILOAD2 = 35 mA, fSW = 2.4 MHz, TA = 25°C  
Rev. A | Page 12 of 23  
Data Sheet  
ADP5076  
THEORY OF OPERATION  
V
IN  
C
IN  
SYNC  
AVIN  
PVIN  
CURRENT SENSE  
L1  
INVERTER  
PWM CONTROL  
D1  
V
POS  
SW1  
SLEW  
D2  
V
SW2  
L2  
NEG  
C
OUT1  
SLEW  
BOOST PWM  
CONTROL  
R
FT1  
REFERENCES  
C
OUT2  
PGND  
FB1  
CURRENT  
SENSE  
PLL  
R
ERROR  
AMP  
FT2  
REF2  
ERROR  
+
+
AMP  
OSCILLATOR  
FB2  
R
REF1  
FB1  
COMP1  
BOOST_ENABLE  
SEQUENCE  
CONTROL  
R
FB2  
R
INVERTER_ENABLE  
C1  
VREF  
REF_1V6  
THERMAL  
SHUTDOWN  
C
VREF  
COMP2  
C
C1  
4µA  
UVLO  
SLEW  
TRI-STATE  
BUFFER  
REF1  
REF2  
1.5MΩ  
1.5MΩ  
START-UP  
TIMERS  
REFERENCE  
GENERATOR  
R
C2  
FB1  
OVP  
FB2  
REF_1V6  
C
C2  
SS  
SLEW  
EN1  
EN2 SEQ  
R
(OPTIONAL)  
SS  
AGND  
Figure 39. Typical Application Circuit  
PULSE WIDTH MODULATION (PWM) MODE  
OSCILLATOR AND SYNCHRONIZATION  
In PWM mode, the boost and inverting regulators in the  
ADP5076 operate at a fixed frequency set by an internal  
oscillator. At the start of each oscillator cycle, the MOSFET  
switch turns on, applying a positive voltage across the inductor.  
The inductor current increases until the current sense signal  
crosses the peak inductor current threshold that turns off the  
MOSFET switch. This threshold is set by the error amplifier  
output. During the MOSFET off time, the inductor current  
declines through the external diode until the next oscillator  
clock pulse starts a new cycle. The ADP5076 regulates the output  
voltage by adjusting the peak inductor current threshold.  
The ADP5076 initiates the drive of the boost regulator SW1 pin  
and the inverting regulator SW2 pin 180° out of phase to reduce  
peak current consumption and noise.  
A phase-locked loop (PLL)-based oscillator generates the  
internal clock and offers a choice of two internally generated  
frequency options or external clock synchronization. The  
switching frequency is configured using the SYNC pin options  
shown in Table 6.  
For external synchronization, connect the SYNC pin to a  
suitable clock source. The PLL locks to an input clock within  
the range specified by fSYNC  
.
PULSE SKIP MODULATION MODE  
Table 6. SYNC Pin Options  
In pulse skip modulation operation during light load, the  
regulators can skip pulses to maintain output voltage regulation.  
Skipping pulses increases the device efficiency.  
SYNC Pin  
High  
Switching Frequency  
2.4 MHz  
Low  
1.2 MHz  
UVLO  
External Clock  
1 × clock frequency  
The undervoltage lockout circuitry monitors the AVIN pin  
voltage level. If the input voltage drops below the VUVLO_FALLING  
threshold, both regulators turn off. After the AVIN pin voltage  
rises above the VUVLO_RISING threshold, the soft start period initiates,  
and the regulators are enabled.  
INTERNAL REGULATOR  
The VREF regulator provides a reference voltage for the inverting  
regulator feedback network to ensure a positive feedback voltage on  
the FB2 pin.  
A current-limit circuit is included for the VREF regulator to protect  
the circuit from accidental loading.  
Rev. A | Page 13 of 23  
 
 
 
 
 
 
 
ADP5076  
Data Sheet  
short-circuit condition, the regulator enters hiccup mode. The  
regulator stops switching and then restarts with a new soft start  
cycle after tHICCUP and repeats until the overcurrent condition is  
removed.  
PRECISION ENABLING  
The ADP5076 has an individual enable pin for the boost  
regulator (EN1) and inverting regulator (EN2). These enable  
pins feature a precision enable circuit with an accurate reference  
voltage. This reference allows the ADP5076 to be sequenced  
easily from other supplies. It can also be used as a programmable  
UVLO input by using a resistor divider.  
OVERVOLTAGE PROTECTION  
An overvoltage protection mechanism is present on the FB1  
and FB2 pins for the boost and inverting regulators.  
The enable pins have an internal pull-down resistor that defaults  
each regulator to off when the pin is floating.  
On the boost regulator, when the voltage on the FB1 pin exceeds  
the VOV1 threshold, the switching on SW1 stops until the voltage  
falls below the threshold again. This functionality is permanently  
enabled on this regulator.  
When the voltage of the enable pins is greater than the VTH_H  
reference level, the regulator is enabled.  
On the inverting regulator, when the voltage on the FB2 pin  
drops below the VOV2 threshold, the switching stops until the  
voltage rises above the threshold. This functionality is enabled  
after the soft start period has elapsed.  
SOFT START  
Each regulator in the ADP5076 includes soft start circuitry that  
ramps the output voltage in a controlled manner during startup,  
limiting the inrush current. The soft start time is internally set to  
the fastest rate when the SS pin is open.  
THERMAL SHUTDOWN  
Connecting a resistor between the SS pin and the AGND pin  
allows the adjustment of the soft start delay. The delay length is  
common to both regulators.  
In the event that the ADP5076 junction temperature rises above  
TSHDN, the thermal shutdown circuit turns off the integrated  
circuit (IC). Extreme junction temperatures can be the result of  
prolonged high current operation, poor circuit board design,  
and/or high ambient temperature. Hysteresis is included so that  
when thermal shutdown occurs, the ADP5076 does not return to  
SLEW RATE CONTROL  
The ADP5076 employs programmable output driver slew rate  
control circuitry. This circuitry reduces the slew rate of the  
switching node as shown in Figure 40, resulting in reduced  
ringing and lower EMI. To program the slew rate, connect the  
SLEW pin to the AVIN pin for normal mode, to the AGND pin  
for slow mode, or leave it open for fast mode. This configuration  
allows the use of an open-drain output from a noise sensitive  
device to switch the slew rate from fast to slow, for example,  
during ADC sampling.  
operation until the on-chip temperature drops below TSHDN − THYS  
When resuming from thermal shutdown, a soft start is performed  
on each enabled channel.  
.
STARTUP SEQUENCE  
The ADP5076 implements a flexible startup sequence to meet  
different system requirements. Three different enabling modes  
can be implemented via the SEQ pin, as explained in Table 7.  
Slew rate control causes a trade-off between efficiency and low  
EMI.  
Table 7. SEQ Pin Settings  
SEQ Pin  
Open  
AVIN  
Description  
Manual enable mode  
Simultaneous enable mode  
Sequential enable mode  
Low  
FASTEST  
To configure the manual enable mode, leave the SEQ pin open.  
The boost and inverting regulators are controlled separately from  
their respective precision enable pins.  
SLOWEST  
To configure the simultaneous enable mode, connect the SEQ pin  
to the AVIN pin. Both regulators power up simultaneously  
when the EN2 pin is taken high. The EN1 pin enable can be  
used to enable the internal references ahead of enabling the  
outputs, if desired. The simultaneous enable mode timing is  
shown in Figure 41.  
Figure 40. Switching Node at Various Slew Rate Settings  
CURRENT-LIMIT PROTECTION  
The boost and inverting regulators in the ADP5076 include  
current-limit protection circuitry to limit the amount of forward  
current through the MOSFET switch.  
When the peak inductor current exceeds the overcurrent limit  
threshold for a number of clock cycles during an overload or  
Rev. A | Page 14 of 23  
 
 
 
 
 
 
Data Sheet  
ADP5076  
V
V
POS  
POS  
V
V
IN  
IN  
TIME  
TIME  
V
V
V
NEG  
NEG  
1. V  
FOLLOWED BY V  
NEG  
SIMULTANEOUS ENABLE MODE  
(SEQ = HIGH, EN2 = HIGH)  
POS  
(SEQ = LOW, EN1 = HIGH, EN2 = LOW)  
Figure 41. Simultaneous Enable Mode  
POS  
To configure the sequential enable mode, pull the SEQ pin low.  
In this mode, either VPOS or VNEG can be enabled first by using  
the respective EN1 pin or EN2 pin. Keep the other pin low. The  
secondary supply is enabled when the primary supply completes  
soft start and its feedback voltage reaches approximately 85% of  
the target value. The sequential enable mode timing is shown in  
Figure 42.  
V
IN  
TIME  
V
NEG  
2. V  
FOLLOWED BY V  
POS  
NEG  
(SEQ = LOW, EN2 = HIGH, EN1 = LOW)  
Figure 42. Sequential Enable Mode  
Rev. A | Page 15 of 23  
ADP5076  
Data Sheet  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
Feedback Resistors  
V
R
R
FB1 is the FB1 reference voltage.  
FT1 is the feedback resistor from VPOS to FB1.  
FB1 is the feedback resistor from FB1 to AGND.  
The ADP5076 provides an adjustable output voltage for both boost  
and inverting regulators. An external resistor divider sets the  
output voltage where the divider output must equal the  
appropriate feedback reference voltage, VFB1 or VFB2. To limit the  
output voltage accuracy degradation due to feedback bias current,  
ensure that the current through the divider is at least 10 × IFB1 or  
Set the negative output for the inverting regulator by  
RFT2  
VNEG VFB2  
where:  
V
V
V
VFB2  
REF  
RFB2  
NEG is the negative output voltage.  
FB2 is the FB2 reference voltage.  
10 × IFB2  
.
Set the positive output for the boost regulator by  
R
R
FT2 is the feedback resistor from VNEG to FB2.  
FB2 is the feedback resistor from FB2 to VREF.  
RFT1   
VPOS VFB1 1  
V
REF is the VREF pin reference voltage.  
RFB1   
where:  
POS is the positive output voltage.  
Table 8. Recommended Feedback Resistor Values for Boost Regulator  
V
Boost Regulator  
Desired Output Voltage (V)  
RFT1 (MΩ)  
0.432  
0.604  
1.24  
RFB1 (kΩ)  
102  
115  
Calculated Output Voltage (V)  
+4.2  
+5  
+9  
4.188  
5.002  
8.998  
121  
+12  
+13  
+15  
+18  
+20  
+24  
+30  
1.4  
2.1  
2.43  
2.15  
2.55  
3.09  
3.65  
100  
137  
137  
100  
107  
107  
100  
12.000  
13.063  
14.990  
18.000  
19.865  
23.903  
30.000  
Table 9. Recommended Feedback Resistor Values for Inverting Regulator  
Inverting Regulator  
Desired Output Voltage (V)  
RFT2 (MΩ)  
0.332  
0.475  
0.523  
0.715  
1.15  
1.62  
1.15  
2.8  
2.32  
RFB2 (kΩ)  
102  
100  
102  
115  
158  
133  
71.5  
162  
118  
Calculated Output Voltage (V)  
−1.8  
−3  
−3.3  
−4.2  
−5  
−1.804  
−3.000  
−3.302  
−4.174  
−5.023  
−8.944  
−12.067  
−13.027  
−14.929  
−18.103  
−20.014  
−23.984  
−30.004  
−9  
−12  
−13  
−15  
−18  
−20  
−24  
−30  
2.67  
2.94  
3.16  
4.12  
113  
113  
102  
107  
Rev. A | Page 16 of 23  
 
 
Data Sheet  
ADP5076  
Soft Start Resistor  
OUTPUT CAPACITORS  
A resistor can be connected between the SS pin and the AGND pin  
to increase the soft start time. The soft start time can be set by the  
resistor between 4 ms (268 kΩ) and 32 ms (50 kΩ). Leaving the  
SS pin open selects the fastest time of 4 ms. Figure 43 shows the  
behavior of this operation. Calculate the soft start time using the  
following formula:  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
the output voltage dc bias.  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure the  
minimum capacitance over the necessary temperature range and  
dc bias conditions. X5R or X7R dielectrics with a voltage rating of  
25 V or 50 V (depending on output) are recommended for best  
performance. Y5V and Z5U dielectrics are not recommended  
for use with any dc-to-dc converter because of their poor  
temperature and dc bias characteristics.  
t
SS = 38.4 × 10−3 − 1.28 × 10−7 × RSS (ꢀ)  
where 50 kꢀ ≤ RSS ≤ 268 kꢀ.  
SOFT START  
TIMER  
32ms  
Calculate the worst-case capacitance accounting for capacitor  
variation over temperature, component tolerance, and voltage  
using the following equation:  
4ms  
SS PIN OPEN  
R1  
SOFT START  
RESISTOR  
C
EFFECTIVE = CNOMINAL × (1 − TEMPCO) × (1 − DCBIASCO) ×  
(1 − Tolerance)  
where:  
R2  
Figure 43. Soft Start Behavior  
Diodes  
C
C
EFFECTIVE is the effective capacitance at the operating voltage.  
NOMINAL is the nominal data sheet capacitance.  
Use a Schottky diode with low junction capacitance for diode 1  
(D1) and diode 2 (D2). At higher output voltages and especially at  
higher switching frequencies, the junction capacitance is a  
significant contributor to efficiency. Higher capacitance diodes  
also generate more switching noise. As a guide, a diode with less  
than 40 pF junction capacitance is preferred when the output  
voltage is above 5 V.  
TEMPCO is the worst-case capacitor temperature coefficient.  
DCBIASCO is the dc bias derating at the output voltage.  
Tolerance is the worst-case component tolerance.  
To guarantee the performance of the device, it is imperative that  
the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Inductor Selection for the Boost Regulator  
Capacitors with lower effective series resistance (ESR) and  
effective series inductance (ESL) are preferred to minimize  
output voltage ripple.  
The inductor stores energy during the on time of the power  
switch and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, inductance  
values in the range of 1 μH to 22 μH are recommended. In general,  
lower inductance values have higher saturation current and  
lower series resistance for a given physical size. However, lower  
inductance results in a higher peak current that can lead to reduced  
efficiency and greater input and/or output ripple and noise. A  
peak-to-peak inductor ripple current that is close to 30% of the  
maximum dc input current for the application typically yields  
an optimal compromise.  
The use of large output capacitors can require a slower soft start  
to prevent current limit during startup. A 10 μF capacitor is  
suggested as a good balance between performance and size.  
Input Capacitor  
Higher value input capacitors help to reduce the input voltage  
ripple and improve transient response.  
To minimize supply noise, place the input capacitor as close as  
possible to the AVIN pin and the PVIN pin. A low ESR capacitor  
is recommended.  
For the inductor ripple current in continuous conduction mode  
(CCM) operation, the VIN and output voltage (VPOS) determine  
the switch duty cycle (DUTY1) using the following equation:  
The effective capacitance needed for stability is a minimum of 10 μF.  
If the power pins are individually decoupled, it is recommended  
to use an effective minimum of a 5.6 μF capacitor on the PVIN pin  
and a 3.3 μF capacitor on the AVIN pin. The minimum values  
specified exclude dc bias, temperature, and tolerance effects that  
are application dependent and must be taken into  
consideration.  
DIODE1   
VPOS VIN V  
DUTY   
1
V
POS VDIODE1  
where VDIODE1 is the forward voltage drop of D1.  
VREF Capacitor  
A 1.0 μF ceramic capacitor (CVREF) is required between the  
VREF pin and the AGND pin.  
Rev. A | Page 17 of 23  
 
 
ADP5076  
Data Sheet  
The dc input current in CCM (IIN) can be determined using the  
following equation:  
For the inductor ripple current in CCM operation, the VIN and  
output voltage (VNEG) determine the switch duty cycle (DUTY2)  
using the following equation:  
IOUT1  
IIN  
(1 DUTY1)  
|VNEG | VDIODE2  
VIN |VNEG | V  
DUTY   
2
DIODE2   
Using the DUTY1 and fSW, determine the on time (tON1) using  
the following equation:  
where VDIODE2 is the forward voltage drop of D2.  
DUTY1  
The dc current in the inductor in CCM (IL2) can be determined  
using the following equation:  
tON1  
fSW  
The inductor ripple current (IL1) in steady state is calculated  
using the following equation:  
IOUT2  
IL2  
(1 DUTY2)  
VIN tON1  
Using the DUTY2 and fSW, determine the on time (tON2) using  
the following equation:  
IL1  
L1  
Solve for the inductor (L1) using the following equation:  
DUTY2  
tON2  
VIN tON1  
L1   
fSW  
IL1  
The inductor ripple current (IL2) in steady state is calculated  
using the following equation:  
Assuming an inductor ripple current of 30% of the maximum  
dc input current, solve for L1 using the following equation:  
VIN tON2  
IL2  
VIN tON1 (1 DUTY1)  
L1   
L2  
0.3IOUT1  
Solve for the inductor (L2) using the following equation:  
Ensure that the peak inductor current (the maximum input  
current plus half the inductor ripple current) is below the rated  
saturation current of the inductor. Likewise, ensure that the  
maximum rated rms current of the inductor is greater than the  
maximum dc input current to the regulator.  
VIN tON2  
L2   
IL2  
Assuming an inductor ripple current of 30% of the maximum  
dc current in the inductor, solve for L2 using the following  
equation:  
When the ADP5076 boost regulator is operated in CCM at duty  
cycles greater than 50%, slope compensation is required to stabilize  
the current mode loop. This slope compensation is built in to  
the ADP5076. For stable current mode operation, ensure that  
the selected inductance is equal to or greater than the minimum  
calculated inductance (LMIN1) for the application parameters in  
the following equation:  
VIN tON2 (1 DUTY2)  
L2   
0.3IOUT2  
Ensure that the peak inductor current (the maximum input current  
plus half the inductor ripple current) is below the rated saturation  
current of the inductor. Likewise, ensure that the maximum rated  
rms current of the inductor is greater than the maximum dc  
input current to the regulator.  
0.13  
L1 LMIN1 VIN  
0.16 µH  
(1DUTY1)  
When the ADP5076 inverting regulator is operated in CCM at  
duty cycles greater than 50%, slope compensation is required to  
stabilize the current mode loop. For stable current mode operation,  
ensure that the selected inductance is equal to or greater than  
the minimum calculated inductance (LMIN2) for the application  
parameters in the following equation:  
Table 11 suggests a series of inductors to use with the ADP5076  
boost regulator.  
Inductor Selection for the Inverting Regulator  
The inductor stores energy during the on time of the power  
switch and transfers that energy to the output through the  
output rectifier during the off time. To balance the tradeoffs  
between small inductor current ripple and efficiency, inductance  
values in the range of 1 μH to 22 μH are recommended. In  
general, lower inductance values have higher saturation current  
and lower series resistance for a given physical size. However,  
lower inductance results in a higher peak current that can lead  
to reduced efficiency and greater input and/or output ripple and  
noise. A peak-to-peak inductor ripple current that is close to  
30% of the maximum dc current in the inductor typically yields  
an optimal compromise.  
0.13  
L2 LMIN2 VIN  
0.16 µH  
(1 DUTY2)  
Table 12 suggests a series of inductors to use with the ADP5076  
inverting regulator.  
LOOP COMPENSATION  
The ADP5076 uses external components to compensate the  
regulator loop, allowing the optimization of the loop dynamics  
for a given application.  
Rev. A | Page 18 of 23  
 
Data Sheet  
ADP5076  
Using typical values for VFB1 and GM1 (see the Specifications  
section) results in  
Boost Regulator  
The boost converter produces an undesirable right half plane  
zero in the regulation feedback loop. This feedback loop requires  
compensating the regulator so that the crossover frequency is  
less than the frequency of the right half plane zero. The right  
half plane zero frequency is determined by the following  
equation:  
2
2094 fC1 COUT1 (VPOS  
)
RC1  
VIN  
For better accuracy, it is recommended to use the COUT1 value  
expected under the dc bias conditions that the COUT1 value  
operates under in the calculation for RC1.  
R
LOAD1(1 DUTY1)2  
2L1  
fZ1(RHP)   
After the compensation resistor is known, set the zero formed  
by the compensation capacitor and resistor to one-fourth of the  
crossover frequency, or  
where:  
fZ1(RHP) is the right half plane zero frequency.  
LOAD1 is the equivalent resistor load for boost regulator, which  
2
R
CC1  
π fC1 RC1  
is also equal to the output voltage divided by the load current.  
where CC1 is the compensation capacitor value.  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-tenth of the right half  
plane zero frequency.  
ERROR  
AMPLIFIER  
FB1  
COMP1  
g
M1  
The boost regulator loop gain is  
REF1  
R
C1  
VFB1 VIN  
AVL1   
GM1 ROUT1 ||Z COMP1 GCS1 ZOUT1  
C
C1  
VPOS VPOS  
where:  
Figure 44. Compensation Components  
A
V
V
V
G
VL1 is the loop gain.  
Inverting Regulator  
FB1 is the feedback regulation voltage.  
POS is the regulated positive output voltage.  
IN is the input voltage.  
The inverting converter, like the boost converter, produces an  
undesirable right half plane zero in the regulation feedback loop.  
This feedback loop requires compensating the regulator so that  
the crossover frequency is less than the frequency of the right half  
plane zero. The right half plane zero frequency is determined by  
the following equation:  
M1 is the error amplifier transconductance gain.  
R
OUT1 is the output impedance of the error amplifier and is 33 Mꢀ.  
Z
COMP1 is the impedance of the series RC network from the  
COMP1 pin to the AGND pin.  
CS1 is the current sense transconductance gain (the inductor  
G
RLOAD2 (1 DUTY2)2  
2π L2 DUTY2  
fZ2(RHP)   
current divided by the voltage at the COMP1 pin), which is  
internally set by the ADP5076 and is 12.5 A/V.  
where:  
Z
OUT1 is the impedance of the load in parallel with the output  
capacitor.  
fZ2(RHP) is the right half plane zero frequency.  
R
LOAD2 is the equivalent resistor load for inverting regulator,  
At crossover frequency (fC1), the ZCOMP1 is dominated by a resistor  
(RC1), and the ZOUT1 is dominated by the impedance of an output  
capacitor (COUT1). Therefore, when solving for the fC1, the equation  
(by definition of the crossover frequency) is simplified to  
which is also equal to the output voltage divided by the load  
current.  
To stabilize the regulator, ensure that the regulator crossover  
frequency is less than or equal to one-tenth of the right half  
plane zero frequency.  
VFB1 VIN  
VPOS VPOS  
AVL1  
GM1 RC1 GCS1   
The inverting regulator loop gain is  
1
1  
VFB2  
VIN  
2π fC1 COUT1  
A
GM2   
VL2  
|VNEG  
|
(VIN 2 |VNEG|)  
To solve for RC1, use the following equation:  
ROUT2 ||ZCOMP2 GCS2 ZOUT2  
2
2fC1 COUT1 (VPOS  
)
RC1  
where:  
VFB1 VIN GM1 GCS1  
A
V
V
V
G
VL2 is the loop gain.  
FB2 is the FB2 reference voltage.  
NEG is the regulated negative output voltage.  
IN is the input voltage.  
M2 is the error amplifier transconductance gain.  
OUT2 is the output impedance of the error amplifier and is 33 Mꢀ.  
where GCS1 = 12.5 A/V.  
R
Rev. A | Page 19 of 23  
ADP5076  
Data Sheet  
Z
COMP2 is the impedance of the series RC network from the  
COMP2 pin to the AGND pin.  
CS2 is the current sense transconductance gain (the inductor  
COMMON APPLICATIONS  
Table 10, Table 11, and Table 12 list a number of common  
component selections for typical VIN and VOUT conditions.  
These have been bench tested and provide an off the shelf solution.  
When pairing a boost and inverting regulator bill of materials,  
G
current divided by the voltage at COMP2), which is internally  
set by the ADP5076 and is 12.5 A/V.  
Z
OUT2 is the impedance of the load in parallel with the output  
choose the same VIN and fSW  
.
capacitor.  
V
IN  
+5V  
At crossover frequency (fC2), the ZCOMP2 is dominated by a  
resistor (RC2), and the ZOUT2 is dominated by the impedance of the  
output capacitor (COUT2). Therefore, when solving for the fC2, the  
equation (by definition of the crossover frequency) is simplified to  
ADP5076  
R
SS  
C1  
L1  
3.3µH  
102kΩ  
V
D1  
POS  
COMP1  
EN1  
PD3S140  
+15V  
C
1nF  
C1  
SW1  
SW1  
FB1  
R
FT1  
2.43MΩ  
VFB2  
VIN  
C
OUT1  
A
GM2   
VL2  
10µF  
R
FB1  
|VNEG | (VIN 2|VNEG |)  
137kΩ  
PVIN  
PVIN  
AVIN  
V
+5V  
IN  
1
PGND  
PGND  
VREF  
C
C
IN  
10µF  
RC2 GCS 2  
1  
VREF  
1µF  
2π fC2 COUT2  
To solve for RC2, use the following equation:  
EN2  
R
FB2  
C
R
OUT2  
C2  
61.9kΩ  
118kΩ  
10µF  
FB2  
COMP2  
R
FT2  
2.32MΩ  
2π fC2 COUT2 |VNEG |(VIN (2 |VNEG |)  
VFB2 VIN GM2 GCS2  
V
C
IN  
C2  
2.2nF  
SYNC  
SLEW  
SEQ  
RC2  
+5V  
SW2  
V
NEG  
D2  
PD3S140  
L2  
6.8µF  
–15V  
AGND  
where GCS2 = 12.5 A/V.  
Using typical values for VFB2 and GM2 results in  
Figure 46. Typical +5 V to 15 V Application  
2094 fC2 COUT2 |VNEG |(VIN (2 |VNEG |)  
Figure 46 shows the schematic referenced by Table 10, Table 11,  
and Table 12 with example component values for +5 V to 15 V  
generation. Table 10 shows the components common to all of  
the VIN and VOUT conditions.  
RC2  
VIN  
See the Specifications section for the typical values for VFB2 and  
M2. The typical value for VFB2 can be obtained by subtracting  
(VREF − VFB2) from VREF  
G
.
Table 10. Recommended Common Components Selections  
For better accuracy, it is recommended to use the COUT2 value  
expected under the dc bias conditions that the COUT2 value  
operates under in the calculation for RC2.  
Reference  
Value Part Number  
Manufacturer  
Input  
10 μF GRM21BZ71C106KE15L Murata  
Capacitor  
CVREF  
1 ꢀF  
GRM188R71C105KA12C Murata  
After the compensation resistor is known, set the zero formed  
by the CC2 and RC2 to one-fourth of the crossover frequency, or  
Figure 47 shows the efficiency curves for the boost and inverting  
regulator using the recommended small-sized components in  
Table 10, Table 11, and Table 12 for VPOS = +15 V and VNEG  
2
CC2   
=
π fC2 RC2  
−15 V at VIN = +5 V.  
where CC2 is the compensation capacitor.  
100  
V
V
V
V
= +15V, 2.4MHz  
= +15V, 1.2MHz  
= –15V, 1.2MHz  
= –15V, 2.4MHz  
POS  
POS  
NEG  
NEG  
ERROR  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AMPLIFIER  
FB2  
COMP2  
g
M2  
REF2  
R
C2  
C
C2  
Figure 45. Compensation Component  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
Figure 47. Boost Regulator and Inverting Regulator Efficiency vs. Current  
Load, TA = 25°C  
Rev. A | Page 20 of 23  
 
 
 
 
Data Sheet  
ADP5076  
Table 11 and Table 12 are based on the smallest sized  
It is important to verify the thermal performance of the small  
sized inductor at higher ambient temperatures in the actual  
application.  
components. The maximum output current is limited by the  
saturation current (ISAT) rating of the 2 mm × 2 mm inductor. A  
higher output current is possible by using larger inductors with  
higher ISAT ratings, as long as the inductor peak current remains  
below the appropriate current limit specifications.  
Table 11. Recommended Boost Regulator Small Sized Components  
VIN  
(V)  
VPOS  
(V)  
ILOAD1 (MAX) Frequency  
L1  
(μH)  
L1 Manufacturer Part  
No. (Coilcraft)  
RFT1  
(MΩ)  
RFB1  
(kΩ)  
CC1  
(nF)  
RC1  
(kΩ)  
(mA)  
370  
500  
170  
270  
90  
(MHz)  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
COUT1, Murata Part No.1  
GRM21BR71A106KA73L  
GRM21BR71A106KA73L  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L  
GRM31CR71E106MA12L  
GRM32ER7YA106MA12L  
GRM32ER7YA106MA12L  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L  
GRM31CR71E106MA12L  
GRM32ER7YA106MA12L  
GRM32ER7YA106MA12L  
GRM32ER71H106KA12L  
GRM32ER71H106KA12L  
D1  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
5
2.2  
1
EPL2014-222ML_  
EPL2014-102ML_  
EPL2014-222ML_  
EPL2014-152ML_  
EPL2014-332ML_  
EPL2014-152ML_  
EPL2014-332ML_  
EPL2014-332ML_  
EPL2014-332ML_  
EPL2014-152ML_  
EPL2014-332ML_  
EPL2014-222ML_  
EPL2014-472ML_  
EPL2014-332ML_  
EPL2014-472ML_  
EPL2014-472ML_  
PMEG2005AELD 0.604  
PMEG2005AELD 0.604  
PMEG2005AELD 1.24  
PMEG2005AELD 1.24  
115  
115  
121  
121  
137  
137  
107  
107  
121  
121  
137  
137  
107  
107  
102  
102  
0.47  
0.39  
0.82  
0.68  
2.2  
21  
5
22.1  
16.5  
6.81  
12.1  
9.53  
28  
9
2.2  
1.5  
3.3  
1.5  
3.3  
3.3  
3.3  
1.5  
3.3  
2.2  
4.7  
3.3  
4.7  
4.7  
9
15  
15  
24  
24  
9
PD3S140  
PD3S140  
PD3S140  
PD3S140  
2.43  
2.43  
3.09  
3.09  
150  
50  
1.2  
1.8  
70  
1.8  
12.7  
15.8  
13.3  
16.2  
11.5  
19.1  
12.4  
118  
13.3  
230  
390  
100  
180  
50  
PMEG2005AELD 1.24  
PMEG2005AELD 1.24  
0.56  
0.47  
1
5
9
5
15  
15  
24  
24  
34  
34  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
2.43  
2.43  
3.09  
3.09  
4.22  
4.22  
5
0.82  
1.5  
5
5
100  
30  
1.2  
5
0.56  
1.5  
5
60  
1 COUT1 = 10 ꢀF  
Table 12. Recommended Inverting Regulator Small Sized Components  
VIN  
(V)  
VNEG  
(V)  
ILOAD2 (MAX) Frequency  
L2  
(μH)  
L2 Manufacturer Part  
No. (Coilcraft)  
RFT2  
(MΩ)  
RFB2  
(kΩ)  
CC2  
(nF)  
RC2  
(kΩ)  
(mA)  
190  
230  
100  
150  
60  
(MHz)  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
1.2  
2.4  
C
OUT2, Murata Part No.1  
D2  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
−5  
3.3  
2.2  
4.7  
2.2  
4.7  
2.2  
4.7  
3.3  
6.8  
3.3  
6.8  
3.3  
10  
EPL2014-332ML_  
EPL2014-222ML_  
EPL2014-472ML_  
EPL2014-222ML_  
EPL2014-472ML_  
EPL2014-222ML_  
EPL2014-472ML_  
EPL2014-332ML_  
EPL2014-682ML_  
EPL2014-332ML_  
EPL2014-682ML_  
EPL2014-332ML_  
EPL2014-103ML_  
EPL2014-472ML_  
EPL2014-103ML_  
EPL2014-472ML_  
GRM21BR71A106KA73L  
GRM21BR71A106KA73L  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L  
GRM31CR71E106MA12L  
GRM32ER7YA106MA12L  
GRM32ER7YA106MA12L  
GRM21BZ71C106KE15L  
GRM21BZ71C106KE15L  
GRM31CR71E106MA12L  
GRM31CR71E106MA12L  
GRM32ER7YA106MA12L  
GRM32ER7YA106MA12L  
GRM32ER71H106KA12L  
GRM32ER71H106KA12L  
PMEG2005AELD 1.15  
PMEG2005AELD 1.15  
PMEG2005AELD 1.62  
PMEG2005AELD 1.62  
158  
158  
133  
133  
118  
118  
102  
102  
133  
133  
118  
118  
102  
102  
75  
5.6  
2.2  
4.7  
2.7  
4.7  
2.2  
6.8  
2.7  
12  
6.65  
8.66  
6.81  
6.04  
6.04  
7.15  
9.09  
10  
−5  
−9  
−9  
−15  
−15  
−24  
−24  
−9  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
2.32  
2.32  
3.16  
3.16  
100  
40  
60  
120  
190  
70  
PMEG2005AELD 1.62  
PMEG2005AELD 1.62  
6.81  
4.64  
6.81  
5.36  
10  
5
−9  
2.2  
2.7  
2.2  
4.7  
4.7  
3.9  
2.2  
5
−15  
−15  
−24  
−24  
−30  
−30  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
PD3S140  
2.32  
2.32  
3.16  
3.16  
4.99  
4.99  
5
120  
40  
5
5
70  
4.7  
10  
5.74  
15.8  
8.87  
5
30  
5
50  
4.7  
75  
1 COUT2 = 10 ꢀF  
Rev. A | Page 21 of 23  
 
 
ADP5076  
Data Sheet  
Place the tops of the upper feedback resistors (RFT1 and RFT2) or  
route traces to them from as close as possible to the tops of  
LAYOUT CONSIDERATIONS  
Layout is important for all switching regulators but is particularly  
important for regulators with high switching frequencies. To  
achieve high efficiency, good regulation, good stability, and low  
noise, a well-designed PCB layout is required. Follow these  
guidelines when designing PCBs:  
COUT1 and COUT2 for optimum output voltage sensing.  
Place the compensation components (RC1, CC1, RC2, and  
CC2) as close as possible to the COMP1 and COMP2 pins.  
Do not share vias to the ground plane with the feedback  
resistors to avoid coupling high frequency noise into the  
sensitive COMP1 and COMP2 pins.  
Keep the input bypass capacitor (CIN) near to the PVIN pin  
and the AVIN pin.  
Place the CVREF capacitor as close to the VREF pin as  
possible. Ensure that short traces are used between the  
Keep the high current paths as short as possible. These  
paths include the connections between CIN, L1, D1, COUT1  
and the PGND pin for the boost regulator, and L2, D2,  
VREF pin and RFB2  
.
R
FT1  
R
COUT2, and the PGND pin for the inverting regulator and  
V
FB1  
POS  
their connections to the ADP5076.  
R
C1  
Keep the AGND pin and the PGND pin separate on the  
top layer of the board. This separation avoids pollution of  
the AGND pin with switching noise. Connect both the  
AGND and PGND pins to the board ground plane with  
vias. Ideally, connect the PGND pin to the plane at a point  
between the input and output capacitors.  
Keep high current traces as short and wide as possible to  
minimize parasitic series inductance, which causes spiking  
and EMI.  
Avoid routing high impedance traces near any node  
connected to the SW1 and SW2 pins or near inductors L1  
and L2 to prevent radiated switching noise injection.  
Place the feedback resistors (RFT1, RFB1, RFT2, and RFB2) as close  
as possible to the FB1 and FB2 pins to prevent high frequency  
switching noise injection.  
C
OUT1  
C
C1  
C
VREF  
R
FB2  
FT2  
R
V
NEG  
C
IN  
C
R
C2 C2  
C
OUT2  
V
NEG  
Figure 48. Suggested Layout for VIN = +3.3 V, VPOS = +15 V, ILOAD1 = 90 mA and  
VNEG = −15 V, ILOAD2 = 60 mA, Not to Scale  
Rev. A | Page 22 of 23  
 
Data Sheet  
ADP5076  
OUTLINE DIMENSIONS  
1.650  
1.610  
1.570  
0.310  
0.290  
0.270  
4
3
2
1
A
B
BALL A1  
IDENTIFIER  
2.220  
2.180  
2.140  
1.60 REF  
C
D
E
0.40  
BSC  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.225  
1.20 REF  
0.205  
0.185  
0.330  
0.300  
0.270  
0.560  
0.500  
0.440  
SIDE VIEW  
COPLANARITY  
0.04  
0.300  
0.260  
0.220  
SEATING  
PLANE  
0.230  
0.200  
0.170  
Figure 49. 20-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-20-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CB-20-14  
ADP5076ACBZ-R7  
ADP5076CB-EVALZ  
−40°C to +125°C  
20-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D20402-0-12/19(A)  
Rev. A | Page 23 of 23  
 
 

相关型号:

ADP5073ACPZ-R7

1.2 A, DC-to-DC Inverting Regulator
ADI

ADP5073CP-EVALZ

1.2 A, DC-to-DC Inverting Regulator
ADI

ADP5074

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5074ACPZ-R7

2.4 A, DC-to-DC Inverting Regulator
ADI

ADP5074CP-EVALZ

2.4 A, DC-to-DC Inverting Regulator
ADI

ADP5075

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5075ACBZ-R7

800 mA, DC-to-DC Inverting Regulator
ADI

ADP5075CB-EVALZ

800 mA, DC-to-DC Inverting Regulator
ADI

ADP5076

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5076ACBZ-R7

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5076CB-EVALZ

2 A/1.2 A DC-to-DC Switching Regulator with Independent Positive and Negative Outputs
ADI

ADP5080

High Efficiency Integrated Power Solution for Multicell Lithium Ion Applications
ADI