ADP5138ACPZ-2-R7 [ADI]

Quad, 1 A, 5.5 V, Synchronous Step-Down Regulators with One RF LDO Regulator;
ADP5138ACPZ-2-R7
型号: ADP5138ACPZ-2-R7
厂家: ADI    ADI
描述:

Quad, 1 A, 5.5 V, Synchronous Step-Down Regulators with One RF LDO Regulator

开关 输出元件
文件: 总23页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 1 A, 5.5 V, Synchronous Step-Down  
Regulators with One RF LDO Regulator  
Data Sheet  
ADP5138  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
V
OUT1  
PVINx voltage range: 3 V to 5.5 V  
Continuous output current  
Channel 1 to Channel 4 (buck): 1 A  
Channel 5 (LDO): 250 mA  
3.2 MHz fixed PWM switching frequency  
Synchronization input function  
Buck regulators run at 90° out of phase  
Individual precision enable input  
Power-on reset output  
ADP5138  
R
POR  
L1  
POR  
= 3.3V  
AVIN  
POR  
C
AVIN  
V
OUT1  
EN1  
V
= 5V ± 10%  
SW1  
FB1  
IN  
PVIN1  
C
OUT1  
C
IN1  
PGND1  
L2  
V
= 1.0V  
OUT2  
EN2  
SW2  
PVIN2  
C
R
R
OUT2  
TOP2  
C
C
C
C
IN2  
FB2  
Integrated compensation  
R
BOT2  
L3  
PGND2  
Soft start and power-up sequencing reduce inrush current  
Active output discharge switch function  
Stable with low ESR output ceramic capacitors  
OVLO, UVM, and UVLO  
TSD protection  
Qualified for automotive applications  
V
= 1.25V  
OUT3  
EN3  
SW3  
PVIN3  
C
OUT3  
TOP3  
IN3  
IN4  
IN5  
FB3  
R
BOT3  
L4  
PGND3  
V
= 1.35V  
OUT4  
EN4  
SW4  
FB4  
PVIN4  
C
OUT4  
APPLICATIONS  
PGND4  
Automotive  
Industrial and instrumentation  
DC to dc point of load applications  
V
= 1.8V  
OUT5  
EN5  
VOUT5  
FB5  
R
TOP5  
PVIN5  
C
OUT5  
SYNC GND  
R
BOT5  
Figure 1.  
GENERAL DESCRIPTION  
The ADP5138 integrates four high performance synchronous  
step-down regulators and one low noise radio frequency (RF)  
low dropout (LDO) regulator. The device runs from PVINx  
input voltages of 3 V to 5.5 V. The output voltage of each  
channel is factory set or can be programmed down to 0.8 V  
with a resistor. Each step-down regulator can provide up to 1 A  
of continuous output current and the LDO can provide 250 mA  
of output current.  
The ADP5138 integrates internal compensation to simplify  
the design. The internal soft start circuitry and power-up  
sequencing help reduce the input inrush current.  
The ADP5138 monitors the input voltage and provides input  
overvoltage lockout (OVLO), undervoltage monitor (UVM),  
and undervoltage lockout (UVLO) features. It also monitors the  
undervoltage and overvoltage of the outputs. The power-on  
reset (POR) signal is asserted when the input or output voltage  
fault occurs.  
The ADP5138 runs at the fixed PWM switching frequency,  
3.2 MHz, or can be synchronized to the external clock from  
2.8 MHz to 3.5 MHz, which is outside the amplitude  
modulation (AM) band. The four buck regulators run at 90°  
out of phase to reduce the input ripple current and the input  
capacitor size, thereby helping to lower system electromagnetic  
interference (EMI).  
Additional protection includes overcurrent protection (OCP)  
and thermal shutdown (TSD).  
The ADP5138 operates over the −40°C to +125°C operating  
temperature range (junction), and is available in a 28-lead  
LFCSP package.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP5138  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Overvoltage Lockout (OVLO)....................................... 17  
Input Undervoltage Monitor (UVM) ...................................... 17  
Input Undervoltage Lockout (UVLO)..................................... 17  
Output Voltage Power-Good.................................................... 17  
Power-On Reset (POR) ............................................................. 18  
Soft Start and Power-Up Sequence .......................................... 18  
Current-Limit and Short-Circuit Protection.......................... 18  
Active Output Discharge........................................................... 19  
Thermal Shutdown .................................................................... 19  
Applications Information .............................................................. 20  
Input Capacitor Selection.......................................................... 20  
Output Voltage Setting .............................................................. 20  
Inductor Selection ...................................................................... 20  
Output Capacitor Selection....................................................... 20  
Application Circuit..................................................................... 21  
Factory-Programmable Options .................................................. 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Automotive Products................................................................. 23  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Table of Contents .............................................................................. 2  
Revision History ........................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Buck Regulator Specifications .................................................... 5  
LDO Regulator Specifications .................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 17  
Control Scheme .......................................................................... 17  
Precision Enable and Shutdown............................................... 17  
Oscillator and Phase Shift ......................................................... 17  
Synchronization.......................................................................... 17  
REVISION HISTORY  
8/2018—Rev. 0 to Rev. A  
Change to Figure 2 ........................................................................... 3  
5/2018—Revision 0: Initial Version  
Rev. A | Page 2 of 23  
 
 
Data Sheet  
ADP5138  
FUNCTIONAL BLOCK DIAGRAM  
CHANNEL 1: BUCK REGULATOR 1  
PVIN1  
A
1
CS  
HIGH-SIDE  
CURRENT SENSE  
OCP  
I
LIM  
PVIN1  
SLOPE RAMP  
SOFT  
DRIVER  
START  
V
CMP1  
TSD  
REF  
EA1  
FB1  
DIVIDER  
SW1  
CONTROL  
LOGIC AND  
MOSFET  
110% × V  
REF  
PVIN1  
DRIVER  
PGOOD1  
WITH  
ANTICROSS  
PROTECTION  
DRIVER  
PGND1  
95% × V  
REF  
UVLO  
OVLO  
1.2V  
EN_DELAY  
LOW-SIDE  
CURRENT  
SENSE  
EN1_BUF  
EN1  
CLK1  
PVIN2  
FB2  
EN2  
CHANNEL 2: BUCK REGULATOR 2  
CHANNEL 3: BUCK REGULATOR 3  
SW2  
PGND2  
PVIN3  
SW3  
FB3  
EN3  
PGND3  
PVIN4  
SW4  
FB4  
EN4  
CHANNEL 4: BUCK REGULATOR 4  
CHANNEL 5: LDO  
PGND4  
PVIN5  
EN5  
VOUT5  
FB5  
V
REF  
EN5_BUF  
1.2V  
EN_DELAY  
EA5  
110% × V  
UVLO  
OVLO  
TSD  
REF  
LDO  
CONTROL  
PGOOD5  
95% × V  
REF  
COMMON BLOCK  
EN1_BUF  
EN2_BUF  
EN3_BUF  
EN4_BUF  
EN5_BUF  
CLK1  
SLOPE RAMP1  
CLK2  
EN_SYS  
UVLO  
SLOPE RAMP2  
CLK3  
OSC  
SYNC  
2.8V  
SLOPE RAMP3  
CLK4  
AVIN  
4.2V  
5.8V  
VIN_OK  
UVM  
SLOPE RAMP4  
OVLO  
POR  
GND  
TSD  
POR DELAY  
TIME AND  
CONTROL LOGIC  
TSD  
THERMAL  
PGOOD1  
EN1_BUF  
PGOOD2  
EN2_BUF  
EN3_BUF  
VOUT_OK  
PGOOD3  
PGOOD4  
PGOOD5  
EN4_BUF  
EN5_BUF  
ADP5138  
Figure 2.  
Rev. A | Page 3 of 23  
 
ADP5138  
Data Sheet  
SPECIFICATIONS  
VAVIN = VPVIN1 = VPVIN2 = VPVIN3 = VPVIN4 = VPVIN5 = 5.0 V, TJ = −40°C to +125°C for minimum and maximum specifications, and TA = 25°C  
for typical specifications, unless otherwise noted. VOUTx is the output voltage on Channel x, where x is 1 to 5.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER INPUT  
PVINx Voltage Range  
VPVINx  
PVIN1, PVIN2, PVIN3, and PVIN4 pins  
PVIN5 pin  
AVIN pin  
No switching  
VEN1 = VEN2 = VEN3 = VEN4 = VEN5 = GND  
3
1.7  
3
5.5  
5.5  
5.5  
7.5  
20  
V
V
V
mA  
µA  
AVIN Voltage Range  
Quiescent Current  
Shutdown Current  
VAVIN  
IQ  
ISHDN  
6
0.6  
Input UVLO Threshold  
AVIN UVLO Rising  
AVIN UVLO Falling  
2.9  
2.8  
3
V
V
2.7  
Input Undervoltage Monitor Threshold  
AVIN UVM Falling  
AVIN UVM Hysteresis  
Input OVLO Threshold  
AVIN OVLO Rising  
AVIN OVLO Hysteresis  
ENABLE  
Rising Threshold  
4.05  
4.2  
80  
4.35  
100  
V
mV  
5.6  
5.8  
80  
6
100  
V
mV  
ENx pins  
POR pin  
1.2  
1.1  
1
1.28  
V
V
MΩ  
Falling Threshold  
1.02  
Pull-Down Resistance  
POWER-ON RESET (POR)  
Output Undervoltage Threshold  
Rising Threshold  
Percentage of normal VOUTx  
Percentage of normal VOUTx  
93  
91  
95  
93  
97  
95  
%
%
Falling Threshold  
Output Overvoltage Threshold  
Rising Threshold  
Falling Threshold  
Percentage of normal VOUTx  
Percentage of normal VOUTx  
108  
105.5  
110  
108  
112  
110  
%
%
Deglitch Time  
POR Rising  
POR Falling  
tPOR_DELAY_R  
tPOR_DELAY_F  
5
5.7  
10  
6.8  
ms  
µs  
POR Leakage Current  
POR Output Low Voltage  
POR Effective Threshold Voltage on AVIN1  
START-UP SEQUENCE DELAY TIME  
THERMAL SHUTDOWN  
Threshold1  
POR voltage (VPOR) = 5 V  
POR current (IPOR) = 3 mA  
IPOR = 1 mA, VPOR ≤ 0.2 V  
Delay time during startup  
0.05  
38  
1
µA  
mV  
V
100  
1.16  
700  
VAVIN_POR  
tSS_D  
500  
600  
µs  
150  
15  
°C  
°C  
Hysteresis1  
1 Guaranteed by design, but not production tested.  
Rev. A | Page 4 of 23  
 
Data Sheet  
ADP5138  
BUCK REGULATOR SPECIFICATIONS  
VAVIN = VPVIN1 = VPVIN2 = VPVIN3 = VPVIN4 = 5.0 V, T J = −40°C to +125°C for minimum and maximum specifications, and TA = 25°C for  
typical specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ Max  
Unit  
FEEDBACK  
FB1 to FB4 Regulation Voltage  
Fixed Output Accuracy1  
OUTPUT CHARACTERISTICS  
Load Regulation2  
VFB1 to VFB4  
VOUT1 to VOUT4  
Adjustable version  
0.788 0.8  
−2  
0.812  
+2  
V
%
Pulse-width modulation (PWM) mode  
Output current (IOUT) from 0 A to 1 A, VAVIN = VPVINx = 5 V  
VAVIN = VPVINx = 4 V to 5.5 V, IOUT = 1 A  
∆VOUT/∆IOUT  
∆VOUT/∆VPVIN  
0.3  
0.1  
%/A  
%/V  
Line Regulation2  
SWITCH NODE  
High-Side On Resistance3  
Low-Side On Resistance3  
SWx Leakage Current  
CURRENT LIMIT  
RDSON_H  
RDSON_L  
ISW_LK  
VAVIN = VPVINx = 5 V, ISWx = 0.5 A  
VAVIN = VPVINx = 5 V, ISWx = 0.5 A  
VAVIN = VPVINx = 5 V, SWx = GND or SWx = VPVINx  
130 200  
120 200  
0.1  
mΩ  
mΩ  
µA  
High-Side Peak Current Limit  
Low-Side Sink Current Limit  
PWM SWITCHING FREQUENCY  
PHASE SHIFT  
1.28  
3
1.6  
1
1.92  
3.4  
A
A
fSW  
3.2  
90  
MHz  
Degrees  
Phase shift between channels  
SYNC pin  
SYNC  
Synchronization Range  
SYNC Minimum On Time  
SYNC Minimum Off Time  
SYNC Input Voltage  
High  
2.8  
100  
100  
3.5  
MHz  
ns  
ns  
1.2  
V
V
Ω
Low  
0.4  
OUTPUT DISCHARGE RESISTANCE  
RDISCHARGE1 to  
RDISCHARGE4  
64  
100  
SOFT START TIME  
tSS1 to tSS4  
425  
500 575  
µs  
1 VOUT1 to VOUT4 are the output voltages on Channel 1 to Channel 4.  
2 Bench characterization result.  
3 Pin to pin measurement.  
Rev. A | Page 5 of 23  
 
ADP5138  
Data Sheet  
LDO REGULATOR SPECIFICATIONS  
VAVIN = 5.0 V, VPVIN5 = (output voltage of Channel 5 (VOUT5) + 0.5 V) or 3 V (whichever is greater), input capacitance of Channel 5 (CIN5) =  
output capacitance of Channel 5 (COUT5) = 1 μF, TJ = −40°C to +125°C for minimum and maximum specifications, and TA = 25°C for  
typical specifications, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
IQ_LDO5  
IOUT5  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
CURRENT  
Operating Quiescent Current  
IOUT5 = 0 µA, VOUT5 = 1.8 V  
IOUT5 = 100 mA, VOUT5 = 1.8 V  
VPVIN5 ≥ 3 V  
1.7 V ≤ VPVIN5 < 3 V  
VOUT5 drops 5% from nominal voltage  
58  
146  
100  
300  
250  
100  
µA  
µA  
mA  
mA  
mA  
Output Current  
Current Limit  
300  
400  
FEEDBACK  
FB5 Regulation Voltage  
Fixed Output Voltage Accuracy  
VFB5  
VOUT5  
Adjustable version  
IOUT5 = 10 mA, TJ = 25°C  
1 mA < IOUT5 < 250 mA  
0.788 0.8  
−1  
−2  
0.812  
+1  
+2  
V
%
%
REGULATION  
Load Regulation  
Line Regulation  
DROPOUT VOLTAGE1  
IOUT5 from 1 mA to 250 mA  
IOUT5 = 10 mA  
0.002 0.005 %/mA  
−0.1  
420  
+0.1  
%/V  
mV  
mV  
Ω
VDROPOUT5  
VOUT5 = 3.3 V, IOUT5 = 250 mA  
VOUT5 = 1.8 V, IOUT5 = 100 mA  
173  
132  
83  
OUTPUT DISCHARGE RESISTANCE  
SOFT START TIME  
OUTPUT NOISE2  
RDISCHARGE5  
tSS5  
120  
720  
VOUT5 = 1.8 V, IOUT5 = 250 mA  
570  
20  
µs  
OUTNOISE5 10 Hz to 100 kHz, VPVIN5 = 5 V, VOUT5 = 1.8 V, IOUT5  
250 mA, adjustable output option  
=
µV rms  
POWER SUPPLY REJECTION RATIO2 PSRRLDO5  
1 kHz, VPVIN5 = 5 V, VOUT5 = 1.8 V, IOUT5 = 250 mA,  
adjustable output option  
55  
dB  
1 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage.  
2 Bench characterization result.  
Rev. A | Page 6 of 23  
 
Data Sheet  
ADP5138  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment.  
Parameter  
Rating  
PVIN1, PVIN2, PVIN3, PVIN4, PVIN5, AVIN,  
VOUT5  
SW1, SW2, SW3, SW4  
FB1, FB2, FB3, FB4, FB5, EN1, EN2, EN3, EN4,  
EN5, POR, SYNC  
−0.3 V to +6 V  
Careful attention to PCB thermal design is required.  
−0.3 V to +6 V  
−0.3 V to +6 V  
Table 5. Thermal Resistance  
Package Type  
1
θJA  
θJC  
Unit  
PGND1, PGND2, PGND3, PGND4 to GND  
Operating Temperature Range (Junction)  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
CP-28-5  
32.6  
1.4  
°C/W  
1 θJA is measured using natural convection on a JEDEC 4-layer board with the  
exposed pad soldered to the PCB and with thermal vias.  
Electrostatic Discharge (ESD)  
Human Body Model  
Charged Device Model  
ESD CAUTION  
2000 V  
500 V  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 7 of 23  
 
 
 
ADP5138  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
21 PVIN4  
PVIN1 1  
SW1 2  
20 SW4  
19 PGND4  
PGND1 3  
PGND2 4  
SW2 5  
ADP5138  
18 PGND3  
17 SW3  
TOP VIEW  
(Not to Scale)  
PVIN2 6  
FB2 7  
16 PVIN3  
15 FB3  
NOTES  
1. EXPOSED PAD. SOLDER THE EXPOSED  
PAD TO AN EXTERNAL GROUND PLANE.  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
PVIN1  
Power Input for Channel 1. Connect PVIN1 to the input power source, and connect a bypass capacitor between  
this pin and PGND1.  
2
3
4
5
6
SW1  
Switch Node for Channel 1.  
Power Ground for Channel 1.  
Power Ground for Channel 2.  
Switch Node for Channel 2.  
Power Input for Channel 2. Connect PVIN2 to the input power source, and connect a bypass capacitor between  
this pin and PGND2.  
PGND1  
PGND2  
SW2  
PVIN2  
7
8
FB2  
EN2  
Feedback Voltage Sense Input for Channel 2. Connect this pin to a resistor divider from VOUT2 for the adjustable  
version. For the fixed output version, connect this pin to VOUT2 directly.  
Precision Enable Pin for Channel 2. Use an external resistor divider to set the turn-on threshold. To enable  
Channel 2 automatically, connect the EN2 pin to PVIN2.  
9
POR  
Power-On Reset Output (Open Drain).  
10  
PVIN5  
Power Input for Channel 5. Connect PVIN5 to the input power source, and connect a bypass capacitor between  
this pin and ground.  
11  
FB5  
Feedback Voltage Sense Input for Channel 5. Connect this pin to a resistor divider from VOUT5 for the adjustable  
version. For the fixed output version, connect this pin to VOUT5 directly.  
12  
13  
VOUT5  
EN5  
Output of Channel 5. Connect a bypass capacitor between this pin and ground.  
Precision Enable Pin for Channel 5. Use an external resistor divider to set the turn-on threshold. To enable  
Channel 5 automatically, connect the EN5 pin to PVIN5.  
14  
15  
16  
EN3  
Precision Enable Pin for Channel 3. Use an external resistor divider to set the turn-on threshold. To enable  
Channel 3 automatically, connect the EN3 pin to PVIN3.  
Feedback Voltage Sense Input for Channel 3. Connect this pin to a resistor divider from VOUT3 for the adjustable  
version. For the fixed output version, connect this pin to VOUT3 directly.  
Power Input for Channel 3. Connect PVIN3 to the input power source, and connect a bypass capacitor between  
this pin and PGND3.  
FB3  
PVIN3  
17  
18  
19  
20  
21  
SW3  
Switch Node for Channel 3.  
Power Ground for Channel 3.  
Power Ground for Channel 4.  
Switch Node for Channel 4.  
Power Input for Channel 4. Connect PVIN4 to the input power source, and connect a bypass capacitor between  
this pin and PGND4.  
PGND3  
PGND4  
SW4  
PVIN4  
22  
23  
FB4  
EN4  
Feedback Voltage Sense Input for Channel 4. Connect this pin to a resistor divider from VOUT4 for the adjustable  
version. For the fixed output version, connect this pin to VOUT4 directly.  
Precision Enable Pin for Channel 4. Use an external resistor divider to set the turn-on threshold. To enable  
Channel 4 automatically, connect the EN4 pin to PVIN4.  
Rev. A | Page 8 of 23  
 
Data Sheet  
ADP5138  
Pin No.  
24  
Mnemonic  
Description  
GND  
Analog Ground. Connect this pin to the ground plane.  
25  
SYNC  
Synchronization Input. Connect this pin to an external clock between 2.8 MHz and 3.5 MHz to synchronize the  
switching frequency to the external clock. If synchronization function is not used, connect this pin to GND.  
26  
27  
AVIN  
EN1  
Bias Voltage Input Pin. Connect AVIN to PVINx, and connect a bypass capacitor between AVIN and GND.  
Precision Enable Pin for Channel 1. Use an external resistor divider to set the turn-on threshold. To enable  
Channel 1 automatically, connect the EN1 pin to PVIN1.  
28  
FB1  
EP  
Feedback Voltage Sense Input for Channel 1. Connect this pin to a resistor divider from VOUT1 for the adjustable  
version. For the fixed output version, connect this pin to VOUT1 directly.  
Exposed Pad. Solder the exposed pad to an external ground plane.  
Rev. A | Page 9 of 23  
ADP5138  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VAVIN = VPVIN1 = VPVIN2 = VPVIN3 = VPVIN4 = VPVIN5 = 5.0 V, fSW = 3.2 MHz, unless otherwise noted. VOUTx is the output voltage on  
a single channel.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
V
V
V
= 3V  
= 5V  
= 5.5V  
PVINx  
PVINx  
PVINx  
V
V
V
V
= 3.3V  
= 1.0V  
= 1.25V  
= 1.35V  
OUT1  
OUT2  
OUT3  
OUT4  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0.3  
0
0.1  
0.2  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
Figure 4. Efficiency vs. Output Current at VPVINx = 5 V, fSW = 3.2 MHz  
Figure 7. Quiescent Current vs. Temperature  
3500  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
RISING  
FALLING  
V
V
V
= 3V  
= 5V  
= 5.5V  
PVINx  
PVINx  
PVINx  
3000  
2500  
2000  
1500  
1000  
500  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. AVIN UVLO Threshold vs. Temperature  
Figure 5. Shutdown Current vs. Temperature  
5.88  
5.84  
5.80  
5.76  
5.72  
5.68  
5.64  
4.36  
4.32  
4.28  
4.24  
4.20  
4.16  
4.12  
RISING  
FALLING  
RISING  
FALLING  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. AVIN OVLO Threshold vs. Temperature  
Figure 6. AVIN UVM Threshold vs. Temperature  
Rev. A | Page 10 of 23  
 
Data Sheet  
ADP5138  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
5.80  
5.75  
5.70  
5.65  
5.60  
5.55  
5.50  
EN1 RISING  
EN2 RISING  
EN3 RISING  
EN4 RISING  
EN5 RISING  
EN1 FALLING  
EN2 FALLING  
EN3 FALLING  
EN4 FALLING  
EN5 FALLING  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Enable Threshold vs. Temperature  
Figure 13. POR Rising Deglitch Time vs. Temperature  
110.4  
93.6  
93.4  
93.2  
93.0  
92.8  
92.6  
92.4  
110.2  
110.0  
109.8  
109.6  
109.4  
109.2  
CH1: FIXED 3.3V  
CH1: FIXED 3.3V  
CH2: FIXED 1.0V  
CH3: FIXED 1.25V  
CH4: FIXED 1.35V  
CH5: FIXED 1.8V  
CH2: FIXED 1.0V  
CH3: FIXED 1.25V  
CH4: FIXED 1.35V  
CH5: FIXED 1.8V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Output Overvoltage Rising Threshold vs. Temperature  
Figure 14. Output Undervoltage Falling Threshold vs. Temperature  
804  
803  
802  
801  
800  
799  
803  
802  
801  
800  
FB5  
799  
798  
798  
797  
796  
FB1  
FB2  
FB3  
FB4  
797  
796  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Feedback Voltage of LDO vs. Temperature  
Figure 12. Feedback Voltage of Buck Regulators vs. Temperature  
Rev. A | Page 11 of 23  
ADP5138  
Data Sheet  
3.22  
3.21  
3.20  
3.19  
3.18  
3.17  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
V
= 3.3V  
OUT1  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Channel 1 Fixed Output Voltage vs. Temperature  
Figure 19. Switching Frequency vs. Temperature  
1.40  
1.35  
1.30  
1.25  
1.20  
1.90  
1.85  
1.80  
1.75  
1.70  
V
= 1.8V  
OUT5  
V
V
V
= 1.0V  
OUT2  
OUT3  
OUT4  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
= 1.25V  
= 1.35V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Channel 2, Channel 3, and Channel 4  
Fixed Output Voltage vs. Temperature  
Figure 20. Channel 5 Fixed Output Voltage vs. Temperature  
180  
170  
160  
150  
140  
130  
120  
110  
100  
170  
160  
150  
140  
130  
120  
110  
100  
90  
CH1  
CH1  
CH2  
CH3  
CH4  
CH2  
CH3  
CH4  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. High-Side Metal-Oxide Semiconductor Field Effect Transistor  
(MOSFET) On Resistor vs. Temperature  
Figure 21. Low-Side MOSFET On Resistor vs. Temperature  
Rev. A | Page 12 of 23  
Data Sheet  
ADP5138  
600  
595  
580  
570  
560  
550  
508  
506  
504  
502  
500  
498  
496  
494  
492  
490  
CH1  
CH2  
CH3  
CH4  
CH5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Buck Regulators Soft Start Time vs. Temperature  
Figure 25. LDO Soft Start Time vs. Temperature  
1.70  
430  
420  
410  
400  
390  
380  
370  
CH1  
CH2  
CH3  
CH4  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. Current-Limit Threshold of Buck Regulators vs. Temperature  
Figure 26. Current Limit of LDO vs. Temperature  
10  
–20  
I
= 250mA  
OUT5  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
I
= 10mA  
OUT5  
1
0.1  
0.01  
0.001  
0.0001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. LDO Output Noise Density vs. Frequency at VPVIN5 = 5 V,  
OUT5 = 250 mA, VOUT5 = 1.8 V, Adjustable Output Option  
Figure 27. LDO PSRR vs. Frequency at VPVIN5 = 5 V, VOUT5 = 1.8 V,  
Adjustable Output Option  
I
Rev. A | Page 13 of 23  
ADP5138  
Data Sheet  
30  
25  
20  
15  
10  
5
T
SW1  
1
2
SW2  
SW3  
3
4
SW4  
0
10  
CH1 5.00V  
CH3 5.00V  
CH2 5.00V  
CH4 5.00V  
200ns  
50.60%  
CH1  
1.80V  
100  
1k  
10k  
100k  
1M  
T
FREQUENCY (Hz)  
Figure 28. LDO Output Noise RMS Value vs. Frequency at VPVIN5 = 5 V,  
Figure 31. Phase Shift  
I
OUT5 = 250 mA, VOUT5 = 1.8 V, Adjustable Output Option  
T
T
V
ENx  
OUT3  
1
V
OUT4  
4
2
V
V
OUT1  
2
3
OUT2  
V
OUT5  
3
1
V
OUT3  
POR  
4
B
B
B
CH1 5.00V  
CH2 2.00V  
CH4 1.00V  
1.00ms  
30.00%  
CH1  
2.70V  
B
B
B
B
W
B
W
W
CH1 5.00V  
CH3 1.00V  
CH2 1.00V  
CH4 1.00V  
1.00ms  
87.20%  
CH1  
2.70V  
W
W
W
CH3 500mV  
T
W
T
W
Figure 29. Startup with Full Load (ENx, VOUT1, VOUT2, and VOUT3  
)
Figure 32. Startup with Full Load (VOUT3, VOUT4, VOUT5, and POR)  
T
T
ENx  
V
OUT3  
V
1
OUT1  
4
2
V
V
OUT4  
V
OUT2  
OUT3  
2
3
OUT5  
V
3
1
POR  
4
B
B
B
B
B
B
B
B
CH1 5.00V  
CH3 1.00V  
CH2 2.00V  
CH4 1.00V  
2.00ms  
30.00%  
CH1  
2.70V  
CH1 5.00V  
CH3 1.00V  
CH2 1.00V  
CH4 1.00V  
2.00ms  
30.00%  
CH1  
2.70V  
W
W
W
W
W
W
W
W
T
T
Figure 30. Shutdown at No Load (ENx, VOUT1, VOUT2, and VOUT3  
)
Figure 33. Shutdown at No Load (VOUT3, VOUT4, VOUT5, and POR)  
Rev. A | Page 14 of 23  
Data Sheet  
ADP5138  
T
T
V
OUT1  
1
V
(AC)  
OUT5  
I
L1  
1
SW1  
4
2
I
OUT5  
4
B
B
CH1 2.00V  
CH2 2.00V  
CH4 1.00A Ω  
400ns  
49.60%  
CH2  
2.72V  
CH1 20.0mV  
200µs  
20.00%  
CH4 60.0mA  
W
W
B
B
T
CH4 100mA Ω  
T
W
W
Figure 34. Overcurrent Protection (IL1 is Channel 1 Inductor Current)  
Figure 37. Load Transient Response of Channel 5 (1.8 V), 0 A to 0.2 A  
T
T
V
(AC)  
V
(AC)  
OUT1  
OUT2  
1
1
I
I
OUT1  
OUT2  
4
4
B
B
CH1 50.0mV  
200µs  
20.20%  
CH4  
650mA  
CH1 50.0mV  
200µs  
20.00%  
CH4 640mA  
W
W
B
B
CH4 500mA Ω  
T
CH4 500mA Ω  
T
W
W
Figure 35. Load Transient Response of Channel 1 (3.3 V), 0.1 A to 0.9 A  
Figure 38. Load Transient Response of Channel 2 (1.0 V), 0.1 A to 0.9 A  
T
T
V
(AC)  
V
(AC)  
OUT3  
OUT4  
1
1
I
I
OUT3  
OUT4  
4
4
B
B
CH1 50.0mV  
200µs  
20.00%  
CH4  
640mA  
CH1 50.0mV  
200µs  
20.00%  
CH4 640mA  
W
W
B
B
CH4 500mA Ω  
T
CH4 500mA Ω  
T
W
W
Figure 36. Load Transient Response of Channel 3 (1.25 V), 0.1 A to 0.9 A  
Figure 39. Load Transient Response of Channel 4 (1.35 V), 0.1 A to 0.9 A  
Rev. A | Page 15 of 23  
ADP5138  
Data Sheet  
T
T
PVIN2  
PVIN1  
V
(AC)  
OUT2  
1
3
1
3
V
(AC)  
OUT1  
B
B
CH1 20.0mV  
CH3 1.00V  
2.00ms  
20.00%  
CH3  
5.20V  
CH1 10.0mV  
CH3 1.00V  
2.00ms  
20.00%  
CH3  
5.20V  
W
W
B
B
T
T
W
W
Figure 40. Line Transient Response of Channel 1 (3.3 V), PVIN1 from 4.5 V  
to 5.5 V, 1 A Load Current  
Figure 43. Line Transient Response of Channel 2 (1.0 V), PVIN2 from 4.5 V  
to 5.5 V, 1 A Load Current  
T
T
PVIN3  
PVIN4  
1
1
V
(AC)  
V
(AC)  
OUT3  
OUT4  
3
3
B
B
CH1 20.0mV  
CH3 1.00V  
2.00ms  
T 20.00%  
CH3  
5.20V  
CH1 10.0mV  
CH3 1.00V  
2.00ms  
20.00%  
CH3  
5.22V  
W
W
B
B
T
W
W
Figure 41. Line Transient Response of Channel 3 (1.25 V), PVIN3 from 4.5 V  
to 5.5 V, 1 A Load Current  
Figure 44. Line Transient Response of Channel 4 (1.35 V), PVIN4 from 4.5 V  
to 5.5 V, 1 A Load Current  
T
PVIN5  
1
V
(AC)  
OUT5  
3
B
CH1 10.0mV  
CH3 1.00V  
2.00ms  
20.00%  
CH3  
5.20V  
W
B
T
W
Figure 42. Line Transient Response of Channel 5 (1.8 V), PVIN5 from 4.5 V  
to 5.5 V, 250 mA Load Current  
Rev. A | Page 16 of 23  
Data Sheet  
ADP5138  
THEORY OF OPERATION  
The ADP5138 is a power management IC that integrates four  
buck regulators and one low noise LDO in a 28-lead LFCSP  
package. The device can operate with a PVINx input voltage  
from 3 V to 5.5 V and can regulate the output voltage down to  
0.8 V or set by factory. It provides input UVLO, OVLO, and  
UVM features. The ADP5138 also monitors the output voltage  
and provides the POR output.  
SYNCHRONIZATION  
To synchronize the ADP5138, connect an external clock to the  
SYNC pin. The external clock frequency can be in the 2.8 MHz  
to 3.5 MHz range. During synchronization, Channel 1 runs in  
phase with the external clock.  
If the synchronization function is not used, connect the SYNC pin  
to ground.  
CONTROL SCHEME  
INPUT OVERVOLTAGE LOCKOUT (OVLO)  
The ADP5138 uses a fixed frequency, peak current mode,  
PWM control architecture. At the start of each oscillator cycle,  
the high-side field effect transistor (FET) turns on, placing a  
positive voltage across the inductor. The inductor current  
increases until the current sense signal crosses the peak  
inductor current threshold that turns off the high-side FET and  
turns on the low-side FET, which, in turn, places a negative  
voltage across the inductor, causing the inductor current to reduce.  
The low-side FET stays on for the remainder of the cycle.  
The ADP5138 integrates an input overvoltage lockout circuit on  
the input supply. When the input voltage, VAVIN, exceeds 5.8 V  
(typical), an OVLO event is detected, all the regulators are  
turned off, and the POR is pulled down to ground. When the  
input voltage falls back to 5.72 V (typical) or less, the OVLO  
releases and a soft start reinitializes.  
INPUT UNDERVOLTAGE MONITOR (UVM)  
The ADP5138 integrates an input undervoltage monitoring  
circuit on the input supply. When the input voltage, VAVIN, drops  
below 4.2 V (typical), the POR pin pulls down to ground while  
the device still works until the input voltage drops down to the  
input voltage UVLO threshold. When the input voltage exceeds  
4.28 V (typical), the POR pin pulls high after a POR rising delay  
time, tPOR_DELAY_R, if all other conditions are met.  
PRECISION ENABLE AND SHUTDOWN  
The ADP5138 has five independent enable pins (ENx) for each  
channel. The ENx pins are precision analog inputs that enable  
the regulator when the voltage on ENx exceeds 1.2 V (typical).  
When the ENx voltage falls below 1.1 V (typical), the regulator  
turns off. An internal pull-down resistor (1 MΩ) prevents the  
regulator from being accidentally enabled if ENx is left floating.  
INPUT UNDERVOLTAGE LOCKOUT (UVLO)  
To force the ADP5138 to automatically start when the input  
power is applied, connect ENx to PVINx.  
The ADP5138 integrates an input undervoltage lockout circuit  
on the input supply. When the input voltage, VAVIN, drops below  
2.8 V (typical), an input UVLO event is detected, all the regulators  
turn off, and the POR pin pulls down to ground. When the  
input voltage recovers from the UVLO event and the input  
voltage exceeds 2.9 V (typical), a soft start reinitializes.  
OSCILLATOR AND PHASE SHIFT  
The buck regulators in the ADP5138 run at a 3.2 MHz fixed  
switching frequency. For Channel 2 to Channel 4, the phase  
shift with respect to Channel 1 is set to 90°, which reduces the  
input ripple current and the input capacitance, thereby helping  
to lower system EMI.  
OUTPUT VOLTAGE POWER-GOOD  
Each of the five regulators integrates an output voltage power-  
good monitoring circuit.  
SW1  
When the output voltage drops below the undervoltage falling  
threshold (93% of the nominal output voltage), an output under-  
voltage event is detected, and the power-good signal becomes  
low. When the output voltage rises above the undervoltage  
rising threshold (95% of the nominal output voltage), the  
power-good signal becomes high.  
SW2  
SW3  
When the output voltage exceeds the overvoltage rising  
threshold (110% of the nominal output voltage), an output  
overvoltage event is detected. During the output overvoltage,  
the corresponding regulator stops switching, and the power-  
good signal becomes low. When the output voltage drops below  
the overvoltage falling threshold (108% of the nominal output  
voltage), the corresponding regulator recovers to normal  
operation, and the power-good signal becomes high.  
SW4  
90°  
90°  
90°  
90°  
Figure 45. Even Phase Shift Between Channel 1 and Channel 4  
Rev. A | Page 17 of 23  
 
 
 
 
 
 
 
 
 
ADP5138  
Data Sheet  
V
V
,
POWER-ON RESET (POR)  
PVINx  
AVIN  
The ADP5138 integrates the POR circuit to monitor the input  
voltage and output voltage of the regulators. The POR pin is an  
active high, open-drain output that requires a resistor to pull  
the pin up to a voltage.  
ENx  
V
OUT1  
OUT2  
OUT3  
OUT4  
V
V
V
V
The ENx pin voltage determines which output voltage is  
monitored in the POR circuit. When the ENx pin voltage  
exceeds 1.2 V (typical), the POR circuit monitors the  
corresponding output voltage. When the ENx pin voltage is  
lower than 1.1 V (typical), the POR circuit does not monitor  
the corresponding output voltage.  
95%  
OUT5  
POR  
tSS1  
The POR pin does not pull high until all of the following  
conditions are met followed by a 5.7 ms (typical) delay:  
tSS2  
tSS3  
tSS4  
The input voltage is greater than the undervoltage lockout  
threshold and undervoltage monitor threshold.  
The input voltage is less than the input overvoltage  
threshold.  
tSS_D  
tSS5  
2 × tSS_D  
3 × tSS_D  
4 × tSS_D  
tPOR_DELAY_R  
No thermal shutdown.  
All the power-good signals are high for these monitored  
output voltages.  
Figure 46. Power-Up Sequence with All Channels Enabled at Same Time  
V
,
PVINx  
V
AVIN  
The POR pin is pulled down when any of these conditions are  
not met with a 10 µs deglitch time.  
EN2, EN3  
EN1, EN4, EN5  
If all the channels are disabled, the POR pin pulls down to  
ground.  
V
V
V
V
V
OUT1  
OUT2  
OUT3  
OUT4  
95%  
The POR output is fully controlled when the voltage on AVIN is  
higher than VAVIN_POR  
.
95%  
OUT5  
SOFT START AND POWER-UP SEQUENCE  
POR  
tSS2  
The ADP5138 has integrated soft start circuitry for each channel  
to limit the output voltage rising time and to reduce the inrush  
current during startup. The soft start time is fixed at 500 µs  
(typical) for the buck regulators and 570 µs (typical) for the  
LDO regulator.  
tSS5  
tSS4  
tSS1  
tSS3  
tSS_D  
3 × tSS_D  
2 × tSS_D  
4 × tSS_D  
tPOR_DELAY_R  
tPOR_DELAY_R  
When the ADP5138 exits the input UVLO, input OVLO, or  
thermal shutdown event, there is a fixed delay time on each  
enable signal. This delay time prevents all the regulators from  
powering up at the same time and reduces the input inrush  
current. Table 7 shows the delay time for each channel.  
Figure 47. Power-Up Sequence with Channels Enabled at Different Times  
CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP5138 integrates a cycle by cycle, peak current-limit  
protection circuit to prevent current runaway for each buck  
regulator. The high-side FET peak current is limited to 1.6 A  
(typical). When the peak inductor current reaches the current-  
limit threshold, the high-side FET turns off, the low-side FET  
turns on, and the output reference voltage decreases.  
Table 7. Enable Delay Time for Each Channel  
Channel  
Delay Time  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
15 µs  
tSS_D  
2 × tSS_D  
3 × tSS_D  
4 × tSS_D  
The low-side FET in the buck regulator can also sink current  
from the load. If the low-side sink current limit is exceeded, both  
the low-side and high-side FETs are turned off until the next  
cycle starts.  
Figure 46 shows the power-up sequence when the ENx pins are  
pulled up at the same time. Channel 1 powers up first, followed  
by Channel 2, Channel 3, Channel 4, and Channel 5.  
Figure 47 shows the power-up sequence when the channels are  
enabled at different times.  
Rev. A | Page 18 of 23  
 
 
 
 
 
 
Data Sheet  
ADP5138  
The LDO is designed to current limit when the output load  
reaches the current-limit threshold. When the output load  
exceeds the current-limit threshold, the output voltage is  
reduced to maintain a constant current limit.  
switch is 64 Ω for the buck regulators and 83 Ω for the LDO  
regulator.  
THERMAL SHUTDOWN  
In the event that the ADP5138 junction temperature exceeds  
150°C, the thermal shutdown circuit turns off the device. A 15°C  
hysteresis is included so that the ADP5138 does not recover from  
thermal shutdown until the on-chip temperature drops below  
135°C. Upon recovery, a soft start and the power-up sequence  
are initiated prior to normal operation.  
ACTIVE OUTPUT DISCHARGE  
Each of the five regulators in the ADP5138 integrates a discharge  
switch from the switching node to ground. This switch is turned  
on when its associated ENx pin is low, which helps to discharge  
the output capacitor quickly. The typical value of the discharge  
Rev. A | Page 19 of 23  
 
 
ADP5138  
Data Sheet  
APPLICATIONS INFORMATION  
Use the following equation to calculate the inductor value:  
INPUT CAPACITOR SELECTION  
(VIN VOUT ) × D  
The input capacitor reduces the input voltage ripple caused by  
the switch current on PVINx. Place the input capacitor as close  
as possible to the PVINx pin. A ceramic capacitor in the 10 μF  
to 47 μF range is recommended. The loop composed of the input  
capacitor, the high-side MOSFET, and the low-side MOSFET  
must be kept as small as possible.  
L =  
IL × fSW  
where:  
V
IN is the input voltage.  
VOUT is the output voltage.  
D is the duty cycle (D = VOUT/VIN).  
ΔIL is the inductor current ripple.  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. Ensure that the rms current rating  
of the input capacitor is larger than the value calculated from  
the following equation:  
fSW is the switching frequency.  
Use the following equation to calculate the peak inductor current:  
IL  
2
IPEAK = IOUT  
+
ICIN _ RMS = IOUT  
× D ×(1D)  
The saturation current of the inductor must be larger than the  
peak inductor current. For ferrite core inductors with a quick  
saturation characteristic, the saturation current rating of the  
inductor must be higher than the current-limit threshold of the  
switch to prevent the inductor from reaching saturation.  
where:  
I
OUT is the output current.  
D is the duty cycle (D = VOUT/VIN).  
OUTPUT VOLTAGE SETTING  
The output voltage (VOUT) of the ADP5138 can be factory set or  
programmed by an external resistor divider.  
Use the following equation to calculate the rms current of the  
inductor:  
2
If the output voltage is factory set, connect the FBx pin to the  
output voltage directly.  
IL  
12  
2
IRMS  
=
IOUT  
+
If the output voltage is programmable, use the following  
equation to set the output voltage:  
Shielded ferrite core materials are recommended for low core  
loss and low EMI.  
RTOP  
RBOT  
OUTPUT CAPACITOR SELECTION  
VOUT = 0.8× 1 +  
The output capacitor selection affects both the output voltage  
ripple and the loop dynamics of the regulator. The ADP5138  
operates with small ceramic capacitors that have low equivalent  
series resistance (ESR) and low equivalent series inductance  
(ESL) and can, therefore, easily meet the output voltage ripple  
specifications.  
where:  
R
R
TOP is the top resistor of the resistor divider.  
BOT is the bottom resistor of the resistor divider.  
Table 8. Resistor Divider Values for Various Output Voltages  
VOUT (V)  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
When the regulator operates in continuous conduction mode, the  
overall output voltage ripple is the sum of the voltage spike caused  
by the output capacitor ESR plus the voltage ripple caused by the  
charging and discharging of the output capacitor.  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
4.99  
10  
10  
18.7  
24.3  
35.7  
20  
20  
11.5  
15  
11.5  
11.5  
1
VRIPPLE = ∆IL ×  
+ ESRC  
OUT  
8 × fSW ×COUT  
INDUCTOR SELECTION  
where:  
ΔVRIPPLE is the output voltage ripple.  
OUT is the output capacitance.  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor value leads to a faster transient response but  
degrades efficiency due to a larger inductor ripple current. Using  
a large inductor value leads to a smaller ripple current and  
better efficiency but results in a slower transient response.  
C
Capacitors with lower ESR are preferable to guarantee low  
output voltage ripple, as shown in the following equation:  
VRIPPLE  
ESRC  
OUT  
IL  
As a guideline, an inductor with its value in the range from  
0.68 µH to 2.2 µH is recommended for the best balance between  
transient and efficiency performance. The inductor ripple  
current, ΔIL, is typically set to one-third of the maximum load  
current.  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with different behavior over temperature and applied voltage.  
X5R or X7R dielectrics are recommended for best performance  
due to the low ESR and small temperature coefficients.  
Rev. A | Page 20 of 23  
 
 
 
 
 
Data Sheet  
ADP5138  
APPLICATION CIRCUIT  
V
ADP5138  
OUT1  
R
POR  
100kΩ  
POR  
= 3.3V  
AVIN  
POR  
C
L1  
1µH  
AVIN  
1µF/16V  
V
V
OUT1  
EN1  
PVIN1  
V
= 5V ± 10%  
SW1  
FB1  
IN  
C
OUT1  
C
10µF/6.3V  
IN1  
10µF/6.3V  
PGND1  
L2  
1µH  
= 1.0V  
OUT2  
SW2  
EN2  
R
TOP2  
1.62kΩ  
C
PVIN2  
OUT2  
FB2  
C
10µF/6.3V  
IN2  
R
BOT2  
10µF/6.3V  
PGND2  
6.49kΩ  
L3  
1µH  
V
= 1.25V  
OUT3  
SW3  
R
TOP3  
5.36kΩ  
EN3  
PVIN3  
C
OUT3  
FB3  
C
10µF/6.3V  
IN3  
R
BOT3  
10µF/6.3V  
PGND3  
9.53kΩ  
L4  
1µH  
V
= 1.35V  
OUT4  
SW4  
FB4  
EN4  
PVIN4  
C
OUT4  
C
10µF/6.3V  
IN4  
10µF/6.3V  
PGND4  
V
= 1.8V  
OUT5  
VOUT5  
FB5  
EN5  
PVIN5  
R
TOP5  
C
18.7kΩ  
IN5  
C
OUT5  
1µF/16V  
1µF/16V  
R
15kΩ  
BOT5  
SYNC GND  
Figure 48. Application Circuit  
Rev. A | Page 21 of 23  
 
ADP5138  
Data Sheet  
FACTORY-PROGRAMMABLE OPTIONS  
The output of each buck regulator and the LDO can be preset to  
one of the options listed in Table 9. There are 15 fixed options  
and one adjustable option. To order a device with options other  
than the default options listed in the Ordering Guide, contact a  
local Analog Devices, Inc., sales or distribution representative.  
Table 9. Output Voltage Fuse-Selectable Trim Options  
Parameter  
Output Voltage Trim Options (V)  
Buck Regulator 1  
Buck Regulator 2  
Buck Regulator 3  
Buck Regulator 4  
LDO  
Adjustable, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 2.65, 3.0, 3.3  
Adjustable, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 2.65, 3.0, 3.3  
Adjustable, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 2.65, 3.0, 3.3  
Adjustable, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 2.65, 3.0, 3.3  
Adjustable, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.5, 1.8, 2.5, 2.65, 2.8, 2.85, 3.0, 3.3  
Rev. A | Page 22 of 23  
 
 
Data Sheet  
ADP5138  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
0.25  
0.20  
0.15  
4.10  
4.00 SQ  
3.90  
PIN 1  
INDICATOR  
PIN 1  
22  
28  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
1
21  
0.40  
BSC  
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
15  
7
14  
8
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGE.  
Figure 49. 28-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-28-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output Voltage (V)4  
Buck 1 Buck 2 Buck 3 Buck 4 LDO Temperature Range Package Description Package Option  
Model1, 2, 3  
ADP5138WACPZ-1-R7 3.3  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
1.35  
ADJ  
1.35  
ADJ  
ADJ  
ADJ  
−40°C to +125°C  
−40°C to +125°C  
28-Lead LFCSP  
28-Lead LFCSP  
Evaluation Board  
CP-28-5  
CP-28-5  
ADP5138ACPZ-2-R7  
ADP5138W-1-EVALZ  
ADJ  
3.3  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 To order a device with options other than the two default options listed in the ordering guide, contact a local Analog Devices sales or distribution representative.  
4 ADJ means adjustable.  
AUTOMOTIVE PRODUCTS  
The ADP5138W models are available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for this model.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16669-0-8/18(A)  
Rev. A | Page 23 of 23  
 
 
 

相关型号:

ADP5138W-1-EVALZ

Quad, 1 A, 5.5 V, Synchronous Step-Down Regulators with One RF LDO Regulator
ADI

ADP5138WACPZ-1-R7

Quad, 1 A, 5.5 V, Synchronous Step-Down Regulators with One RF LDO Regulator
ADI

ADP5140

PS-A压力传感器
PANASONIC

ADP5141

PS-A压力传感器
PANASONIC

ADP5150

Strain Guage Sensor, Gage, 0Psi Min, 29Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5151

Strain Guage Sensor, Gage, 0Psi Min, 29Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5160

Strain Guage Sensor, Gage, 0Psi Min, 72.51Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5161

Strain Guage Sensor, Gage, 0Psi Min, 72.51Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5170

Strain Guage Sensor, Gage, 0Psi Min, 145.03Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP5171

Strain Guage Sensor, Gage, 0Psi Min, 145.03Psi Max, 1.25%, 0.50-4.50V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP51A11

Strain Guage Sensor, Gage, 5.8Psi Max, 4%, 0.3-2.7V, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP51B61

Strain Guage Sensor, Gage, 0.87Psi Max, 2.5%, 0.50-4.50V, Square, Through Hole Mount, DIP-8
PANASONIC