ADP7112 [ADI]

20 V, 200 mA, Low Noise, CMOS LDO Linear Regulator;
ADP7112
型号: ADP7112
厂家: ADI    ADI
描述:

20 V, 200 mA, Low Noise, CMOS LDO Linear Regulator

文件: 总21页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 V, 200 mA, Low Noise,  
CMOS LDO Linear Regulator  
ADP7112  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Low noise: 11 μV rms independent of fixed output voltage  
PSRR of 88 dB at 10 kHz, 68 dB at 100 kHz, 50 dB at 1 MHz,  
ADP7112  
V
= 6V  
V
= 5V  
OUT  
IN  
VIN  
VOUT  
VOUT = 5 V, VIN = 7 V  
C
C
OUT  
2.2µF  
IN  
2.2µF  
Input voltage range: 2.7 V to 20 V  
Maximum output current: 200 mA  
Initial accuracy: 0.8ꢀ  
Accuracy over line, load, and temperature  
1.8ꢀ, TJ = −40°C to +125°C  
SENSE/ADJ  
ON  
EN  
SS  
C
GND  
SS  
OFF  
1nF  
Figure 1. ADP7112 with Fixed Output Voltage, 5 V  
Low dropout voltage: 200 mV (typical) at a 200 mA load,  
V
OUT = 5 V  
ADP7112  
V
= 7V  
V
= 6V  
User-programmable soft start  
Low quiescent current, IGND = 50 ꢁA (typical) with no load  
Low shutdown current  
IN  
OUT  
VIN  
VOUT  
C
C
OUT  
2.2µF  
IN  
2kΩ  
2.2µF  
SENSE/ADJ  
10kΩ  
ON  
1.8 ꢁA at VIN = 5 V  
3.0 ꢁA at VIN = 20 V  
Stable with a small 2.2 μF ceramic output capacitor  
Fixed output voltage options: 1.8 V, 2.5 V, 3.3 V, and 5.0 V  
15 standard voltages between 1.2 V and 5.0 V are  
available  
EN  
SS  
C
1nF  
GND  
SS  
OFF  
Figure 2. ADP7112 with 5 V Output Adjusted to 6 V  
Adjustable output from 1.2 V to VIN – VDO, output can be  
adjusted above initial set point  
Precision enable  
1 mm × 1.2 mm, 6-ball WLCSP  
APPLICATIONS  
Regulation to noise sensitive applications  
ADC and DAC circuits, precision amplifiers, power for  
VCO VTUNE control  
Communications and infrastructure  
Medical and healthcare  
Industrial and instrumentation  
GENERAL DESCRIPTION  
The ADP7112 is a CMOS, low dropout (LDO) linear regulator  
that operates from 2.7 V to 20 V and provides up to 200 mA of  
output current. This high input voltage LDO is ideal for the  
regulation of high performance analog and mixed-signal circuits  
operating from 19 V down to 1.2 V rails. Using an advanced  
proprietary architecture, the device provides high power supply  
rejection, low noise, and achieves excellent line and load transient  
response with a small 2.2 μF ceramic output capacitor. The  
ADP7112 regulator output noise is 11 ꢀV rms, independent of  
the output voltage for the fixed options of 5 V or less.  
The ADP7112 is available in 15 fixed output voltage options.  
The following voltages are available from stock: 1.2 V  
(adjustable), 1.8 V, 2.5 V, 3.3 V, and 5.0 V. Additional voltages  
available by special order are 1.5 V, 1.85 V, 2.0 V, 2.2 V, 2.75 V,  
2.8 V, 2.85 V, 3.8 V, 4.2 V, and 4.6 V.  
Each fixed output voltage can be adjusted above the initial set  
point with an external feedback divider. This allows the ADP7112  
to provide an output voltage from 1.2 V to VIN − VDO with high  
PSRR and low noise.  
A user-programmable soft start with an external capacitor is  
available in the ADP7112. The ADP7112 is available in a 6-ball  
1 mm × 1.2 mm WLCSP, making it a very compact solution.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2020 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADP7112  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Theory of Operation ...................................................................... 13  
Applications Information ............................................................. 14  
Capacitor Selection .................................................................... 14  
Programable Precision Enable ................................................. 15  
Soft Start ...................................................................................... 15  
Noise Reduction of the ADP7112 in Adjustable Mode........ 16  
Current-Limit and Thermal Overload Protection ................ 16  
Effect of Noise Reduction on Start-Up Time......................... 16  
Thermal Considerations ........................................................... 17  
PCB Layout Considerations.......................................................... 19  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Applications ...................................................................................... 1  
Typical Application Circuits........................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Input and Output Capacitance, Recommended Specifications  
......................................................................................................... 4  
Absolute Maximum Ratings ........................................................... 5  
Thermal Data................................................................................ 5  
Thermal Resistance...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions ............................ 6  
Typical Performance Characteristics............................................. 7  
REVISION HISTORY  
3/2020—Rev. C to Rev. D  
12/2014—Rev. A to Rev. B  
Change to General Description Section........................................ 1  
Changes to Shutdown Current Parameter, Table 1..................... 3  
Changes to Theory of Operation Section.................................... 13  
Change to Effect of Noise Reduction on Start-Up Time Section...16  
Changes to Table 7 ......................................................................... 20  
Changed EN to GND Parameter from −0.3 V to VIN to −0.3 V  
to +24 V, Table 3 ...............................................................................5  
12/2014—Rev. 0 to Rev. A  
Changes to Figure 34 to Figure 39 ............................................... 12  
Changes to Figure 42 ..................................................................... 14  
7/2016—Rev. B to Rev. C  
Changes to Figure 40 ..................................................................... 13  
Changes to Programmable Precision Enable Section and Soft  
Start Section..................................................................................... 15  
Added Effect of Noise Reduction on Start-Up Time Section .. 16  
9/2014—Revision 0: Initial Version  
Rev. D | Page 2 of 21  
 
Data Sheet  
ADP7112  
SPECIFICATIONS  
VIN = VOUT + 1 V or 2.7 V, whichever is greater, VOUT = 5 V, EN = VIN, IOUT = 10 mA, CIN = COUT = 2.2 μF, CSS = 0 pF, TA = 25°C for typical  
specifications, TJ = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
MAXIMUM OUTPUT CURRENT  
OPERATING SUPPLY CURRENT  
2.7  
20  
ILOAD_MAX  
IGND  
200  
50  
80  
180  
1.8  
3.0  
mA  
μA  
μA  
μA  
μA  
μA  
IOUT = 0 μA  
140  
190  
320  
IOUT = 10 mA  
IOUT = 200 mA  
EN = GND  
SHUTDOWN CURRENT  
IGND-SD  
EN = GND, VIN = 20 V  
10  
OUTPUT VOLTAGE ACCURACY  
Output Voltage Accuracy  
VOUT  
IOUT = 10 mA, TJ = 25°C  
100 ꢀA < IOUT < 200 mA, VIN = (VOUT + 1 V) to 20 V  
–0.8  
–1.8  
–0.02  
+0.8  
+1.8  
+0.02  
%
%
LINE REGULATION  
∆VOUT/∆VIN VIN = (VOUT + 1 V) to 20 V  
∆VOUT/∆IOUT IOUT = 100 ꢀA to 200 mA  
%/V  
%/mA  
nA  
LOAD REGULATION1  
SENSE INPUT BIAS CURRENT  
DROPOUT VOLTAGE2  
0.002 0.004  
SENSEI-BIAS  
VDROPOUT  
100 ꢀA < IOUT < 200 mA VIN = (VOUT + 1 V) to 20 V  
10  
1000  
60  
420  
IOUT = 10 mA  
IOUT = 200 mA  
VOUT = 5 V  
30  
mV  
mV  
μs  
200  
380  
1.15  
360  
START-UP TIME3  
TSTART-UP  
SSI-SOURCE  
ILIMIT  
SOFT START SOURCE CURRENT  
CURRENT-LIMIT THRESHOLD4  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
UNDERVOLTAGE THRESHOLDS  
Input Voltage Rising  
SS = GND  
μA  
250  
460  
2.69  
0.4  
mA  
TSSD  
TSSD-HYS  
TJ rising  
150  
15  
°C  
°C  
UVLORISE  
UVLOFALL  
UVLOHYS  
V
V
mV  
Input Voltage Falling  
Hysteresis  
2.2  
1.0  
230  
EN INPUT STANDBY  
EN Input Logic High  
EN Input Logic Low  
EN Input Logic Hysteresis  
EN INPUT PRECISION  
EN Input Logic High  
2.7 V ≤ VIN ≤ 20 V  
2.7 V ≤ VIN ≤ 20 V  
ENSTBY-HIGH  
ENSTBY-LOW  
ENSTBY-HYS  
V
V
mV  
150  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
tEN-DLY  
1.15  
1.06  
1.22  
1.12  
100  
0.04  
80  
1.30  
1.18  
V
V
mV  
μA  
ꢀs  
EN Input Logic Low  
EN Input Logic Hysteresis  
EN Input Leakage Current  
EN Input Delay Time  
EN = VIN or GND  
1
From EN rising from 0 V to VIN to 0.1 × VOUT  
10 Hz to 100 kHz, all output voltage options  
1 MHz, VIN = 7 V, VOUT = 5 V  
100 kHz, VIN = 7 V, VOUT = 5 V  
10 kHz, VIN = 7 V, VOUT = 5 V  
OUTPUT NOISE  
OUTNOISE  
11  
μV rms  
dB  
dB  
dB  
POWER SUPPLY REJECTION RATIO PSRR  
50  
68  
88  
1 Based on an endpoint calculation using 100 ꢀA and 200 mA loads. See Figure 5 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. Dropout applies only for output  
voltages greater than 2.7 V.  
3 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 5.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 5.0 V or 4.5 V.  
Rev. D | Page 3 of 21  
 
ADP7112  
Data Sheet  
INPUT AND OUTPUT CAPACITANCE, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT AND OUTPUT CAPACITANCE  
Minimum Capacitance1  
Capacitor Effective Series Resistance (ESR)  
CMIN  
RESR  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
1.5  
0.001  
μF  
Ω
0.3  
1 The minimum input and output capacitance must be greater than 1.5 ꢀF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended,  
whereas Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. D | Page 4 of 21  
 
Data Sheet  
ADP7112  
ABSOLUTE MAXIMUM RATINGS  
θJA of the package is based on modeling and calculation using a  
4-layer board. The θJA is highly dependent on the application  
and board layout. In applications where high maximum power  
dissipation exists, close attention to thermal board design is  
required. The value of θJA can vary, depending on PCB material,  
layout, and environmental conditions. The specified values of θJA  
are based on a 4-layer, 4 in. × 3 in. circuit board. See JESD51-7 and  
JESD51-9 for detailed information on the board construction.  
Table 3.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
EN to GND  
SENSE/ADJ to GND  
SS to GND  
−0.3 V to +24 V  
−0.3 V to VIN  
−0.3 V to +24 V  
−0.3 V to +6 V  
−0.3 V to VIN or +6 V  
(whichever is less)  
Storage Temperature Range  
−65°C to +150°C  
Ψ
JB is the junction-to-board thermal characterization parameter  
Operating Junction Temperature −40°C to +125°C  
(TJ) Range  
Operating Ambient Temperature −40°C to +85°C  
(TA) Range  
with units of °C/W. The ΨJB of the package is based on  
modeling and calculation using a 4-layer board. The JESD51-12,  
Guidelines for Reporting and Using Electronic Package Thermal  
Information, states that thermal characterization parameters are  
not the same as thermal resistances. ΨJB measures the component  
power flowing through multiple thermal paths rather than a  
single path as in thermal resistance (θJB). Therefore, ΨJB thermal  
paths include convection from the top of the package as well as  
radiation from the package, factors that make ΨJB more useful in  
real-world app-lications. Maximum TJ is calculated from the  
board temperature (TB) and PD using the formula  
Soldering Conditions  
JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
TJ = TB + (PD × ΨJB)  
(2)  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP7112 can be damaged when the junction  
temperature limits are exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature can  
have to be derated.  
THERMAL RESISTANCE  
θJA, θJC, and ΨJB are specified for the worst-case conditions, that  
is, a device soldered in a circuit board for surface-mount  
packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
ΨJB  
Unit  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long as  
the junction temperature is within specification limits. The  
junction temperature of the device is dependent on the ambient  
temperature, the power dissipation (PD) of the device, and the  
junction-to-ambient thermal resistance of the package (θJA).  
6-Ball WLCSP  
260  
4
58  
°C/W  
ESD CAUTION  
Maximum TJ is calculated from the TA and PD using the  
formula  
TJ = TA + (PD × θJA)  
(1)  
Rev. D | Page 5 of 21  
 
 
 
 
ADP7112  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
A
B
C
VIN  
SS  
VOUT  
SENSE/  
ADJ  
EN  
GND  
ADP7112  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
A1  
B1  
Mnemonic Description  
VIN  
SS  
Regulator Input Supply. Bypass VIN to GND with a 2.2 μF or greater capacitor.  
Soft Start. An external capacitor connected to this pin determines the soft start time. Leave this pin open  
for a typical 380 ꢀs start-up time. Do not ground this pin.  
C1  
EN  
The enable pin controls the operation of the LDO. Drive EN high to turn on the regulator. Drive EN low  
to turn off the regulator. For automatic startup, connect EN to VIN.  
A2  
B2  
VOUT  
Regulated Output Voltage. Bypass VOUT to GND with a 2.2 μF or greater capacitor.  
SENSE/ADJ Sense Input (SENSE). Connect to load.  
Adjustable Model (ADJ). The adjustable model has a fixed output set to 1.2 V. The output can be set to a  
voltage higher than 1.2 V by connecting an external resistor divider to the ADJ pin.  
C2  
GND  
Ground.  
Rev. D | Page 6 of 21  
 
Data Sheet  
ADP7112  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = VOUT + 1 V or 2.7 V, whichever is greater, VOUT = 5 V, ILOAD = 10 mA, CIN = COUT = 2.2 μF, TA = 25°C, unless otherwise noted.  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
0
–40  
–5  
25  
85  
125  
–40  
–5  
25  
85  
125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 4. Output Voltage (VOUT) vs. Junction Temperature  
Figure 7. Ground Current vs. Junction Temperature  
5.05  
200  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 5. Output Voltage (VOUT) vs. Load Current (ILOAD  
)
Figure 8. Ground Current vs. Load Current (ILOAD)  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
IN  
IN  
Figure 6. Output Voltage (VOUT) vs. Input Voltage (VIN  
)
Figure 9. Ground Current vs. Input Voltage (VIN)  
Rev. D | Page 7 of 21  
 
 
ADP7112  
Data Sheet  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
LOAD = 5mA  
V
V
V
V
V
V
= 2.7V  
= 3V  
= 5V  
= 6V  
= 10V  
= 20V  
IN  
IN  
IN  
IN  
IN  
IN  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
0
4.8  
5.0  
5.2  
(V)  
5.4  
5.6  
–50  
–25  
0
25  
50  
75  
100  
125  
V
TEMPERATURE (°C)  
IN  
Figure 10. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 13. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 5 V  
250  
3.35  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
200  
150  
100  
50  
3.33  
3.31  
3.29  
3.27  
3.25  
0
–40  
–5  
25  
85  
125  
1
10  
100  
1000  
JUNCTION TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 14. Output Voltage (VOUT) vs. Junction Temperature, VOUT = 3.3 V  
Figure 11. Dropout Voltage vs. Load Current (ILOAD), VOUT = 5 V  
3.35  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.33  
3.31  
3.29  
3.27  
3.25  
4.75  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
4.70  
4.65  
4.60  
4.8  
0.1  
1
10  
(mA)  
100  
1000  
5.0  
5.2  
(V)  
5.4 5.6  
I
LOAD  
V
IN  
Figure 12. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout, VOUT = 5 V  
Figure 15. Output Voltage (VOUT) vs. Load Current (ILOAD), VOUT = 3.3 V  
Rev. D | Page 8 of 21  
Data Sheet  
ADP7112  
3.35  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 200mA  
3.33  
3.31  
3.29  
3.27  
3.25  
0
0
5
10  
(V)  
15  
20  
0
5
10  
(V)  
15  
20  
V
V
IN  
IN  
Figure 16. Output Voltage (VOUT) vs. Input Voltage (VIN), VOUT = 3.3 V  
Figure 19. Ground Current vs. Input Voltage (VIN), VOUT = 3.3 V  
300  
300  
250  
200  
150  
100  
50  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
250  
LOAD = 200mA  
200  
150  
100  
50  
0
0
–40  
–5  
25  
85  
125  
1
10  
100  
1000  
JUNCTION TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 17. Ground Current vs. Junction Temperature, VOUT = 3.3 V  
Figure 20. Dropout Voltage vs. Load Current (ILOAD), VOUT = 3.3 V  
200  
180  
160  
140  
120  
100  
80  
3.4  
3.3  
3.2  
3.1  
3.0  
60  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
40  
2.9  
20  
LOAD = 150mA  
LOAD = 200mA  
0
0.1  
2.8  
3.1  
1
10  
(mA)  
100  
1000  
3.3  
3.5  
(V)  
3.7 3.9  
I
V
LOAD  
IN  
Figure 18. Ground Current vs. Load Current (ILOAD), VOUT = 3.3 V  
Figure 21. Output Voltage (VOUT) vs. Input Voltage (VIN) in Dropout,  
VOUT = 3.3 V  
Rev. D | Page 9 of 21  
ADP7112  
Data Sheet  
700  
600  
500  
400  
300  
200  
100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 50mA  
LOAD = 100mA  
LOAD = 150mA  
LOAD = 200mA  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
0
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.1  
3.3  
3.5  
(V)  
3.7  
3.9  
HEADROOM VOLTAGE (V)  
V
IN  
Figure 22. Ground Current vs. Input Voltage (VIN) in Dropout, VOUT = 3.3 V  
Figure 25. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
VOUT = 1.8 V, for Different Frequencies  
300  
0
–20  
–40  
–60  
V
V
V
V
= 2.7V  
= 5.0V  
= 10V  
= 20V  
IN  
IN  
IN  
IN  
250  
200  
150  
100  
50  
3.0V  
2.0V  
1.6V  
1.4V  
1.2V  
1.0V  
800mV  
700mV  
600mV  
500mV  
–80  
–100  
–120  
0
–40  
–5  
25  
85  
125  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 26. Power Supply Rejection Ratio (PSRR) vs. Frequency, VOUT = 3.3 V,  
for Various Headroom Voltages  
Figure 23. Soft Start (SS) Current vs. Temperature, Multiple Input Voltages,  
VOUT = 5 V  
0
0
10Hz  
3.0V  
100Hz  
1kHz  
2.0V  
1.6V  
–10  
–10  
1.4V  
1.2V  
10kHz  
100kHz  
–20  
–20  
1.0V  
1MHz  
10MHz  
–30  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
800mV  
700mV  
600mV  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
HEADROOM VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
VOUT = 3.3 V, for Different Frequencies  
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency, VOUT = 1.8 V,  
for Various Headroom Voltages  
Rev. D | Page 10 of 21  
Data Sheet  
ADP7112  
0
10k  
1k  
100  
10  
1
–20  
–40  
–60  
3.0V  
2.0V  
1.6V  
–80  
1.4V  
1.2V  
1.0V  
800mV  
700mV  
600mV  
500mV  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. Power Supply Rejection Ratio (PSRR) vs. Frequency, VOUT = 5 V,  
for Various Headroom Voltages  
Figure 31. Output Noise Spectral Density vs. Frequency, ILOAD = 10 mA  
0
100k  
10Hz  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
100µA  
1mA  
10mA  
100mA  
200mA  
–10  
–20  
10k  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1k  
100  
10  
1
–100  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
HEADROOM VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 29. Power Supply Rejection Ratio (PSRR) vs. Headroom Voltage,  
VOUT = 5 V, for Different Frequencies  
Figure 32. Output Noise Spectral Density vs. Frequency, for Different Loads  
20  
100k  
10Hz TO 100kHz  
1.8V  
3.3V  
5.0V  
100Hz TO 100kHz  
16  
10k  
1k  
100  
10  
1
12  
8
4
0
1
10  
100  
1000  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 33. Output Noise Spectral Density vs. Frequency, for  
Different Output Voltages  
Figure 30. RMS Output Noise vs. Load Current  
Rev. D | Page 11 of 21  
ADP7112  
Data Sheet  
T
T
1
2
2
1
B
B
B
B
CH1 200mA Ω  
CH2 20mV  
M20µs A CH1  
W
1000mA  
CH1 1V  
CH2 2mV  
M4µs  
10.2%  
A
CH4  
1.84V  
W
W
W
T
10.2%  
T
Figure 34. Load Transient Response, ILOAD = 1 mA to 200 mA,  
VOUT = 5 V, VIN = 7 V, CH1 Load Current, CH2 VOUT  
Figure 37. Line Transient Response, ILOAD = 200 mA,  
VOUT = 3.3 V, CH1 VIN, CH2 VOUT  
T
T
1
2
1
2
B
B
B
B
CH1 2V  
CH2 2mV  
M4.0µs  
10.2%  
A
CH4  
1.84V  
CH1 200mA  
Ω
CH2 20mV  
M20µs  
W
T 10.2%  
A
CH1  
84mA  
W
W
W
T
Figure 35. Line Transient Response, ILOAD = 200 mA,  
VOUT = 5 V, CH1 VIN, CH2 VOUT  
Figure 38. Load Transient Response, ILOAD = 1 mA to 200 mA,  
VOUT = 1.8 V, VIN = 3 V, CH1 Load Current, CH2 VOUT  
T
T
1
2
1
2
B
B
W
B
CH1 200mA Ω  
CH2 20mV  
M20µs  
A
CH1  
148mA  
CH1 1V  
CH2 5mV  
M4.0µs  
93.4%  
A
CH4  
2.08V  
W
W
T
10.4%  
T
Figure 36. Load Transient Response, ILOAD = 1 mA to 200 mA,  
VOUT = 3.3 V, VIN = 5 V, CH1 Load Current, CH2 VOUT  
Figure 39. Line Transient Response, ILOAD = 200 mA,  
VOUT = 1.8 V, CH1 VIN, CH2 VOUT  
Rev. D | Page 12 of 21  
Data Sheet  
ADP7112  
THEORY OF OPERATION  
The ADP7112 is a low quiescent current, LDO linear  
regulator that operates from 2.7 V to 20 V and provides up to  
200 mA of output current. Drawing a low 180 ꢀA of quiescent  
current (typical) at full load makes the ADP7112 ideal for  
portable equipment. Typical shutdown current consumption  
is around 3.0 ꢀA at room temperature.  
any fixed output voltage to be set to a higher voltage with an  
external voltage divider. For example, a fixed 5 V output can be  
set to a 6 V output according to the following equation:  
V
OUT = 5 V(1 + R1/R2)  
(3)  
where R1 and R2 are the resistors in the output voltage divider  
shown in Figure 41.  
Optimized for use with small 2.2 μF ceramic capacitors, the  
ADP7112 provides excellent transient performance.  
ADP7112  
V
= 7V  
V
= 6V  
IN  
OUT  
VIN  
EN  
VOUT  
C
2.2µF  
R1  
C
OUT  
2.2µF  
IN  
VIN  
VOUT  
2kΩ  
SENSE/ADJ  
R2  
10kΩ  
SENSE/  
ADJ  
SHORT-CIRCUIT,  
THERMAL  
PROTECTION  
ON  
GND  
SS  
GND  
C
SS  
OFF  
REFERENCE  
1nF  
Figure 41. Typical Adjustable Output Voltage Application Schematic  
EN  
SHUTDOWN  
It is recommended that the R2 value be less than 200 kΩ to  
minimize errors in the output voltage caused by the SENSE/  
ADJ pin input current. For example, when R1 and R2 each equal  
200 kΩ and the default output voltage is 1.2 V, the adjusted output  
voltage is 2.4 V. The output voltage error introduced by the  
SENSE/ADJ pin input current is 1 mV or 0.04%, assuming a  
typical SENSE/ADJ pin input current of 10 nA at 25°C.  
Figure 40. Internal Block Diagram  
Internally, the ADP7112 consists of a reference, an error amplifier,  
and a PMOS pass transistor. Output current is delivered via the  
PMOS pass device, which is controlled by the error amplifier. The  
error amplifier compares the reference voltage with the feedback  
voltage from the output and amplifies the difference. If the  
feedback voltage is lower than the reference voltage, the gate of the  
PMOS device is pulled lower, allowing more current to pass and  
increasing the output voltage. If the feedback voltage is higher than  
the reference voltage, the gate of the PMOS device is pulled higher,  
allowing less current to pass and decreasing the output voltage.  
The ADP7112 uses the EN pin to enable and disable the  
VOUT pin under normal operating conditions. When EN is  
high, VOUT turns on, and when EN is low, VOUT turns off.  
For automatic startup, tie EN to VIN.  
The ADP7112 is available in 15 fixed output voltage options,  
ranging from 1.2 V to 5.0 V. The ADP7112 architecture allows  
Rev. D | Page 13 of 21  
 
 
ADP7112  
Data Sheet  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Figure 43 depicts the capacitance vs. voltage bias characteristic  
of a 0805, 2.2 μF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is ~ 15ꢀ over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
2.5  
The ADP7112 is designed for operation with small, space-saving  
ceramic capacitors, but functions with general-purpose capacitors  
as long as care is taken with regard to the effective series resistance  
(ESR) value. The ESR of the output capacitor affects the stability  
of the LDO control loop. A 2.2 μF capacitance with an ESR of  
0.3 Ω or less is recommended to ensure the stability of the  
ADP7112. Transient response to changes in load current is also  
affected by output capacitance. Using a larger value of output  
capacitance improves the transient response of the ADP7112 to  
large changes in load current. Figure 42 shows the transient  
responses for an output capacitance value of 2.2 μF.  
2.0  
1.5  
1.0  
0.5  
0
T
1
0
2
4
6
8
10  
12  
DC BIAS VOLTAGE (V)  
2
Figure 43. Capacitance vs. Voltage Characteristic  
Use Equation 1 to determine the worst-case capacitance  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
B
B
CH1 200mA Ω  
CH2 20mV  
M20µs  
W
A
CH1  
100mA  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(4)  
W
T
10.2%  
where:  
Figure 42. Output Transient Response, VOUT = 5 V, COUT = 2.2 μF, CH1 Load  
Current, CH2 VOUT  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Input Bypass Capacitor  
Connecting a 2.2 μF capacitor from VIN to GND reduces  
the circuit sensitivity to the PCB layout, especially when long  
input traces or high source impedance is encountered. If  
greater than 2.2 μF of output capacitance is required, increase  
the input capacitor to match it.  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15ꢀ for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10ꢀ, and CBIAS is 2.09 ꢁF at 5 V, as shown in Figure 43.  
These values in Equation 1 yield  
Input and Output Capacitor Properties  
C
EFF = 2.09 ꢁF × (1 − 0.15) × (1 − 0.1) = 1.59 ꢁF  
(5)  
Any good quality ceramic capacitors can be used with the  
ADP7112, as long as they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufac-  
tured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R or  
X7R dielectrics with a voltage rating of 6.3 V to 100 V are  
recommended. Y5V and Z5U dielectrics are not recommended,  
due to their poor temperature and dc bias characteristics.  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temper-  
ature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP7112, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Rev. D | Page 14 of 21  
 
 
 
 
Data Sheet  
ADP7112  
PROGRAMABLE PRECISION ENABLE  
SOFT START  
The ADP7112 uses the EN pin to enable and disable the VOUT  
pin under normal operating conditions. As shown in Figure 44,  
when a rising voltage on EN crosses the upper threshold,  
nominally 1.2 V, VOUT turns on. When a falling voltage on EN  
crosses the lower threshold, nominally 1.1 V, VOUT turns off.  
The hysteresis of the EN threshold is typically 100 mV.  
3.5  
The ADP7112 uses an internal soft start (SS pin open) to limit the  
inrush current when the output is enabled. The start-up time for  
the 3.3 V option is approximately 380 ꢀs from the time the EN  
active threshold is crossed to when the output reaches 90% of  
the final value. As shown in Figure 46, the start-up time is  
dependent on the output voltage setting.  
6
V
V
V
V
EN  
= 1.8V  
= 3.3V  
= 5.0V  
OUT  
OUT  
OUT  
3.0  
2.5  
2.0  
1.5  
1.0  
5
4
3
2
1
0
0.5  
0
–40°C  
+25°C  
+125°C  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
EN  
TIME (ms)  
Figure 44. Typical VOUT Response to EN Pin Operation  
Figure 46. Typical Start-Up Behavior  
The upper and lower thresholds are user programmable and can be  
set higher than the nominal 1.2 V threshold by using two resistors.  
The resistance values, REN1 and REN2, can be determined from  
An external capacitor connected to the SS pin determines the  
soft start time. This SS pin can be left open for a typical 380 ꢀs  
start-up time. Do not ground this pin. When an external soft  
start capacitor (CSS) is used, the soft start time is determined by  
the following equation:  
R
R
EN2 = nominally 10 kΩ to 100 kΩ  
(6)  
(7)  
EN1 = REN2 × (VIN − 1.2 V)/1.2 V  
SSTIME (sec) = tSTART-UP at 0 pF + (0.6 × CSS)/Iss  
where:  
START-UP at 0 pF is the start-up time at CSS = 0 pF (typically 380 ꢀs).  
SS is the soft start capacitor (F).  
(8)  
where VIN is the desired turn-on voltage.  
The hysteresis voltage increases by the factor (REN1 + REN2)/REN2  
For the example shown in Figure 45, the enable threshold is  
3.6 V with a hysteresis of 300 mV.  
.
t
C
Iss is the soft start current (typically 1.15 ꢀA).  
3.5  
ADP7112  
V
= 8V  
V
= 6V  
IN  
OUT  
VIN  
VOUT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
2.2µF  
R1  
C
OUT  
2.2µF  
IN  
2kΩ  
SENSE/ADJ  
R2  
10kΩ  
R
EN1  
ON  
200kΩ  
EN  
GND  
R
OFF  
EN2  
100kΩ  
Figure 45. Typical EN Pin Voltage Divider  
V
EN  
NO SS CAP  
1nF  
2nF  
4.7nF  
6.8nF  
10nF  
Figure 44 shows the typical hysteresis of the EN pin. This pre-  
vents on/off oscillations that can occur due to noise on the EN pin  
as it passes through the threshold points.  
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
Figure 47. Typical Soft Start Behavior, Different CSS  
Rev. D | Page 15 of 21  
 
 
 
 
 
ADP7112  
Data Sheet  
RMS noise of the adjustable LDO without noise reduction  
of 22 μV rms  
RMS noise of the adjustable LDO with noise reduction  
(assuming 11 μV rms for fixed voltage option) of 12 μV rms  
NOISE REDUCTION OF THE ADP7112 IN  
ADJUSTABLE MODE  
The ultralow output noise of the ADP7112 is achieved by  
keeping the LDO error amplifier in unity gain and setting the  
reference voltage equal to the output voltage. This architecture  
does not work for an adjustable output voltage LDO in the  
conventional sense. However, the ADP7112 architecture allows  
any fixed output voltage to be set to a higher voltage with an  
external voltage divider. For example, a fixed 5 V output can be  
set to a 6 V output according to Equation 3 (see Figure 2).  
CURRENT-LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP7112 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP7112 is designed to current limit when the  
output load reaches 360 mA (typical). When the output load  
exceeds 360 mA, the output voltage is reduced to maintain a  
constant current limit.  
V
OUT = 5 V(1 + R1/R2)  
The disadvantage in using the ADP7112 in this manner is that  
the output voltage noise is proportional to the output voltage.  
Therefore, it is best to choose a fixed output voltage that is close  
to the target voltage to minimize the increase in output noise.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and/or  
high power dissipation) when the junction temperature starts  
to rise above 150°C, the output is turned off, reducing the  
output current to zero. When the junction temperature drops  
below 135°C, the output is turned on again, and output current  
is restored to the operating value.  
The adjustable LDO circuit can be modified to reduce the  
output voltage noise to levels close to that of the fixed output  
ADP7112. The circuit shown in Figure 48 adds two additional  
components to the output voltage setting resistor divider. CNR  
and RNR are added in parallel with R1 to reduce the ac gain of  
the error amplifier. RNR is chosen to be small with respect to R2.  
If RNR is 1% to 10% of the value of R2, the minimum ac gain of  
the error amplifier is approximately 0.1 dB to 0.8 dB. The actual  
gain is determined by the parallel combination of RNR and R1.  
This gain ensures that the error amplifier always operates at  
slightly greater than unity gain.  
Consider the case where a hard short from VOUT to ground  
occurs. At first, the ADP7112 current limits, so that only 360  
mA is conducted into the short. If self heating of the junction  
is great enough to cause the temperature to rise above 150°C,  
thermal shutdown activates, turning off the output and reducing  
the output current to zero. As the junction temperature cools  
and drops below 135°C, the output turns on and conducts  
360 mA into the short, again causing the junction  
temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation  
between 360 mA and 0 mA that continues as long as the short  
remains at the output.  
CNR is chosen by setting the reactance of CNR equal to R1 − RNR  
at a frequency between 1 Hz and 50 Hz. This setting places the  
frequency where the ac gain of the error amplifier is 3 dB down  
from the dc gain.  
V
= 10V  
VIN  
VOUT  
V
= 12V  
OUT  
+
C
OUT  
IN  
R1  
100kΩ  
+
C
2.2µF  
IN  
+
C
NR  
2.2µF  
1µF  
SENSE/ADJ  
Current-limit and thermal limit protections protect the device  
against accidental overload conditions. For reliable operation,  
device power dissipation must be externally limited so that the  
junction temperature does not exceed 125°C.  
R
10kΩ  
NR  
ON  
200kΩ  
100kΩ  
R2  
100kΩ  
OFF  
EN  
GND  
EFFECT OF NOISE REDUCTION ON START-UP TIME  
The start-up time of the ADP7112 is affected by the noise  
reduction network and must be considered in applications  
where power supply sequencing is critical.  
Figure 48. Noise Reduction Modification  
The noise of the adjustable LDO is found by using the  
following formula, assuming the noise of a fixed output LDO is  
approximately 11 ꢀV.  
The noise reduction circuit adds a pole in the feedback loop,  
slowing down the start-up time. The start-up time for an  
adjustable model with a noise reduction network can be  
approximated using the following equation:  
Noise = 11 ꢀV × (RPAR + R2)/R2  
(9)  
where RPAR is a parallel combination of R1 and RNR  
.
SSNRTIME (sec) = 5.5 × CNR × (RNR + R1)  
Based on the component values shown in Figure 48, the  
ADP7112 has the following characteristics:  
For a CNR, RNR, and R1 combination of 1 μF, 10 kΩ, and 100 kΩ  
as shown in Figure 48, the start-up time is approximately 0.6 sec.  
When SSNRTIME is greater than SSTIME, SSNRTIME dictates the  
length of the start-up time instead of the soft start capacitor.  
DC gain of 2 (6 dB)  
3 dB roll-off frequency of 1.59 Hz  
High frequency ac gain of 1.09 (0.75 dB)  
Noise reduction factor of 1.83 (5.25 dB)  
Rev. D | Page 16 of 21  
 
 
 
 
Data Sheet  
ADP7112  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
THERMAL CONSIDERATIONS  
In applications with a low input-to-output voltage differential,  
the ADP7112 does not dissipate much heat. However, in  
applications with high ambient temperature and/or high input  
voltage, the heat dissipated in the package can become large  
enough to cause the junction temperature of the die to exceed  
the maximum junction temperature of 125°C.  
TJ = TA + (((VIN VOUT) × ILOAD) × θJA)  
(11)  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current,  
there exists a minimum copper size requirement for the PCB  
to ensure that the junction temperature does not rise above 125°C.  
Figure 49 to Figure 51 show junction temperature calculations  
for different ambient temperatures, power dissipation, and  
areas of PCB copper.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the temperature  
rise of the package due to the power dissipation, as shown in  
Equation 1.  
In the case where the board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the  
junction temperature rise (see Figure 52). Calculate the  
maximum junction temperature by using Equation 2.  
TJ = TB + (PD × ΨJB)  
To guarantee reliable operation, the junction temperature of  
the ADP7112 must not exceed 125°C. To ensure that the  
junction temperature stays below this maximum value, the user  
must be aware of the parameters that contribute to junction  
temperature changes. These parameters include ambient  
temperature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The θJA  
number is dependent on the package assembly compounds that  
are used and the amount of copper solders the package GND pin  
to the PCB.  
The typical value of ΨJB is 58°C/W for the 6-ball WLCSP package.  
145  
135  
125  
115  
105  
95  
85  
75  
65  
2
25mm  
55  
45  
35  
25  
2
2
100mm  
500mm  
Table 6 shows typical θJA values of the 6-ball WLCSP package  
for various PCB copper sizes. The typical ΨJB value for the  
6-ball WLCSP package is 58°C/W.  
T
MAX  
J
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Table 6. Typical θJA Values  
TOTAL POWER DISSIPATION (W)  
Copper Size (mm)  
θJA (°C/W) for WLCSP  
Figure 49. WLCSP, TA = 25°C  
251  
50  
100  
500  
260  
159  
157  
151  
140  
130  
120  
110  
100  
90  
1 Device soldered to minimum size pin traces.  
To calculate the junction temperature of the ADP7112, use  
Equation 1.  
TJ = TA + (PD × θJA)  
80  
where:  
2
25mm  
70  
2
2
100mm  
500mm  
MAX  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
60  
T
J
50  
PD = ((VIN VOUT) × ILOAD) + (VIN × IGND  
where:  
IN and VOUT are input and output voltages, respectively.  
)
(10)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
Figure 50. WLCSP, TA = 50°C  
V
I
I
LOAD is the load current.  
GND is the ground current.  
Rev. D | Page 17 of 21  
 
 
 
ADP7112  
Data Sheet  
140  
120  
100  
80  
135  
125  
115  
105  
95  
60  
T
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
B
B
B
B
J
40  
2
25mm  
2
2
100mm  
500mm  
MAX  
20  
T
J
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 52. WLCSP Junction Temperature Rise, Different Board Temperatures  
Figure 51. WLCSP, TA = 85°C  
Rev. D | Page 18 of 21  
 
 
Data Sheet  
ADP7112  
PCB LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP7112.  
However, as listed in Table 6, a point of diminishing returns is  
eventually reached, beyond which an increase in the copper size  
does not yield significant heat dissipation benefits.  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0805 or 1206 size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
Figure 53. Example WLCSP PCB Layout  
Rev. D | Page 19 of 21  
 
ADP7112  
Data Sheet  
Table 7. Recommended LDOs for Super Low Noise Operation  
Noise  
(Fixed)  
IQ at  
IOUT  
(μA)  
IGND-SD  
Max  
(μA)  
10 Hz to PSRR  
100 kHz 100 kHz 1 MHz  
PGOOD (μV rms) (dB)  
PSRR  
Device  
Number  
VIN  
Range (V)  
VOUT  
Fixed (V) (V)  
VOUT Adjust IOUT  
Soft  
Start  
(mA)  
(dB)  
Package  
ADP7102 3.3 to 20  
ADP7104 3.3 to 20  
ADP7105 3.3 to 20  
1.5 to 9  
1.5 to 9  
1.22 to 19  
300  
750  
900  
900  
75  
75  
75  
No  
No  
Yes  
Yes  
Yes  
Yes  
15  
15  
15  
60  
60  
60  
40  
3 mm ×  
3 mm  
8-lead LFCSP,  
8-lead SOIC  
3 mm ×  
3 mm  
8-lead LFCSP,  
8-lead SOIC  
3 mm ×  
3 mm  
1.22 to 19  
500  
500  
40  
40  
1.8, 3.3, 5 1.22 to 19  
8-lead LFCSP,  
8-lead SOIC  
ADP7112 2.7 to 20  
ADP7118 2.7 to 20  
1.2 to 5  
1.2 to 5  
1.2 to 19  
1.2 to 19  
200  
200  
180  
180  
10  
10  
Yes  
Yes  
No  
No  
11  
11  
68  
68  
50  
50  
1 mm ×  
1.2 mm  
6-ball WLCSP  
2 mm ×  
2 mm  
6-lead LFCSP,  
8-lead SOIC,  
5-lead TSOT  
ADP7142 2.7 to 40  
1.2 to 5  
1.2 to 39  
200  
180  
10  
−8  
Yes  
No  
No  
No  
11  
18  
68  
45  
50  
45  
2 mm ×  
2 mm  
6-lead LFCSP,  
8-lead SOIC,  
5-lead TSOT  
ADP7182 −2.7 to −28 −1.8 to −5 −1.22 to −27 −200  
−650  
2 mm ×  
2 mm  
6-lead LFCSP,  
3 × 3 mm  
8-lead LFCSP,  
5-lead TSOT  
Table 8. Related Devices  
Model  
Input Voltage (V)  
2.7 to 20  
2.7 to 20  
2.7 to 20  
2.7 to 40  
Output Current (mA)  
Package  
ADP7118ACP  
ADP7118ARD  
ADP7118AUJ  
ADP7142ACP  
ADP7142ARD  
ADP7142AUJ  
200  
200  
200  
200  
200  
200  
6-lead LFCSP  
8-lead SOIC  
5-lead TSOT  
6-lead LFCSP  
8-lead SOIC  
5-lead TSOT  
2.7 to 40  
2.7 to 40  
Rev. D | Page 20 of 21  
Data Sheet  
ADP7112  
OUTLINE DIMENSIONS  
0.990  
0.950  
0.910  
BOTTOM VIEW  
(BALL SIDE UP)  
2
1
A
B
BALL A1  
IDENTIFIER  
1.200  
1.160  
1.120  
0.80  
REF  
C
0.40  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
0.40 BSC  
0.330  
0.300  
0.270  
0.560  
0.500  
0.440  
SIDE VIEW  
COPLANARITY  
0.04  
0.300  
0.260  
0.220  
0.230  
0.200  
0.170  
SEATING  
PLANE  
Figure 54. 6-Ball Wafer Level Chip Scale Package [WLCSP]  
1.00 mm × 1.20 mm Body  
(CB-6-15)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Output Voltage (V)2, 3  
Package Description  
6-Ball WLCSP  
6-Ball WLCSP  
6-Ball WLCSP  
6-Ball WLCSP  
Package Option  
CB-6-15  
CB-6-15  
CB-6-15  
CB-6-15  
Branding  
ADP7112ACBZ-1.2-R7  
ADP7112ACBZ-1.8-R7  
ADP7112ACBZ-2.5-R7  
ADP7112ACBZ-3.3-R7  
ADP7112ACBZ-5.0-R7  
ADP7112CB-EVALZ  
Adjustable (1.2)  
CQ  
CR  
CS  
CT  
CU  
1.8  
2.5  
3.3  
5.0  
3.3  
6-Ball WLCSP  
WLCSP Evaluation Board  
CB-6-15  
1 Z = RoHS Compliant Part.  
2 For additional voltage options, contact a local Analog Devices, Inc., sales or distribution representative.  
3 The evaluation boards are preconfigured with an adjustable ADP7112.  
©2014–2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12508-3/20(D)  
Rev. D | Page 21 of 21  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY