ADP5304 [ADI]

Ultralow Power Step-Down Regulator for Energy Harvesting;
ADP5304
型号: ADP5304
厂家: ADI    ADI
描述:

Ultralow Power Step-Down Regulator for Energy Harvesting

文件: 总17页 (文件大小:556K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Power Step-Down Regulator  
for Energy Harvesting  
ADP5304  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
2.2µH  
V
= 2.15V TO 6.5V  
V
OUT  
Input supply voltage range: 2.15 V to 6.50 V  
Operation down to 2.00 V typical  
IN  
PVIN  
SW  
10µF  
ADP5304  
10µF  
Ultralow, 260 nA typical quiescent current with no load  
Selective output voltage from 1.2 V to 3.6 V (or 0.8 V to 5.0 V)  
2.5ꢀ output accuracy over the full temperature range  
Output current up to 50 mA in hysteresis mode  
VINOK flag to monitor the input voltage  
ON  
EN  
PGND  
OFF  
MODE  
FB  
NC  
VINOK  
VID0: 1.2V VID8: 2.5V  
VID1: 1.5V VID9: 2.6V  
VID2: 1.8V VID10: 2.7V  
VID3: 2.0V VID11: 2.8V  
VID4: 2.1V VID12: 2.9V  
VID5: 2.2V VID13: 3.0V  
VID6: 2.3V VID14: 3.3V  
VID7: 2.4V VID15: 3.6V  
100ꢀ duty cycle operation mode  
Quick output discharge (QOD) option  
Undervoltage lockout (UVLO), overcurrent protection (OCP),  
and thermal shutdown (TSD) protection  
AGND  
VID  
R0  
EPAD  
10-lead, 3 mm × 3 mm LFCSP package  
−40°C to +125°C operating junction temperature range  
Figure 1.  
APPLICATIONS  
Energy (gas, water) metering  
Energy harvesting applications  
Portable and battery-powered equipment  
Medical applications  
Keep-alive power supply  
GENERAL DESCRIPTION  
The ADP5304 is a high efficient, ultralow quiescent current  
step-down regulator that draws only 260 nA of quiescent  
current to regulate the output at no load.  
energy harvester to charge up the conventional capacitor or  
super capacitor.  
The ADP5304 integrates an ultralow power comparator with a  
factory programmable voltage reference to monitor the voltage  
of the input power source. The voltage reference, with hysteresis, is  
the threshold for the stopping and the starting of the switching,  
allowing the use of the high impedance power source.  
The ADP5304 runs from an input voltage range of 2.15 V to  
6.50 V, allowing the use of the multiple alkaline, NiMH, and  
Lithium cells, or the use of a high impedance power source. The  
output voltage is selectable from 0.8 V to 5.0 V by an external  
VID resistor to ground. The total solution requires only four  
tiny external components.  
Other key features of the ADP5304 include separate enabling  
and a QOD. Safety features, such as OCP, TSD, and input  
UVLO are also included.  
The ADP5304 operates in hysteresis mode via connecting the  
MODE pin to ground. In hysteresis mode, the regulator  
achieves excellent efficiency at a power of less than 1 mW and  
provides up to 50 mA of output load. The device enables very  
efficient power management to achieve the collection of small  
amounts of energy from the high impedance battery or the  
The ADP5304 is available in 10-lead, 3 mm × 3 mm LFCSP  
package rated for the −40°C to +125°C junction temperature range.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP5304  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Current Limit.............................................................................. 12  
Short-Circuit Protection............................................................ 12  
Soft Start ...................................................................................... 12  
Startup with Precharged Output .............................................. 12  
100% Duty Operation................................................................ 12  
Active Discharge......................................................................... 12  
Thermal Shutdown .................................................................... 12  
Applications Information.............................................................. 13  
External Component Selection ................................................ 13  
Selecting the Inductor................................................................ 13  
Output Capacitor........................................................................ 13  
Input Capacitor........................................................................... 14  
Layout Recommendations ........................................................ 14  
Typical Application Circuits ......................................................... 15  
Factory Programmable Options................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Detailed Functional Block Diagram .............................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 11  
Buck Regulator Operational Mode .......................................... 11  
Adjustable and Fixed Output Voltages .................................... 11  
Undervoltage Lockout (UVLO) ............................................... 11  
Enable/Disable ............................................................................ 11  
VINOK Function........................................................................ 11  
REVISION HISTORY  
10/15—Revision 0: Initial Version  
Rev. 0 | Page 2 of 17  
 
Data Sheet  
ADP5304  
DETAILED FUNCTIONAL BLOCK DIAGRAM  
PVIN  
SW  
PVIN  
DRIVER  
VINOK  
VINOK_TH  
PVIN  
NC  
I
LIM_HYS  
CONTROL  
LOGIC  
0A (HYS)  
PVIN  
DRIVER  
VINOK  
PGND  
STANDBY  
0.808V  
0.8V  
FB  
INTERNAL  
FEEDBACK  
RESISTOR  
DIVIDER  
VID  
1.2V  
0.4V  
AGND  
EN  
BAND GAP BIAS  
AND  
HOUSEKEEPING  
PVIN  
UVLO  
2.06V  
2.00V  
1.2V  
0.4V  
2MHz  
OSC  
MODE  
KEEP ALIVE BLOCK  
Figure 2.  
Rev. 0 | Page 3 of 17  
 
ADP5304  
Data Sheet  
SPECIFICATIONS  
VIN = 3.6 V, VOUT = 2.5 V, TJ = −40°C to +125°C for minimum and maximum specifications, and TA = 25°C for typical specifications,  
unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Min  
Typ  
Max  
6.50  
40  
Unit  
V
Test Conditions/Comments  
INPUT SUPPLY VOLTAGE RANGE  
SHUTDOWN CURRENT  
2.15  
ISHUTDOWN  
18  
18  
nA  
nA  
VEN = 0 V, −40°C ≤ TJ ≤ +85°C  
VEN = 0 V, −40°C ≤ TJ ≤ +125°C  
130  
QUIESCENT CURRENT  
Operating Quiescent Current  
IQ  
260  
260  
640  
360  
500  
1500  
nA  
nA  
nA  
−40°C ≤ TJ ≤ +85°C  
−40°C ≤ TJ ≤ +125°C  
100% duty cycle operation, VIN = 3.0 V,  
VOUT set as 3.3 V  
UNDERVOLTAGE LOCKOUT  
UVLO  
UVLO Threshold  
Rising  
Falling  
VUVLO_RISING  
VUVLO_FALLING  
2.06  
2.00  
2.14  
V
V
1.90  
1.2  
EN PIN  
Input Voltage Threshold  
High  
VIH  
V
Low  
VIL  
IEN_LEAKAGE  
0.4  
25  
V
nA  
Input Leakage Current  
FB PIN  
Output Options by VID Resistor  
Fixed VID Code Threshold Accuracy from Active VFB_FIX  
Mode to Standby Mode  
VOUT_OPT  
0.8  
−0.75  
5.0  
+0.75  
V
%
0.8 V to 5.0 V in different factory option  
TJ = 25°C  
−2.5  
−3  
+2.5  
+3  
%
%
−40°C ≤ TJ ≤ +125°C  
−40°C ≤ TJ ≤ +125°C  
Adjustable VID Code Threshold Accuracy from  
Active Mode to Standby Mode  
Hysteresis of Threshold Accuracy from Active  
Mode to Standby Mode  
VFB_ADJ  
VFB (HYS)  
IFB  
1
%
Feedback Bias Current  
66  
25  
95  
45  
nA  
nA  
Output Option 0, VOUT = 2.5 V  
Output Option 1, VOUT = 1.3 V  
SW PIN  
High-Side Power FET On Resistance  
Low-Side Power FET On Resistance  
Peak Current  
RDS (ON) H  
RDS (ON) L  
ILIM  
386  
299  
265  
40  
520  
470  
mΩ  
mΩ  
mA  
ns  
Pin to pin measurement  
Pin to pin measurement  
Minimum On Time  
tMIN_ON  
70  
VINOK PIN  
VINOK Monitor Threshold Range  
VINOK Monitor Accuracy Range  
VVINOK (RISE)  
2.05  
−1.5  
−3  
5.15  
+1.5  
+3  
V
%
%
Factory programmable  
TJ = 25°C  
−40°C ≤ TJ ≤ +125°C  
VINOK Monitor Threshold Hysteresis  
VINOK Rising Delay  
VINOK Falling Delay  
Leakage Current for the VINOK Pin  
Output Low Voltage for the VINOK Pin  
SOFT START  
VVINOK (HYS)  
tVINOK_RISE  
tVINOK_FALL  
IVINOK_LEAKAGE  
VVINOK_LOW  
1.5  
190  
130  
0.1  
50  
%
μs  
μs  
μA  
mV  
1
100  
IVINOK = 100 μA  
Default Soft Start Time  
Start-Up Delay  
tSS  
350  
2
μs  
ms  
Ω
Factory trim, 1 bit (350 μs, 2800 μs)  
Delay from the EN pin being pulled high  
tSTART_DELAY  
RDIS  
COUT DISCHARGE SWITCH ON RESISTANCE  
THERMAL SHUTDOWN  
Threshold  
290  
TSHDN  
THYS  
142  
127  
C  
C  
Hysteresis  
Rev. 0 | Page 4 of 17  
 
Data Sheet  
ADP5304  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
PVIN to PGND  
SW to PGND  
FB to AGND  
VID to AGND  
EN to AGND  
VINOK to AGND  
MODE to AGND  
NC to AGND  
PGND to AGND  
Storage Temperate Range  
−0.3 V to +7 V  
−0.3 V to PVIN + 0.3 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +0.3 V  
−65°C to +150°C  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
10-Lead, 3 mm × 3 mm LFCSP  
57  
0.86  
°C/W  
ESD CAUTION  
Operating Junction Temperature Range −40°C to +125°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 5 of 17  
 
 
 
ADP5304  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
EN 1  
10 PVIN  
NC 2  
9
8
7
6
SW  
ADP5304  
MODE 3  
VID 4  
PGND  
AGND  
VINOK  
TOP VIEW  
(Not to Scale)  
FB 5  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD. SOLDER THE EXPOSED PAD TO A LARGE  
EXTERNAL COPPER GROUND PLANE UNDERNEATH THE  
IC FOR THERMAL DISSIPATION.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
EN  
NC  
MODE  
VID  
Enable Input for the Regulator. A logic low on this pin disables the regulator.  
No Connect. Connect this pin to ground.  
Operating Mode Pin. Connect this pin to ground; the regulator operates in hysteresis mode.  
Voltage Configuration Pin. Connect one resistor from this pin to ground to configure the output voltage of the  
regulator.  
5
FB  
Feedback Sensing Input for the Regulator.  
6
7
8
9
VINOK  
AGND  
PGND  
SW  
PVIN  
EPAD  
Input Power-Good Signal. This open-drain output is the power-good signal for the input voltage.  
Analog Ground.  
Power Ground.  
Switching Node Output for the Regulator.  
Power Input for the Regulator.  
10  
Exposed Pad. Solder the exposed pad to a large external copper ground plane underneath the IC for thermal  
dissipation.  
Rev. 0 | Page 6 of 17  
 
Data Sheet  
ADP5304  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN =3.6 V, VOUT = 2.5 V, L1 = 2.2 μH, CIN = COUT = 10 ꢀF, fSW = 2 MHz, TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
V
V
V
V
V
V
= 2.5V  
= 3.0V  
= 3.6V  
= 4.2V  
= 5.0V  
= 6.0V  
V
V
V
V
V
V
= 2.5V  
= 3.0V  
= 3.6V  
= 4.2V  
= 5.0V  
= 6.0V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. Hysteresis Efficiency vs. Load Current, VOUT = 1.2 V  
Figure 7. Hysteresis Efficiency vs. Load Current, VOUT = 1.5 V  
100  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
V
V
V
V
V
V
= 2.5V  
= 3.0V  
= 3.6V  
= 4.2V  
= 5.0V  
= 6.0V  
IN  
IN  
IN  
IN  
IN  
IN  
V
V
V
V
V
= 3.0V  
= 3.6V  
= 4.2V  
= 5.0V  
= 6.0V  
IN  
IN  
IN  
IN  
IN  
40  
0.001  
50  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 5. Hysteresis Efficiency vs. Load Current, VOUT = 1.8 V  
Figure 8. Hysteresis Efficiency vs. Load Current, VOUT = 2.5 V  
100  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
90  
80  
70  
60  
RISING  
V
V
V
V
= 3.6V  
= 4.2V  
= 5.0V  
= 6.0V  
IN  
IN  
IN  
IN  
FALLING  
50  
0.001  
0.01  
0.1  
1
10  
–40  
25  
85  
125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 6. Hysteresis Efficiency vs. Load Current, VOUT = 3.3 V  
Figure 9. UVLO Threshold, Rising and Falling vs. Temperature  
Rev. 0 | Page 7 of 17  
 
ADP5304  
Data Sheet  
160  
140  
120  
100  
80  
350  
300  
250  
200  
150  
100  
–40ºC  
+25ºC  
+85ºC  
+125ºC  
–40ºC  
+25ºC  
+85ºC  
+125ºC  
60  
40  
20  
0
2.3  
2.9  
3.5  
4.1  
V
4.7  
(V)  
5.3  
5.9  
6.5  
2.3  
2.9  
3.5  
4.1  
V
4.7  
(V)  
5.3  
5.9  
6.5  
IN  
IN  
Figure 10. Shutdown Current vs. VIN, EN = Low  
Figure 13. Quiescent Current vs. VIN  
700  
600  
500  
400  
300  
200  
100  
400  
350  
300  
250  
200  
150  
100  
–40ºC  
+25ºC  
+125ºC  
–40ºC  
+25ºC  
+125ºC  
2.3  
2.9  
3.5  
4.1  
V
4.7  
(V)  
5.3  
5.9  
6.5  
2.3  
2.9  
3.5  
4.1  
V
IN  
4.7  
(V)  
5.3  
5.9  
6.5  
IN  
Figure 14. Low-Side RDS (ON) L vs. VIN  
Figure 11. High-Side RDS (ON) H vs. VIN  
810  
808  
806  
804  
802  
800  
798  
796  
794  
792  
V
OUT  
ACTIVE TO STANDBY  
STANDBY TO ACTIVE  
1
SW  
2
4
I
L
CH1 100mV  
CH2 2.00V  
CH4 500mA   
M 200µs A CH4  
39.60%  
140mA  
–40  
25  
85  
125  
T
TEMPERATURE (°C)  
Figure 15. Steady Waveform, ILOAD = 1 mA (IL is the Inductor Current)  
Figure 12. Feedback Voltage vs. Temperature  
Rev. 0 | Page 8 of 17  
Data Sheet  
ADP5304  
V
V
V
IN  
IN  
3
1
3
1
OUT  
V
OUT  
I
L
I
L
4
2
4
2
SW  
SW  
CH1 1.00V  
CH3 2.00V  
CH2 5.00V  
CH4 500mA Ω  
M 100µs A CH1  
T 40.40%  
1.40V  
CH1 1.00V  
CH3 2.00V  
CH2 5.00V  
CH4 200mA Ω  
M 100µs A CH1  
T 40.40%  
1.40V  
Figure 16. Soft Start, ILOAD = 50 mA  
Figure 19. Soft Start with Precharge Function  
1
V
(AC)  
OUT  
V
V
(AC)  
OUT  
IN  
1
4
2
I
I
OUT  
L
4
SW  
CH1 50.0mV  
M 200µs A CH4  
T 20.80%  
111mA  
CH1 50.0mV  
CH3 2.00V  
CH2 5.00V  
CH4 500mA Ω  
M 2.00ms A CH3  
30.00%  
4.72V  
CH4 50.0mA   
T
Figure 17. Load Transient, ILOAD from 0 mA to 50 mA  
Figure 20. Line Transient, ILOAD = 10 μA  
V
IN  
1
V
OUT  
1
2
3
I
L
4
CH1 1.00V  
CH3 1.00V  
M 10.0ms A CH3  
T 40.20%  
4.80V  
B
B
B
CH2 1.00V  
W
CH1 2.00V  
CH3 1.00V  
M 4.00ms A CH3  
T 20.20%  
980mV  
W
W
CH4 200mA Ω  
Figure 21. VINOK Function at a 3.0 V VINOK Threshold  
Figure 18. Input Voltage Ramp-Up and Ramp-Down  
Rev. 0 | Page 9 of 17  
ADP5304  
Data Sheet  
V
OUT  
V
L
OUT  
1
1
I
I
L
SW  
4
2
4
2
SW  
CH1 1.00V  
CH2 5.00V  
CH4 200mA Ω  
M 10µs  
T 40.40%  
A CH1  
1.40V  
CH1 1.00V  
CH2 5.00V  
CH4 200mV Ω  
M 200µs A CH2  
T 40.20%  
1.68V  
Figure 22. Output Short Protection  
Figure 24. Output Short Recovery  
V
V
IN  
EN  
OUT  
3
V
OUT  
3
1
I
L
SW  
1
2
SW  
2
CH1 1.00V  
CH3 1.00V  
CH2 2.00V  
CH4 2.00V Ω  
M 20.0ms A CH2  
T 40.20%  
1.56V  
CH1 1.00V  
CH3 2.00V  
CH2 2.00V  
M 4.00ms A CH3  
T 40.00%  
1.64V  
Figure 23. 260 μA Current Source Charge Up, 100 μF Output Capacitor with  
100 μA Load Current, and 3.0 V VINOK Threshold  
Figure 25. Quick Output Discharge Function  
Rev. 0 | Page 10 of 17  
Data Sheet  
ADP5304  
THEORY OF OPERATION  
The ADP5304 is a high efficient, ultralow quiescent current  
step-down regulator in a 10-lead LFCSP package, designed to  
meet demanding performance and board space requirements.  
The device enables direct connection to a wide input voltage  
range of 2.15 V to 6.50 V, allowing the use of high impedance  
power sources or energy harvester sources.  
Table 5. Output Voltage Options by the VID Pin  
VID  
Configuration  
VOUT  
Factory Option 0 (V) Factory Option 1 (V)  
,
VOUT,  
Short to ground  
Short to PVIN  
RVID = 499 kΩ  
RVID = 316 kΩ  
RVID = 226 kΩ  
RVID = 174 kΩ  
RVID = 127 kΩ  
RVID = 97.6 kΩ  
RVID = 76.8 kΩ  
RVID = 56.2 kΩ  
RVID = 43 kΩ  
3.0  
2.5  
3.6  
3.3  
2.9  
2.8  
2.7  
2.6  
2.4  
2.3  
2.2  
2.1  
2.0  
1.8  
1.5  
1.2  
3.1  
1.3  
5.0  
4.5  
4.2  
3.9  
3.4  
3.2  
1.9  
1.7  
1.6  
1.4  
1.1  
1.0  
0.9  
0.8  
BUCK REGULATOR OPERATIONAL MODE  
The ADP5304 buck regulator operates in hysteresis mode and  
charges the output voltage slightly higher than its nominal  
output voltage with PWM pulses via the regulation of constant  
peak inductor current. When the output voltage increases until  
the output sense signal exceeds the hysteresis upper threshold,  
the regulator enters the standby mode. In standby mode, the  
high-side and low-side MOSFET and a majority of the circuitry  
are disabled to allow a low quiescent current, as well as high  
efficiency performance. During standby mode, the output  
capacitor supplies the energy into the load and the output  
voltage decreases until it falls below the hysteresis comparator  
lower threshold. Then, the buck regulator wakes up into active  
mode and generates the PWM pulses to charge the output again.  
RVID = 32.4 kΩ  
RVID = 25.5 kΩ  
RVID = 19.6 kΩ  
RVID = 15 kΩ  
RVID = 11.8 kΩ  
UNDERVOLTAGE LOCKOUT (UVLO)  
The buck regulator is forced to operate in hysteresis mode via  
connecting the MODE pin to ground. The regulator only draws  
260 nA of quiescent current to regulate the output under zero load,  
which allows the regulator to act as keep-alive power supply in  
battery-powered applications or energy harvesting systems.  
The undervoltage lockout circuitry monitors the input voltage  
level on the PVIN pin. If input voltage falls below 2.00 V  
(typical), the regulator turns off. After the input voltage rises  
above 2.06 V (typical), the soft start period initiates, and when  
the EN pin is high, the regulator enables.  
ADJUSTABLE AND FIXED OUTPUT VOLTAGES  
ENABLE/DISABLE  
The ADP5304 provides adjustable output voltage settings via  
the connection of one resistor through the VID pin to AGND.  
The VID detection circuitry works in the start-up period, and  
the voltage ID code is sampled and held into the internal  
register and does not change until the next power recycle.  
Furthermore, the ADP5304 provides a fixed output voltage  
programmed via the factory fuse. In this condition, connect  
the VID pin to the PVIN pin.  
The ADP5304 includes a separate enable (EN) pin. A logic high  
on the EN pin starts the regulator. Due to the low quiescent current  
design, it is typical for the regulator to start switching after a  
delay of a few milliseconds from the EN pin being pulled high.  
A logic low on the EN pin immediately disables the regulator  
and brings the regulator into extremely low current consumption.  
VINOK FUNCTION  
For output voltage settings, the feedback resistor divider is built  
in to the ADP5304, and the feedback pin (FB) must be tied  
directly to the output. An ultralow power voltage reference and  
an integrated high impedance (50 MΩ, typical) feedback  
divider network contribute to low quiescent current. Table 5  
lists the output voltage options by the VID pin configurations. It  
is recommended to use a 1% resistor.  
The ADP5304 includes an open-drain VINOK output that can  
be used to indicate the input voltage status. The VINOK output  
becomes active high when the input voltage on the PVIN pin is  
above the reference threshold. When the input voltage falls below  
the reference threshold, the VINOK pin goes low. Note that a  
relatively long validation time of 130 μs typical exists for the  
VINOK output status to change due to the ultralow power  
comparator design.  
Rev. 0 | Page 11 of 17  
 
 
 
 
 
 
 
ADP5304  
Data Sheet  
The ADP5304 VINOK threshold also determines the time  
when the buck regulator starts and stops switching. When the  
input voltage is below the threshold, the regulator stops switching  
in hysteresis mode. After the input source charges the input  
capacitor voltage above a hysteresis from the threshold, the  
regulator resumes switching. The regulator operates the input  
voltage in a hysteresis window around the threshold considered  
as the maximum power point tracking (MPPT). The high  
impedance input power source or small input power application  
employs the ADP5304 to charge the large output capacitor via  
trickle charging.  
STARTUP WITH PRECHARGED OUTPUT  
The buck regulators in the ADP5304 include a precharged  
start-up feature to protect the low-side FETs from damage  
during startup. If the output voltage is precharged before the  
regulator is turned on, the regulator prevents reverse inductor  
current—which discharges the output capacitor—until the  
internal soft start reference voltage exceeds the precharged  
voltage on the feedback pin.  
100% DUTY OPERATION  
When the input voltage approaches the output voltage, the  
ADP5304 stops switching and enters 100% duty cycle operation. It  
connects the output via the inductor and the internal high-side  
power switch to the input. When the input voltage is charged  
again and the required duty cycle falls to 95% typical, the buck  
immediately restarts switching and regulation without allowing  
overshoot on the output voltage. The ADP5304 draws an ultralow  
quiescent current of only 640 nA typical during 100% duty cycle  
operation.  
Different VINOK thresholds are factory programmable from  
2.05 V to 5.15 V in 50 mV steps. To order a device with options  
other than the default options, contact your local Analog  
Devices, Inc., sales or distribution representative.  
CURRENT LIMIT  
The buck regulators in the ADP5304 have protection circuitry  
that limits the direction and the amount of current to a certain  
level that flows through the high-side MOSFET and the low-side  
MOSFET in cycle by cycle mode. The positive current limit on  
the high-side MOSFET limits the amount of current that can  
flow from the input to the output. The negative current limit on  
the low-side MOSFET prevents the inductor current from  
reversing direction and flowing out of the load.  
ACTIVE DISCHARGE  
The regulator in the ADP5304 integrates an optional, factory  
programmable discharge switch from the switching node to  
ground. This switch turns on when its associated regulator is  
disabled, which helps discharge the output capacitor quickly.  
The typical value of the discharge switch is 290 Ω for the regulator.  
SHORT-CIRCUIT PROTECTION  
By default, the discharge function is not enabled. The active  
discharge function can be enabled by the factory fuse  
The buck regulators in the ADP5304 include frequency foldback to  
prevent current runaway on a hard short. When the output voltage  
at the feedback pin (FB) falls below 0.3 V typical, indicating the  
possibility of a hard short at the output, the switching frequency  
in active mode reduces to half of the internal oscillator frequency.  
The reduction in the switching frequency allows more time for  
the inductor to discharge, preventing a runaway of output current.  
THERMAL SHUTDOWN  
If the ADP5304 junction temperature exceeds 142C, the thermal  
shutdown circuit turns the IC off, except for the internal linear  
regulator. Extreme junction temperatures can be the result of  
high current operation, poor circuit board design, or high ambient  
temperature. A 15C hysteresis is included so that the ADP5304  
does not return to operation after thermal shutdown until the  
junction temperature falls below 127C. When the device exits  
thermal shutdown, a soft start is initiated for each enabled channel.  
SOFT START  
The ADP5304 has an internal soft start function that ramps the  
output voltage in a controlled limitation upon startup, thereby  
limiting the inrush current. This prevents possible input voltage  
drops when a battery or a high impedance power source is  
connected to the input of the device. The typical soft start  
time or the regulator is 350 μs.  
A different soft start time (2800 μs) can be programmed for  
ADP5304 via the factory fuse (see Table 11).  
Rev. 0 | Page 12 of 17  
 
 
 
 
 
 
 
Data Sheet  
ADP5304  
APPLICATIONS INFORMATION  
This section describes the external components selection for the  
ADP5304. The typical application circuit is shown in Figure 26.  
A minimum requirement of the dc current rating of the inductor  
is for it to be equal to the maximum load current plus half of the  
inductor current ripple (ΔIL), as shown by the following equations:  
V
=
IN  
2.2µH  
V
= 1.8V  
OUT  
2.15V TO 6.50V  
PVIN  
SW  
VOUT  
10µF  
MLCC  
1–  
ADP5304  
10µF  
MLCC  
VIN  
IL VOUT    
L fSW  
EN  
PGND  
R2  
1M  
I  
2
MODE  
NC  
FB  
L
I
PK = ILOAD (MAX) +  
VINOK  
VID  
where IPK is the peak inductor current.  
AGND  
Use the inductor series from the different vendors shown in Table 6.  
OUTPUT CAPACITOR  
R1  
19.6kΩ  
EPAD  
Output capacitance is required to minimize the voltage overshoot,  
the voltage undershoot, and the ripple voltage present on the  
output. Capacitors with low equivalent series resistance (ESR)  
values produce the lowest output ripple. Furthermore, use  
capacitors such as X5R and X7R dielectric capacitors. Do not  
use Y5V and Z5U capacitors, because they are unsuitable  
choices due to their large capacitance variation over temperature  
and their dc bias voltage changes. Because ESR is important,  
select the capacitor using the following equation:  
Figure 26. Typical Application Circuit  
EXTERNAL COMPONENT SELECTION  
The ADP5304 is optimized for operation with a 2.2 ꢀH inductor  
and 10 ꢀF output capacitors for various output voltages using  
the closed-loop compensation and adaptive slope compensation  
circuits. The selection of components depends on the efficiency,  
the load current transient, and other application requirements.  
The trade-offs among performance parameters, such as  
efficiency and transient response, are made by varying the  
choice of external components.  
VRIPPLE  
ESRCOUT  
ΔIL  
SELECTING THE INDUCTOR  
where:  
ESRCOUT is the ESR of the chosen capacitor.  
RIPPLE is the peak-to-peak output voltage ripple.  
The high switching frequency of the ADP5304 allows the use of  
small surface-mount power inductors. The dc resistance (DCR)  
value of the selected inductor affects efficiency. In addition, it is  
recommended to select a multilayer inductor rather than a  
magnetic iron inductor because the high switching frequency  
increases the core temperature rise and enlarges the core loss.  
V
Increasing the output capacitor value has no effect on stability  
and may reduce output ripple and enhance load transient response.  
ADP5304 can charge up the conventional capacitor or super  
capacitor. When choosing the output capacitor value, it is  
important to account for the loss of capacitance due to output  
voltage dc bias.  
Use the capacitor series from the different vendors shown in Table 7.  
Table 6. Recommended Inductors  
Vendor  
Model  
Inductance (μH)  
Dimensions (mm)  
2.0 × 1.6 × 0.85  
2.5 × 2.0 × 1.2  
DCR (mΩ)  
280  
250  
ISAT1 (A)  
1.0  
1.7  
1.5  
TDK  
Wurth  
Coilcraft  
MLP2016V2R2MT0S1  
74479889222  
LPS3314-222MR  
2.2  
2.2  
2.2  
3.3 × 3.3 × 1.3  
100  
1 ISAT is the dc current at which the inductance drops 30% (typical) from its value without current.  
Table 7. Input and Output Capacitors  
Vendor  
Murata  
Murata  
Murata  
Model  
Capacitance (μF)  
Size  
GRM188D71A106MA73  
GRM21BR71A106KE51  
GRM31CR60J107ME39  
10  
10  
100  
0603  
0805  
1206  
Rev. 0 | Page 13 of 17  
 
 
 
 
 
 
 
ADP5304  
Data Sheet  
Use the following equation to determine the rms input current:  
INPUT CAPACITOR  
An input capacitor is required to reduce the input voltage  
ripple, input ripple current, and source impedance. Place the  
input capacitor as close as possible to the PVIN pin. A low ESR  
X7R or X5R capacitor is highly recommended to minimize the  
input voltage ripple.  
VOUT  
VIN VOUT  
VIN  
I RMS I LOAD ( MAX  
)
For most applications, a 10 μF capacitor is sufficient. The input  
capacitor can be increased without any limit for better input  
voltage filtering.  
LAYOUT RECOMMENDATIONS  
Figure 27 shows the typical printed circuit board (PCB) layout  
for the ADP5304.  
10µF  
10V/XR5  
0603  
EN  
NC  
1
2
10PVIN  
9
8
7
6
SW  
ADP5304  
TOP VIEW  
MODE3  
PGND  
AGND  
VINOK  
5.7  
VID  
FB  
4
5
10µF  
6.3V/XR5  
0603  
100k  
0201  
4.6  
Figure 27. PCB Layout for the ADP5304  
Rev. 0 | Page 14 of 17  
 
 
 
Data Sheet  
ADP5304  
TYPICAL APPLICATION CIRCUITS  
The ADP5304 can be used as a keep-alive, ultralow power step-  
down regulator to extend the battery life and load pulse current  
capability with super capacitors (see Figure 28), and as a  
battery-powered equipment or wireless sensor network  
controlled by a microcontroller or a processor (see Figure 29).  
The VINOK function can achieve the maximum power point  
tracking.  
V
= 2.0V TO 3.0V  
10µF  
2.2µH  
V
= 1.8V  
OUT  
IN  
PVIN  
SW  
ADC/RF/AFE  
CR2032  
ADP5304  
1mF  
EN  
PGND  
FB  
R2  
1M  
VID  
R1  
19.6kΩ  
1%  
MCU  
(ALWAYS ON)  
VINOK  
NC  
MODE  
AGND  
Figure 28. Typical ADP5304 Application with a Coin Cell Battery (CR2032)  
PIEZOELECTRIC  
HARVESTER  
2.2µH  
V
= 1.8V  
OUT  
PVIN  
EN  
SW  
ADC/RF/AFE  
ADP5304  
10mF  
10µF  
PGND  
FB  
R2  
1M  
VID  
MCU  
(ALWAYS ON)  
R1  
19.6kΩ  
1%  
VINOK  
NC  
MODE  
AGND  
Figure 29. Typical ADP5304 Application with a Piezoelectric Harvester  
Rev. 0 | Page 15 of 17  
 
 
 
ADP5304  
Data Sheet  
FACTORY PROGRAMMABLE OPTIONS  
To order a device with options other than the default options,  
contact your local Analog Devices sales or distribution  
representative.  
Table 10. Output Discharge Functionality Options  
Option  
Description  
Option 0  
Output discharge function disabled for buck  
regulator (default)  
Table 8. Output Voltage VID Setting Options  
Option 1  
Output discharge function enabled form buck  
regulator  
Option  
Description  
Option 0 VID resistor to set the output voltage as follows:  
1.2 V, 1.5 V, 1.8 V, 2.0 V, 2.1 V, 2.2 V, 2.3 V, 2.4 V, 2.5 V,  
2.6 V, 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.3 V, 3.6 V, 3.3 V (default)  
Option 1 VID resistor to set the output voltage as follows:  
0.8 V, 0.9 V, 1.0 V, 1.1 V, 1.3 V, 1.4 V, 1.6 V, 1.7 V, 1.9 V,  
3.1 V, 3.4 V, 3.9 V, 4.2 V, 4.5 V, 5.0 V  
Table 11. Soft Start Timer Options  
Option  
Description  
350 μs (default)  
2800 μs  
Option 0  
Option 1  
Table 9. VINOK Monitor Threshed Options  
Option  
Option 0  
Option 1  
Option 2  
Option 3  
VINOK Monitor Threshold (V)  
2.05  
2.10  
2.15  
2.20  
Option 20  
3.00 (default)  
Option 62  
Option 63  
5.10  
5.15  
Rev. 0 | Page 16 of 17  
 
 
Data Sheet  
ADP5304  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 30. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADP5304ACPZ-1-R7  
−40°C to +125°C  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD] Without  
Output Discharge, VINOK Threshold = 3.00 V  
CP-10-9  
ADP5304ACPZ-2-R7  
−40°C to +125°C  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD] Without  
Output Discharge, VINOK Threshold = 4.00 V  
CP-10-9  
ADP5304-EVALZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13493-0-10/15(0)  
Rev. 0 | Page 17 of 17  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY